Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements
Abstract
1. Introduction
1.1. CMOS and Tri-State Architecture of Spartan-6 I/O Blocks
1.2. Physics of CMOS I/O Aging in FPGAs
2. Theoretical Background
3. Materials and Methods
3.1. Electrical Configuration of the I/O Pins During Measurement
3.2. Electrical Interpretation of the Measured Rpath and Its Connection to CMOS Aging
4. Results and Discussion
4.1. BTI-Driven Resistance Drift in CMOS I/O Structures
4.2. Absence of Solder-Joint Fatigue and Role of Board-Level Flexure
4.3. Detailed Reliability Mechanism Comparison Between CMOS Aging and Package-Level Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, J.B.; Bensoussan, A.; Bender, E. Reliability prediction with MTOL. Microelectron. Reliab. 2017, 68, 91–97. [Google Scholar] [CrossRef]
- Bender, E.; Bernstein, J.B.; Boning, D.S. Modern Trends in Microelectronics Packaging Reliability Testing. Micromachines 2024, 15, 398. [Google Scholar] [CrossRef] [PubMed]
- Goetzberger, A.; Lopez, A.D.; Strain, R.J. On the Formation of Surface States during Stress Aging of ThermalSi-SiO2 Interfaces. J. Electrochem. Soc. 1973, 120, 90. [Google Scholar] [CrossRef]
- Fair, R.; Sun, R. Threshold-voltage instability in MOSFET’s due to channel hot-hole emission. IEEE Trans. Electron Devices 1981, 28, 83–94. [Google Scholar] [CrossRef]
- Lloyd, J.R. The Lucky Electron Model for TDDB in Low-k Dielectrics. IEEE Trans. Device Mater. Reliab. 2016, 16, 452–454. [Google Scholar] [CrossRef]
- Sobas, J.; Marc, F. Degradation Measurement and Modelling under Ageing in a 16 nm FinFET FPGA. Micromachines 2024, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Smerdon, M. High-Volume Spartan-6 FPGAs: Performance and Power Leadership by Design (WP396); Xilinx (AMD): San Jose, CA, USA, 2011. [Google Scholar]
- Xilinx. Spartan-6 Family Overview (DS160); Rev. 2.0; Xilinx (AMD): San Jose, CA, USA, 2011. [Google Scholar]
- Keller, A.M.; Wirthlin, M.J. Partial TMR for Improving the Soft-Error Reliability of SRAM-Based FPGA Designs. IEEE Trans Nucl. Sci. 2021, 68, 1023–1031. [Google Scholar] [CrossRef]
- Mattila, T.T.; Simecek, J.; Kivilahti, J.K. Failure Modes of Solder Interconnections under Mechanical Shock Loading at Elevated Temperatures. In Proceedings of the 1st Electronic Systemintegration Technology Conference, Dresden, Germany, 5–7 September 2006. [Google Scholar] [CrossRef]
- Engelmaier, W. Fatigue Life of Leadless Chip Carrier Solder Joints during Power Cycling. IEEE Trans. Components, Hybrids, Manuf. Technol. 1983, 6, 232–237. [Google Scholar] [CrossRef]
- Yu, Q.; Shiratori, M. Thermal Fatigue Assessment of Lead-Free Solder Joints. Microelectronics Reliability. 2005, pp. 204–211. Available online: https://hal.science/hal-00189474v1 (accessed on 1 January 2020).
