Effect of Bias Voltage on the Crystal Growth of AlN(002) Thin Films Fabricated by Reactive Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Test
3. Results and Discussion
3.1. Topography Analysis
3.2. Structural Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caliendo, C.; Imperatori, P.; Cianci, E. Structural, morphological and acoustic properties of AlN thick films sputtered on Si(001) and Si(111) substrates at low temperature. Thin Solid Films 2003, 441, 32–37. [Google Scholar] [CrossRef]
- Wu, S.; Xu, R.; Guo, B.; Ma, Y.; Yu, D. Influence of growth parameters and systematical analysis on 8-inch piezoelectric AlN thin films by magnetron sputtering. Mater. Sci. Semicond. Process. 2024, 169, 107895. [Google Scholar] [CrossRef]
- Neuhaus, S.; Bartzsch, H.; Cornelius, S.; Pingen, K.; Hinz, A.; Frach, P. Bipolar pulsed reactive magnetron sputtering of epitaxial AlN-films on Si(111) utilizing a technology suitable for 8″ substrates. Surf. Coat. Technol. 2022, 429, 127884. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, J.; Yang, Z.; Guo, K.; Liu, J.; Liu, L.; Zhang, C.; Bai, J.; Liu, H.; Xiao, Y.; et al. Multipath-induced c-axis orientation of aluminum nitride films deposited using direct-current magnetron sputtering. Mater. Sci. Semicond. Process. 2025, 189, 109304. [Google Scholar] [CrossRef]
- Radhika, E.; Gone, S.; Talari, S.; Emmanuel, K.; Dobbidi, P. Impact of nitrogen concentration on the growth of h-AlN thin films using RF-magnetron sputtering for microwave applications. Mater. Sci. Eng. B 2025, 317, 118226. [Google Scholar] [CrossRef]
- Xi, J.; Zhou, D.; Sun, N.; Zhang, W. Effect of N2 flow rate on the crystallization and electrical performance of AlN films prepared by medium frequency magnetron sputtering. Thin Solid Film. 2023, 781, 139999. [Google Scholar] [CrossRef]
- Iqbal, A. Sputtering of aluminium nitride (002) film on cubic silicon carbide on silicon (100) substrate: Infuences of substrate temperature and deposition power. J. Mater. Sci. Mater. Electron. 2020, 31, 239–248. [Google Scholar] [CrossRef]
- Xiong, J.; Gu, H.-S.; Hu, K.; Hu, M.-Z. Influence of substrate metals on the crystal growth of AlN films. Int. J. Miner. Metall. Mater. 2010, 17, 98–103. [Google Scholar] [CrossRef]
- Bhuiyan, A.G.; Terai, T.; Katsuzaki, T.; Takeda, N.; Hashimoto, A. Growth of single crystalline Si on graphene using RF-MBE: Orientation control with an AlN interface layer. Appl. Surf. Sci. 2021, 548, 149295. [Google Scholar] [CrossRef]
- Signore, M.; Velardi, L.; De Pascali, C.; Kuznetsova, I.; Blasi, L.; Biscaglia, F.; Quaranta, F.; Siciliano, P.; Francioso, L. Effect of silicon-based substrates and deposition type on sputtered AlN thin films: Physical & chemical properties and suitability for piezoelectric device integration. Appl. Surf. Sci. 2022, 599, 154017. [Google Scholar]
- Samad, M.I.A.; Noor, M.M.; Nayan, N.; Bakar, A.S.; Mansor, M.; Zuhdi, A.W.; Hamzah, A.A.; Latif, R. Effects of argon/nitrogen sputtering gas on the microstructural, crystallographic and piezoelectric properties of AlN thin films. Scr. Mater. 2023, 226, 115228. [Google Scholar] [CrossRef]
