Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes
Abstract
1. Introduction
2. Device Design and Operational Principles
3. Fabrication
4. Measurement and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Jiang, J.; Li, H.; Zhao, X.S. A High-performance Asymmetric Supercapacitor Fabricated with Graphene-Based Electrodes. Energy Environ. Sci. 2011, 4, 4009–4015. [Google Scholar] [CrossRef]
- Ramadoss, A.; Kim, S.J. Improved Activity of a Graphene–TiO2 Hybrid Electrode in an Electrochemical Supercapacitor. Carbon 2013, 63, 434–445. [Google Scholar] [CrossRef]
- Chen, L.F.; Huang, Z.H.; Liang, H.W.; Yao, W.T.; Yu, Z.Y.; Yu, S.H. Flexible All-Solid-State High-Power Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Bacterial Cellulose. Energy Environ. Sci. 2013, 6, 3331–3338. [Google Scholar] [CrossRef]
- Koo, Y.; Shanov, V.N.; Yun, Y. Carbon nanotube paper-based electroanalytical devices. Micromachines 2016, 7, 72. [Google Scholar] [CrossRef]
- Kaempgen, M.; Ma, J.; Gruner, G.; Wee, G.; Mhaisalkar, S.G. Bifunctional Carbon Nanotube Networks for Supercapacitors. Appl. Phys. Lett. 2007, 90, 264104. [Google Scholar] [CrossRef]
- Niu, Z.; Zhou, W.; Chen, J.; Feng, G.; Li, H.; Hu, Y.; Ma, W.; Dong, H.; Li, J.; Xie, S. A Repeated Halving Approach to Fabricate Ultrathin Single-Walled Carbon Nanotube Films for Transparent Supercapacitors. Small 2013, 9, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, H.; Lu, Y.; Wei, S.; Wujcik, E.K.; Guo, Z. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials 2016, 5, 755. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Yoon, H. Nanostructured Electrode Materials for Electrochemical Capacitor Applications. Nanomaterials 2016, 5, 906. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zeng, S.; Chen, M.; Zhang, Y.; Li, Q. Fabrication and Functionalization of Carbon Nanotube Films for High-performance Flexible Supercapacitors. Carbon 2015, 92, 271–296. [Google Scholar] [CrossRef]
- Izadi-Najafabadi, A.; Yamada, T.; Futaba, D.N.; Yudasaka, M.; Takagi, H.; Hatori, H.; Iijima, S.; Hata, K. High-Power Supercapacitor Electrodes from Single-Walled Carbon Nanohorn/Nanotube Composite. ACS Nano 2011, 5, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.H.; Zeng, C.; Zhang, C.; Wang, B.; Zheng, J. Supercritical Fluid Deposition of Vanadium Oxide on Multi-Walled Carbon Nanotube Buckypaper for Supercapacitor Electrode Application. Nanotechnology 2011, 22, 365402. [Google Scholar] [CrossRef] [PubMed]
- Che, G.; Lakshmi, B.B.; Martin, C.R.; Fisher, E.R.; Ruoff, R.S. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem. Mater. 1998, 10, 260–267. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. Graphene-Patched CNT/MnO2 Nanocomposite Papers for the Electrode of High-Performance Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 3408–3416. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Liu, C.; Fan, S. Flexible Carbon Nanotube/Polyaniline Paper-Like Films and Their Enhanced Electrochemical Properties. Electrochem. Commun. 2009, 11, 186–189. [Google Scholar] [CrossRef]
- Chen, H.; Di, J.; Jin, Y.; Chen, M.; Tian, J.; Li, Q. Active Carbon Wrapped Carbon Nanotube Buckypaper for the Electrode of Electrochemical Supercapacitors. J. Power Sources 2013, 237, 325–331. [Google Scholar] [CrossRef]
- Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P.; Gogotsi, Y. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science 2010, 328, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Cai, T. Selection and preparation of the membrane electrode material for micro-Supercapacitor. Sens. Actuators B Chem. 2015, 213, 202–208. [Google Scholar] [CrossRef]
- Sette, D.; Girod, S.; Leturcq, R.; Glinsek, S.; Defay, E. Transparent Ferroelectric Capacitors on Glass. Micromachines 2017, 8, 313. [Google Scholar] [CrossRef]
- Meng, C.; Liu, C.; Chen, L.; Hu, C.; Fan, S. Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Lett. 2010, 10, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.-G.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G.Q.; Cheng, H.-M. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano 2009, 3, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Mei, Y.; Schmidt, O.G. Swiss Roll Nanomembranes with Controlled Proton Diffusion as Redox Micro-supercapacitors. Chem. Commun. 2010, 46, 3881–3883. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bufon, C.C.B.; Grimm, D.; Sommer, R.; Wollatz, A.; Schadewald, J.; Thurmer, D.J.; Siles, P.F.; Bauer, M.; Schmidt, O.G. Large-Area Rolled-Up Nanomembrane Capacitor Arrays for Electrostatic Energy Storage. Adv. Energy Mater. 2014, 4, 1301631. [Google Scholar] [CrossRef]
