Side-Group Effect on Electron Transport of Single Molecular Junctions
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Murai, D.; Marques-Gonzalez, S.; Nakamura, H.; Komoto, Y.; Fujii, S.; Nishino, T.; Ikeda, K.; Tsukagoshi, K.; Kiguchi, M. Site-selection in single-molecule junction for highly reproducible molecular electronics. J. Am. Chem. Soc. 2016, 138, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Isshiki, Y.; Matsuzawa, Y.; Fujii, S.; Kiguchi, M. Investigation on single-molecule junctions based on current-voltage characteristics. Micromachines 2018, 9, 67. [Google Scholar] [CrossRef]
- Xu, B.Q.; Tao, N.J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Chen, Z.B.; Liu, S.H.; Jin, S.; Liu, L.; Zhang, H.M.; Xie, Z.X.; Jiang, Y.B.; Mao, B.W. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 2008, 112, 3935–3940. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.B.; Liu, J.Y.; Lu, M.; Yang, D.Z.; Yang, F.Z.; Tian, Z.Q. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 2011, 4, 1199–1207. [Google Scholar] [CrossRef]
- Perrin, M.L.; Frisenda, R.; Koole, M.; Seldenthuis, J.S.; Gil, J.A.C.; Valkenier, H.; Hummelen, J.C.; Renaud, N.; Grozema, F.C.; Thijssen, J.M.; et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 2014, 9, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.L.; Chen, F.; Hong, Z.W.; Zheng, J.F.; Fillaud, L.; Yuan, Y.; Huang, M.L.; Shao, Y.; Zhou, X.S.; Chen, J.Z.; et al. Precise tuning of single molecule conductance in an electrochemical environment. Nanoscale 2018, 10, 7026–7032. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X.S.; Zhao, Z.; Tang, B.Z. Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231–4235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Liu, L.; Fortgang, P.; Lefevre, A.-S.; Serra-Muns, A.; Raouafi, N.; Amatore, C.; Mao, B.W.; Maisonhaute, E.; Schollhorn, B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 2011, 133, 7509–7516. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, C.R.; Leary, E.; Castellanos-Gómez, A.S.; Rubio-Bollinger, G.; González, M.T.; Agraït, N.S. Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 2011, 133, 14313–14319. [Google Scholar] [CrossRef] [PubMed]
- Haiss, W.; Wang, C.S.; Grace, I.; Batsanov, A.S.; Schiffrin, D.J.; Higgins, S.J.; Bryce, M.R.; Lambert, C.J.; Nichols, R.J. Precision control of single-molecule electrical junctions. Nat. Mater. 2006, 5, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.Y.; Nagahara, L.A.; Rawlett, A.M.; Tao, N.J. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 2005, 127, 9235–9240. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, L.; Park, Y.S.; Whalley, A.C.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Electronics and chemistry: Varying single-molecule junction conductance using chemical substituents. Nano Lett. 2007, 7, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong, W.; García-Suárez, V.M.; Buiter, P.; Otten, J.L.H.; Hummelen, J.C.; Lambert, C.J.; Wandlowski, T. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 2012, 134, 5262–5275. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Artem, M.; Mark, E.; Markus, N.; Thomas, W.; Marcel, M. Chemically controlled conductivity: Torsion-angle dependence in a single-molecule biphenyldithiol junction. Angew. Chem. Int. Ed. 2009, 48, 8886–8890. [Google Scholar]
- Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.; Pobelov, I.V.; Bagrets, A.; Viljas, J.K.; Pauly, F.; Evers, F.; et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 2010, 10, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jian, Y.; Wang, J.; He, C.; Li, X.; Liu, T.; Duan, C. Post-modification of a mof through a fluorescent-labeling technology for the selective sensing and adsorption of ag+ in aqueous solution. Dalton Trans. 2012, 41, 10153–10155. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.C.; Peng, L.L.; Li, W.Q.; Chen, F.; Wang, H.G.; Shao, Y.; Zhou, X.S.; Zhao, X.Q.; Xie, H.; Niu, Z.J. Influence of molecular structure on contact interaction between thiophene anchoring group and au electrode. J. Phys. Chem. C 2017, 121, 1472–1476. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Comparative dft study of van der waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J. Phys. Chem. A 2006, 110, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. Density functional for spectroscopy: No long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than b3lyp for ground states. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar]
