Continuous Size-Based Particle Separation Using Inertial Force and Deterministic Lateral Displacement
Abstract
1. Introduction
| Method | Pros | Cons | Size (μm) | Flow Rates (mL/min) | Separation Efficiency | Ref. |
|---|---|---|---|---|---|---|
| Inertial force | Simple structure and a high flow rate | Limited resolution, and dependence on flow rate and particle size | 7.3, 9.9, 15.5 | 1–3 | >90% | [16] |
| 12, 26 | 0.4 | >85% | [28] | |||
| 10, 15, 20 | 0.18–0.27 | >95% | [17] | |||
| DLD | Precise, and predictable size cutoff | Low flow rate and occurrence of clogging | 4, 11 | 0.02–0.2 | >98% | [22] |
| 2, 6 | 2 × 10−4 | >90% | [29] | |||
| 10, 20 | 0.1–0.12 | >89% | [30] | |||
| Inertial force and DLD | High flow rate, and precise size cutoff | More challenging design | 5, 10, 20 | N/A | >94% | [24] |
| 7, 13 | 0.05 | >96% | [31] | |||
| 8, 15 | 0.2–0.6 | >93% | This work |
2. Materials and Methods
2.1. Device Fabrication
2.2. Simulation
2.3. Image Capture
2.4. Data Processing
2.5. Separation Efficiency
2.6. Statistics
3. Results and Discussion
3.1. Device Design
3.2. Inertial Lateral Displacement Along Curved Channels
3.3. Deterministic Lateral Displacement Along Curved Channels in Which Micro-Pillars Are Embedded
3.4. Experimental Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytom. J. Int. Soc. Anal. Cytol. 1990, 11, 231–238. [Google Scholar] [CrossRef]
- Picot, J.; Guerin, C.L.; Le Van Kim, C.; Boulanger, C.M. Flow cytometry: Retrospective, fundamentals and recent instrumentation. Cytotechnology 2012, 64, 109–130. [Google Scholar] [CrossRef]
- Lei, K.F. Microfluidic systems for diagnostic applications: A review. J. Lab. Autom. 2012, 17, 330–347. [Google Scholar] [CrossRef]
- Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small 2020, 16, 2000171. [Google Scholar] [CrossRef]
- Price, A.K.; MacConnell, A.B.; Paegel, B.M. Microfluidic bead suspension hopper. Anal. Chem. 2014, 86, 5039–5044. [Google Scholar] [CrossRef]
- Lee, S.H.S.; Hatton, T.A.; Khan, S.A. Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluid. Nanofluidics 2011, 11, 429–438. [Google Scholar] [CrossRef]
- Alvankarian, J.; Majlis, B.Y. Tunable microfluidic devices for hydrodynamic fractionation of cells and beads: A review. Sensors 2015, 15, 29685–29701. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yalikun, Y.; Tanaka, Y. Recent advances in microfluidic cell sorting systems. Sens. Actuators B Chem. 2019, 282, 268–281. [Google Scholar] [CrossRef]
- Zhu, J.; Tzeng, T.-R.J.; Xuan, X. Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 2010, 31, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Shields Iv, C.W.; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 2007, 7, 890–897. [Google Scholar] [CrossRef]
- Autebert, J.; Coudert, B.; Bidard, F.-C.; Pierga, J.-Y.; Descroix, S.; Malaquin, L.; Viovy, J.-L. Microfluidic: An innovative tool for efficient cell sorting. Methods 2012, 57, 297–307. [Google Scholar] [CrossRef]
- Boran, Z.; Fan, Y.; Wenshuai, W.; Wuyi, W.; Wenhan, Z.; Qianbin, Z. Investigation of particle manipulation mechanism and size sorting strategy in a double-layered microchannel. Lab Chip 2022, 22, 4556–4573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, W.; Yuan, D.; Wang, T.; Wu, W. A novel microparticle size sorting technology based on sheath flow stable expansion regimes. Phys. Fluids 2023, 35, 052018. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 2008, 20, 101702. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, M.; Niu, Y.; Wang, J.; Shen, S. Flow-rate and particle-size insensitive inertial focusing in dimension-confined ultra-low aspect ratio spiral microchannel. Sens. Actuators B Chem. 2022, 369, 132284. [Google Scholar] [CrossRef]
- Lee, D.; Nam, S.M.; Kim, J.; Di Carlo, D.; Lee, W. Active control of inertial focusing positions and particle separations enabled by velocity profile tuning with coflow systems. Anal. Chem. 2018, 90, 2902–2911. [Google Scholar] [CrossRef]
- Loutherback, K.; Chou, K.S.; Newman, J.; Puchalla, J.; Austin, R.H.; Sturm, J.C. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluidics 2010, 9, 1143–1149. [Google Scholar] [CrossRef]
- Hawkins, J.; Browne, E.P.; Arcaro, K.F.; Sun, Y. Rapid cell isolation in breastmilk in a non-clinical setting by a deterministic lateral displacement device and selective water and fat absorption. Lab Chip 2024, 24, 604–614. [Google Scholar] [CrossRef]