- Beidaghi, M.; Gogotsi, Y. Capacitive Energy Storage in Micro-Scale Devices: Recent Advances in Design and Fabrication of Microsupercapacitors. Energy Environ. Sci. 2014, 7, 867–884. [Google Scholar] [CrossRef]
- Shen, C.; Wang, X.; Zhang, W.; Kang, F. A High-Performance Three-Dimensional Micro Supercapacitor Based on Self-Supporting Composite Materials. J. Power Sources 2011, 196, 10465–10471. [Google Scholar] [CrossRef]
- Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-Like Carbon. Nat. Nano 2010, 5, 651. [Google Scholar] [CrossRef] [PubMed]
- Beidaghi, M.; Wang, C. Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance. Adv. Funct. Mater. 2012, 22, 4501–4510. [Google Scholar] [CrossRef]
- Liu, W.; Yan, X.; Chen, J.; Feng, Y.; Xue, Q. Novel and High-Performance Asymmetric Micro-Supercapacitors Based on Graphene Quantum Dots and Polyaniline Nanofibers. Nanoscale 2013, 5, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- In, J.B.; Hsia, B.; Yoo, J.-H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C.P. Facile Fabrication of Flexible All Solid-State Micro-Supercapacitor by Direct Laser Writing of Porous Carbon in Polyimide. Carbon 2015, 83, 144–151. [Google Scholar] [CrossRef]
- Lee, G.; Kim, D.; Yun, J.; Ko, Y.; Cho, J.; Ha, J.S. High-performance All-Solid-State Flexible Micro-Supercapacitor Arrays with Layer-by-Layer Assembled MWNT/MnOx Nanocomposite Electrodes. Nanoscale 2014, 6, 9655–9664. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, F.; Lebedkin, S.; Malik, S.; Tracy, J.; Barczewski, M.; Rösner, H.; Kappes, M. Preparation, Characterization and Applications of Free-Standing Single Walled Carbon Nanotube Thin Films. Phys. Chem. Chem. Phys. 2002, 4, 2273–2277. [Google Scholar] [CrossRef]
- Zheng, J.P.; Huang, J.; Jow, T.R. The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc. 1997, 144, 2026–2031. [Google Scholar] [CrossRef]
- Ma, C.W.; Huang, P.C.; Yang, Y.J. A Paper-like Micro-Supercapacitor with Patterned Buckypaper Electrodes Using a Novel Vacuum Filtration Technique. In Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 1067–1070. [Google Scholar]
- Sears, K.; Dumée, L.; Schütz, J.; She, M.; Huynh, C.; Hawkins, S.; Duke, M.; Gray, S. Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation. Materials 2010, 3, 127–149. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Kaner, R.B. Scalable Fabrication of High-power Graphene Micro-Supercapacitors for Flexible and On-Chip Energy Storage. Nat. Commun. 2013, 4, 2446. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. High-Performance All Solid-State Micro-Supercapacitor Based on Patterned Photoresist-Derived Porous Carbon Electrodes and an Ionogel Electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002. [Google Scholar] [CrossRef]
- Liu, W.-W.; Feng, Y.-Q.; Yan, X.-B.; Chen, J.-T.; Xue, Q.-J. Superior Micro-Supercapacitors Based on Graphene Quantum Dots. Adv. Funct. Mater. 2013, 23, 4111–4122. [Google Scholar] [CrossRef]
Scan Rate (mV/s) | 200 | 100 | 50 | 20 |
---|---|---|---|---|
Cs (mF/cm2) | 85.03 | 89.83 | 94.19 | 107.3 |
Thickness (µm) | 75 | 60 | 48 | 37 |
---|---|---|---|---|
Cs (mF/cm2) | 107.27 | 82.25 | 61.62 | 40.12 |
Reference | Specific Capacitance (mF/cm2) | Electrolyte Material | Fabrication Method | Electrode Material |
---|---|---|---|---|
This work | 107.3 | PVA-KOH | Vacuum filtration | MWCNT |
[34] | 2.32 | PVA-H2SO4 | Direct laser writing | Graphene |
[35] | 0.6 | Ionogel | Pyrolysis | Photoresistderived porous carbon |
[26] | 2.8 | KCL | Electrostatic spray deposition | Graphene and CNT |
[36] | 0.53 | EMIMBF4 | Electrophoretic deposition | Graphene quantum dots |
Current Density (mA/cm2) | 10 | 5 | 2 | 1 |
---|---|---|---|---|
Δt (s) | 2.6 | 5.7 | 14.8 | 30.6 |
Cd (mF/cm2) | 65.0 | 71.2 | 74.0 | 76.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-T.; Ma, C.-W.; Chang, C.-M.; Yang, Y.-J. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes. Micromachines 2018, 9, 242. https://doi.org/10.3390/mi9050242
Chen Y-T, Ma C-W, Chang C-M, Yang Y-J. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes. Micromachines. 2018; 9(5):242. https://doi.org/10.3390/mi9050242
Chicago/Turabian StyleChen, Yun-Ting, Cheng-Wen Ma, Chia-Ming Chang, and Yao-Joe Yang. 2018. "Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes" Micromachines 9, no. 5: 242. https://doi.org/10.3390/mi9050242
APA StyleChen, Y.-T., Ma, C.-W., Chang, C.-M., & Yang, Y.-J. (2018). Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes. Micromachines, 9(5), 242. https://doi.org/10.3390/mi9050242