- Binning, R.C.; Curtiss, L.A. Compact contracted basis sets for third-row atoms: Ga–kr. J. Comput. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Gordon, M.S. The isomers of silacyclopropane. Chem. Phys. Lett. 1980, 76, 163–168. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Chen, Z.B.; Hong, Z.W.; Li, D.F.; Wang, Y.H.; Zheng, J.F.; Shao, Y.; Zhou, X.S. The conductance of pyridine-based molecules measured in ambient air and electrolyte solution: Effect of surrounding. Int. J. Electrochem. Sci. 2015, 10, 2931–2938. [Google Scholar]
- Quek, S.Y.; Kamenetska, M.; Steigerwald, M.L.; Choi, H.J.; Louie, S.G.; Hybertsen, M.S.; Neaton, J.B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Kamenetska, M.; Quek, S.Y.; Whalley, A.C.; Steigerwald, M.L.; Choi, H.J.; Louie, S.G.; Nuckolls, C.; Hybertsen, M.S.; Neaton, J.B.; Venkataraman, L. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am. Chem. Soc. 2010, 132, 6817–6821. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Dubi, Y. Negative differential conductance in molecular junctions: An overview of experiment and theory. J. Phys. Condens. Matter 2015, 27, 263202. [Google Scholar] [CrossRef] [PubMed]
- Gergel-Hackett, N.; Majumdar, N.; Martin, Z.; Swami, N.; Harriott, L.R.; Bean, J.C.; Pattanaik, G.; Zangari, G.; Zhu, Y.; Pu, I.; et al. Effects of molecular environments on the electrical switching with memory of nitro-containing opes. J. Vac. Sci. Technol. A 2006, 24, 1243–1248. [Google Scholar] [CrossRef][Green Version]
- Cheng, J.-F.; Zhou, L.; Wen, Z.; Yan, Q.; Han, Q.; Gao, L. The enhanced spin-polarized transport behaviors through cobalt benzene–porphyrin–benzene molecular junctions: The effect of functional groups. J. Phys. Condens. Matter 2017, 29, 175201. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Peng, Z.L.; Hou, R.; Liang, J.H.; Zheng, J.F.; Zhou, X.Y.; Zhou, X.S.; Jin, S.; Niu, Z.J.; Mao, B.W. Enhancing electron transport in molecular wires by insertion of a ferrocene center. Phys. Chem. Chem. Phys. 2014, 16, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Zotti, L.A.; Kirchner, T.; Cuevas, J.C.; Pauly, F.; Huhn, T.; Scheer, E.; Erbe, A. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 2010, 6, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Diaz-Fernandez, Y.A.; Gschneidtner, T.A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411. [Google Scholar] [CrossRef] [PubMed]
- Kaliginedi, V.V.; Rudnev, A.; Moreno-Garcia, P.; Baghernejad, M.; Huang, C.; Hong, W.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529–23539. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.K.; Wang, K.; Vezzoli, A.; Al-Khaykanee, M.K.; Gallagher, H.E.; Grace, I.M.; Lambert, C.J.; Xu, B.Q.; Nichols, R.J.; Higgins, S.J. Side-group-mediated mechanical conductance switching in molecular junctions. Angew. Chem. Int. Ed. 2017, 56, 15378–15382. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gonzalez, S.; Xie, Z.; Galangau, O.; Selvanathan, P.; Norel, L.; Van Dyck, C.; Costuas, K.; Frisbie, C.D.; Rigaut, S.; Cornil, J. Homo level pinning in molecular junctions: Joint theoretical and experimental evidence. J. Phyc. Chem. Lett. 2018, 9, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bâldea, I.; Smith, C.E.; Wu, Y.; Frisbie, C.D. Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 2015, 9, 8022–8036. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Xie, Z.; Baldea, I.; Frisbie, C.D. Work function and temperature dependence of electron tunneling through an n-type perylene diimide molecular junction with isocyanide surface linkers. Nanoscale 2018, 10, 964–975. [Google Scholar] [CrossRef] [PubMed]
Molecule | Twist Angle | Conductance |
---|---|---|
BPY | 35° | 10−3.1 G0, 10−3.6 G0 |
BPY-N | 52° | 10−3.8 G0 |
BPY-2N | 77° | 10−3.9 G0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.-L.; Zhang, F.; Wang, C.; Zheng, J.-F.; Mao, H.-L.; Xie, H.-J.; Shao, Y.; Zhou, X.-S.; Liu, J.-X.; Zhuang, J.-L. Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines 2018, 9, 234. https://doi.org/10.3390/mi9050234
Huang M-L, Zhang F, Wang C, Zheng J-F, Mao H-L, Xie H-J, Shao Y, Zhou X-S, Liu J-X, Zhuang J-L. Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines. 2018; 9(5):234. https://doi.org/10.3390/mi9050234
Chicago/Turabian StyleHuang, Miao-Ling, Fan Zhang, Chen Wang, Ju-Fang Zheng, Hui-Ling Mao, Hu-Jun Xie, Yong Shao, Xiao-Shun Zhou, Jin-Xuan Liu, and Jin-Liang Zhuang. 2018. "Side-Group Effect on Electron Transport of Single Molecular Junctions" Micromachines 9, no. 5: 234. https://doi.org/10.3390/mi9050234
APA StyleHuang, M.-L., Zhang, F., Wang, C., Zheng, J.-F., Mao, H.-L., Xie, H.-J., Shao, Y., Zhou, X.-S., Liu, J.-X., & Zhuang, J.-L. (2018). Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines, 9(5), 234. https://doi.org/10.3390/mi9050234