- Talukder, A.-A.; Baule, N.; Steinhorst, M.; Shrestha, M.; Fan, Q.H.; Schuelke, T. Pulsed direct-current reactive sputtering of high Young’s modulus [002] oriented aluminum nitride thin films. Thin Solid Film. 2022, 751, 139239. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, Y.; He, G.; Zhu, W.; Ding, S.; Zeng, Z. High-pure AlN crystalline thin films deposited on GaN at low temperature by plasma-enhanced ALD. Vacuum 2023, 213, 112114. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Tao, J.; Tang, R.; Zheng, X. Structural, surface, and optical properties of AlN thin films grown on different substrates by PEALD. Crystals 2023, 13, 910. [Google Scholar] [CrossRef]
- Hu, J.; Yan, L.; Zhou, N.; Chen, Y.; Yang, X.; Yang, L.; Guo, S. Study of AlN growth using AMEC Prismo HiT3 MOCVD reactor. J. Cryst. Growth 2024, 626, 127463. [Google Scholar] [CrossRef]
- Lin, B.; Cai, Y.; Wang, Y.; Zou, Y.; Gao, C.; Liu, Y.; Liu, W.; Guo, S.; Sun, C. Effects of growth temperature and reactor pressure on AlN thin film grown by metal-organic chemical vapor deposition. Thin Solid. Films 2023, 783, 140037. [Google Scholar] [CrossRef]
- Zhang, D.G.; Li, Z.H.; Guo, H.X.; Peng, D.Q.; Yang, Q.K.; Li, C.H.; Luo, W.K. Research on nano-scale AlN nucleation layer growth and GaN HEMT characteristics based on MOCVD technology. J. Cryst. Growth 2023, 610, 127155. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Yang, G.F.; Yao, C.J.; Li, Y.J.; Sun, R.; Zhao, J.L.; Gao, S.M. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates. J. Mater. Sci. Mater. Electron. 2016, 27, 3026–3032. [Google Scholar] [CrossRef]
- Chopade, S.; Barve, S.; Raman, K.T.; Chand, N.; Deo, M.; Biswas, A.; Rai, S.; Lodha, G.; Rao, G.; Patil, D. RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition. Appl. Surf. Sci. 2013, 285 Pt B, 524–531. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Z.; Wu, S.; Li, J. Effects of sputtering pressure on microstructure and secondary electron emission properties of AlN film prepared by magnetron sputtering. Mater. Lett. 2024, 377, 137319. [Google Scholar] [CrossRef]
- Vashaei, Z.; Aikawa, T.; Ohtsuka, M.; Kobatake, H.; Fukuyama, H.; Ikeda, S.; Takada, K. Influence of sputtering parameters on the crystallinity and crystal orientation of AlN layers deposited by RF sputtering using the AlN target. J. Cryst. Growth 2009, 311, 459–462. [Google Scholar] [CrossRef]
Number | RF Power (W) | Bias Voltage (V) | Flow (sccm) | Ar Flow (sccm) | Sputtering Time (min) |
---|---|---|---|---|---|
1 | 200 | 0 | 10 | 10 | 30 |
2 | 200 | 20 | 10 | 10 | 30 |
3 | 200 | 40 | 10 | 10 | 30 |
4 | 200 | 60 | 10 | 10 | 30 |
5 | 200 | 80 | 10 | 10 | 30 |
6 | 200 | 100 | 10 | 10 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zou, H.; Li, T.; Shao, G. Effect of Bias Voltage on the Crystal Growth of AlN(002) Thin Films Fabricated by Reactive Magnetron Sputtering. Micromachines 2025, 16, 1027. https://doi.org/10.3390/mi16091027
Du Y, Zou H, Li T, Shao G. Effect of Bias Voltage on the Crystal Growth of AlN(002) Thin Films Fabricated by Reactive Magnetron Sputtering. Micromachines. 2025; 16(9):1027. https://doi.org/10.3390/mi16091027
Chicago/Turabian StyleDu, Yong, Haowen Zou, Tiejun Li, and Guifang Shao. 2025. "Effect of Bias Voltage on the Crystal Growth of AlN(002) Thin Films Fabricated by Reactive Magnetron Sputtering" Micromachines 16, no. 9: 1027. https://doi.org/10.3390/mi16091027
APA StyleDu, Y., Zou, H., Li, T., & Shao, G. (2025). Effect of Bias Voltage on the Crystal Growth of AlN(002) Thin Films Fabricated by Reactive Magnetron Sputtering. Micromachines, 16(9), 1027. https://doi.org/10.3390/mi16091027