- Yao, X.; Marcos. Creeping flow of a sphere nearby a cylinder. Appl. Math. Model. 2020, 79, 18–30. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.; Huang, W.; Lam, R.H. A narrow straight microchannel array for analysis of transiting speed of floating cancer cells. Micromachines 2022, 13, 183. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, S.; Yang, X.; Li, Q.; Jiang, B.; Zhou, L.; Zhang, L. The design and fabrication of thermoplastic microfluidic chips with integrated micropillars for particle separation. J. Mater. Res. Technol. 2024, 33, 874–883. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Mashhadian, A.; Ehsani, A.; Saha, S.C.; Krüger, T.; Warkiani, M.E. Computational inertial microfluidics: A review. Lab Chip 2020, 20, 1023–1048. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ying, J.; Mu, S.; Tan, W.; Zhu, G. Sheathless and high-throughput separation of multi-target particles combining inertia and deterministic lateral displacement (DLD) in a microchannel. Sep. Purif. Technol. 2024, 345, 127369. [Google Scholar] [CrossRef]
- Do, Q.-V.; Van, D.-A.; Nguyen, V.-B.; Pham, V.-S. A numerical modeling study on inertial focusing of microparticle in spiral microchannel. AIP Adv. 2020, 10, 075017. [Google Scholar] [CrossRef]
- Carvalho, V.; Rodrigues, R.O.; Lima, R.A.; Teixeira, S. Computational simulations in advanced microfluidic devices: A review. Micromachines 2021, 12, 1149. [Google Scholar] [CrossRef]
- Ferreira, M.; Carvalho, V.; Ribeiro, J.; Lima, R.A.; Teixeira, S.; Pinho, D. Advances in microfluidic systems and numerical modeling in biomedical applications: A review. Micromachines 2024, 15, 873. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, L.; Wei, L.; Huang, Z.; Yin, P.; Huang, X.; Shi, H.; Hu, B.; Tian, J. River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment. Sens. Actuators B Chem. 2019, 301, 127125. [Google Scholar] [CrossRef]
- Barbosa, V.B.; Cerqueira, L.; Miranda, J.; Azevedo, N.F. Yeast enrichment using microfluidic deterministic lateral displacement (DLD). Microchem. J. 2025, 218, 115499. [Google Scholar] [CrossRef]
- Mirhosseini, S.; Eskandarisani, M.; Faghih Nasiri, A.; Khatami, F.; Mirzaei, A.; Badieirostami, M.; Aghamir, S.M.K.; Kolahdouz, M. Effective boundary correction for deterministic lateral displacement microchannels to improve cell separation: A numerical and experimental study. Biosensors 2024, 14, 466. [Google Scholar] [CrossRef]
- Tottori, N.; Nisisako, T. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input. Lab Chip 2020, 20, 1999–2008. [Google Scholar] [CrossRef]
- Zhang, J. Lattice Boltzmann method for microfluidics: Models and applications. Microfluid. Nanofluidics 2011, 10, 1–28. [Google Scholar] [CrossRef]
- Leighton, D.; Acrivos, A. The lift on a small sphere touching a plane in the presence of a simple shear flow. Z. Für Angew. Math. Phys. ZAMP 1985, 36, 174–178. [Google Scholar] [CrossRef]
- Lee, H.; Balachandar, S. Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. J. Fluid Mech. 2010, 657, 89–125. [Google Scholar] [CrossRef]
- Ookawara, S.; Higashi, R.; Street, D.; Ogawa, K. Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chem. Eng. J. 2004, 101, 171–178. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Ren, J.; Tay, B.Z.; Luo, T.; Fan, L.; Sun, D.; Luo, G.; Lau, D.; Marcos; et al. Antibody-coated microstructures for selective isolation of immune cells in blood. Lab Chip 2020, 20, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, Q.; Cai, G.; Zhang, B.; Suo, Y.; Liu, Y.; Jin, W.; Mu, Y. All-In-One Escherichia coli viability assay for multi-dimensional detection of uncomplicated urinary tract infections. Anal. Chem. 2022, 94, 17853–17860. [Google Scholar] [CrossRef]
- Ajikumar, A.; Lei, K.F. Microfluidic technologies in advancing cancer research. Micromachines 2024, 15, 1444. [Google Scholar] [CrossRef]
- Tomlinson, M.J.; Tomlinson, S.; Yang, X.B.; Kirkham, J. Cell separation: Terminology and practical considerations. J. Tissue Eng. 2013, 4, 2041731412472690. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, Y.; Wang, Z.; Xie, W.; Oh, J.M.; Lai, C.; Zhang, J.; Lam, R.H.W. Continuous Size-Based Particle Separation Using Inertial Force and Deterministic Lateral Displacement. Micromachines 2026, 17, 194. https://doi.org/10.3390/mi17020194
Xie Y, Wang Z, Xie W, Oh JM, Lai C, Zhang J, Lam RHW. Continuous Size-Based Particle Separation Using Inertial Force and Deterministic Lateral Displacement. Micromachines. 2026; 17(2):194. https://doi.org/10.3390/mi17020194
Chicago/Turabian StyleXie, Yile, Zichen Wang, Wenjia Xie, Jeong Min Oh, Chun Lai, Jingqian Zhang, and Raymond H. W. Lam. 2026. "Continuous Size-Based Particle Separation Using Inertial Force and Deterministic Lateral Displacement" Micromachines 17, no. 2: 194. https://doi.org/10.3390/mi17020194
APA StyleXie, Y., Wang, Z., Xie, W., Oh, J. M., Lai, C., Zhang, J., & Lam, R. H. W. (2026). Continuous Size-Based Particle Separation Using Inertial Force and Deterministic Lateral Displacement. Micromachines, 17(2), 194. https://doi.org/10.3390/mi17020194