- Yang, L.; Bernstein, J. Reliability Study of High-Density EBGA Packages Using the Cu Metallized Silicon. IEEE Trans. Compon. Packag. Technol. 2008, 31, 702–711. [Google Scholar] [CrossRef]
- Hofmeister, J.P.; Lall, P.; Panchagade, D.; Roth, N.N.; Tracy, T.A.; Judkins, J.B. Ball Grid Array (BGA) Solder Joint Intermittency Detection: SJ BIST. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar] [CrossRef]
- Anoldo, L.; Zanetti, E.; Coco, W.; Russo, A.; Fiorenza, P.; Roccaforte, F. 4H-SiC MOSFET Threshold Voltage Instability Evaluated via Pulsed High-Temperature Reverse Bias and Negative Gate Bias Stresses. Materials 2024, 17, 1908. [Google Scholar] [CrossRef] [PubMed]
- Bender, E.; Avraham, T.; Bernstein, J.B. Statistical degradation in BGAs for early fault detection. In Proceedings of the ISTFA 2024-50th International Symposium for Testing and Failure Analysis Conference, San Diego, CA, USA, 28 October–1 November 2024. [Google Scholar] [CrossRef]
- Bender, E.; Sitbon, M.; Avraham, T.; Gerasimov, M. Spatial Monitoring of I/O Interconnection Nets in Flip-Chip Packages. Electronics 2025, 14, 3549. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Wang, Q.; Wang, J.; Luo, N. Implementation of Aging Mechanism Analysis and Prediction for XILINX 7-Series FPGAs with a 28-nm Process. Sensors 2022, 22, 4439. [Google Scholar] [CrossRef] [PubMed]
- JEDEC Solid State Technology Association. Temperature Cycling; JESD22-A104; JEDEC: Arlington, VA, USA, 2017. [Google Scholar]
- Dhyani, M.; Singh, S.; Tzhayek, N.; Bernstein, J.B. Power-Law Time Exponent n and Time-to-Failure in 4H-SiC MOSFETs: Beyond Fixed Reaction–Diffusion Theory. Micromachines 2025, 16, 1351. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Zhang, M.; Xu, L.; Zhou, Y.; Liu, Y. Survey on Fatigue Life Prediction of BGA Solder Joints. Electronics 2022, 11, 542. [Google Scholar] [CrossRef]
- Lau, J.H. State of the Art of Lead-Free Solder Joint Reliability. J. Electron. Packag. 2021, 143, 020803. [Google Scholar] [CrossRef]
- Depiver, J.A.; Mallik, S.; Amalu, E.H. Effective solder for improved thermo-mechanical reliability of solder joints in a ball grid array (BGA) soldered on printed circuit board (PCB). J. Electron. Mater. 2020, 50, 263–282. [Google Scholar] [CrossRef]
- Mahapatra, S.; Alam, M.A.; Kumar, P.B.; Dalei, T.R.; Varghese, D.; Saha, D. Negative Bias Temperature Instability in CMOS Devices. Microelectron. Eng. 2005, 80, 114–121. [Google Scholar] [CrossRef]
- Ťapajna, M.; Kuzmík, J. Current. Understanding of Bias-Temperature Instabities in GaN and Si MIS-Devices. Crystals 2020, 10, 1153. [Google Scholar] [CrossRef]
- Kaczer, B.; Grasser, T. Ubiquitous Relaxation in BTI Stressing—New Evaluation and Insights. In Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008. [Google Scholar] [CrossRef]
- Stott, E.A.; Wong, J.S.J.; Sedcole, P.; Cheung, P.Y.K. Degradation in FPGAs: Measurement and Modelling. In Proceedings of the FPGA ‘10: ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2010; ACM Press: New York, NY, USA, 2010; pp. 229–238. [Google Scholar] [CrossRef]
- Yabuuchi, M.; Kobayashi, K. NBTI-Induced Delay Degradation Analysis of FPGA Routing Structures. IPSJ Trans. Syst. LSI Des. Methodol. 2012, 5, 143–149. [Google Scholar] [CrossRef]
- Naouss, M.; Marc, F. Modeling Delay Degradation Due to NBTI in FPGA Look-Up Tables. In Proceedings of the 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dhyani, M.; Avraham, T.; Bernstein, J.B.; Bender, E. Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements. Micromachines 2026, 17, 88. https://doi.org/10.3390/mi17010088
Dhyani M, Avraham T, Bernstein JB, Bender E. Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements. Micromachines. 2026; 17(1):88. https://doi.org/10.3390/mi17010088
Chicago/Turabian StyleDhyani, Mamta, Tsuriel Avraham, Joseph B. Bernstein, and Emmanuel Bender. 2026. "Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements" Micromachines 17, no. 1: 88. https://doi.org/10.3390/mi17010088
APA StyleDhyani, M., Avraham, T., Bernstein, J. B., & Bender, E. (2026). Cross Comparison Between Thermal Cycling and High Temperature Stress on I/O Connection Elements. Micromachines, 17(1), 88. https://doi.org/10.3390/mi17010088

