Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays
Abstract
1. Introduction
- The ability to shape wavefronts in an arbitrary manner within ultrathin thickness;
- Ease of mass production based on semiconductor fabrication technology;
- Advanced optical functionalities such as control of multiple aberrations, high resolution, reduced crosstalk, polarization control, and color dispersion compensation.
2. Basic Principles of NEDs and Meta-Optics
2.1. NEDs: Basic Principles and the Key Parameters
2.2. Basics of Meta-Optics
3. Meta-Optic VR Displays
4. Meta-Optic AR Displays
4.1. Conventional Architectures of AR Displays
4.2. AR Displays with Free-Space Meta-Optics
4.3. Waveguide-Type AR Displays with Meta-Optic Couplers
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Otani, K.; Sugimoto, M. XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J. Clin. Med. 2022, 11, 470. [Google Scholar] [CrossRef]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S. Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. AR/VR Light Engines: Perspectives and Challenges. Adv. Opt. Photonics 2022, 14, 783–861. [Google Scholar] [CrossRef]
- Xiong, J.H.; Hsiang, E.L.; He, Z.Q.; Zhan, T.; Wu, S.T. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
- Chang, C.L.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the Next-Generation VR/AR Optics: A Review of Holographic Near-Eye Displays from a Human-Centric Perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef]
- Xiong, J.H.; Wu, S.T. Planar Liquid Crystal Polarization Optics for Augmented Reality and Virtual Reality: From Fundamentals to Applications. eLight 2021, 1, 3. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Sutherland, I.E. A Head-Mounted Three Dimensional Display. In Proceedings of the Fall Joint Computer Conference, San Francisco, CA, USA, 9–11 December 1968; pp. 757–764. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Dorrah, A.H.; Capasso, F. Tunable Structured Light with Flat Optics. Science 2022, 376, 307–312. [Google Scholar] [CrossRef]
- Chen, W.T.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, C.; Kim, Y.; Jeong, J.; Choi, S.; Han, W.; Kim, J.; Lee, B. Dielectric Metalens: Properties and Three-Dimensional Imaging Applications. Sensors 2021, 21, 4584. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zentgraf, T. Metasurface Holography: From Fundamentals to Applications. Light Sci. Appl. 2019, 8, 91. [Google Scholar] [CrossRef]
- Zhan, T. Multifocal Displays: Review and Prospect. PhotoniX 2020, 1, 4. [Google Scholar] [CrossRef]
- Dunn, D.; Tippets, C.; Torell, K.; Kellnhofer, P.; Aksit, K.; Didyk, P.; Myszkowski, K.; Luebke, D.; Fuchs, H. Wide Field of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wang, M.; Li, G.; Lu, L.; Sulai, Y.; Jang, C.; Silverstein, B. Foveated Near-Eye Display for Mixed Reality Using Liquid Crystal Photonics. Sci. Rep. 2020, 10, 16127. [Google Scholar] [CrossRef]
- Kossowski, N.; Tahmi, Y.; Loucif, A.; Lepers, M.; Wattellier, B.; Vienne, G.; Khadir, S.; Genevet, P. Metrology of Metasurfaces: Optical Properties. Npj Nanophotonics 2025, 2, 5. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, L.; Wu, C.; Zhang, W.; Wang, S. Metasurfaces for Near-Eye Display Applications. Opto Electron. Sci. 2025, 3, 230025. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Zhang, Q.; Gao, X.; Wang, L. Metasurface Enabled Augmented Reality Display: A Review. Adv. Photonics 2023, 5, 034001. [Google Scholar] [CrossRef]
- Aththanayake, A.; Smith, T.; Patel, R.; Zhou, Y.; Wu, Y. Tunable Holographic Metasurfaces for Augmented and Virtual Reality Devices. Nanophotonics 2025, 14, 0734. [Google Scholar] [CrossRef]
- Ou, K.; Sun, H.; Guo, Y.; Lee, J. Advances in Meta Optics and Metasurfaces: Fundamentals and Emerging Applications. Photonics 2023, 10, 1235. [Google Scholar] [CrossRef]
- Li, Z.; Fan, X.; Chen, W.T.; Zhu, A.Y.; Capasso, F. Meta-Optics Achieves RGB-Achromatic Focusing for Virtual Reality. Sci. Adv. 2021, 7, eabe4458. [Google Scholar] [CrossRef]
- Li, Z.; Fan, X.; Liu, M.; Chen, W.T.; Zhu, A.Y.; Capasso, F. Inverse Design Enables Large-Scale High-Performance Meta-Optics Reshaping Virtual Reality. Nat. Commun. 2022, 13, 2409. [Google Scholar] [CrossRef]
- Wirth-Singh, A.; Zhao, Z.; Khorasaninejad, M. Wide Field of View Large Aperture Meta-Doublet Eyepiece. Light Sci. Appl. 2025, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Yoon, G.; Kim, K.; Kim, Y.; Rho, J. Metasurface Eyepiece for Augmented Reality. Nat. Commun. 2018, 9, 4562. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.Y.; Liang, H.W.; Ren, X.Y.; Luo, L.C.; Su, Y.K. Ultracompact Multifunctional Metalens Visor for Augmented Reality Displays. PhotoniX 2022, 3, 29. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, X.; Lu, L.; Song, Y.; Liu, H. Flat Metaform Near-Eye Visor. Appl. Opt. 2017, 56, 8822–8827. [Google Scholar] [CrossRef]
- Bayati, E.; Li, Y.; Zhang, X.; Babakhani, A. Design of Achromatic Augmented Reality Visors Based on Composite Metasurfaces. Appl. Opt. 2021, 60, 844–850. [Google Scholar] [CrossRef]
- Malek, S.C.; Overvig, A.C.; Alù, A.; Yu, N.F. Multifunctional Resonant Wavefront-Shaping Meta-Optics Based on Multilayer and Multiperturbation Nonlocal Metasurfaces. Light Sci. Appl. 2022, 11, 246. [Google Scholar] [CrossRef]
- Gan, Y.; Guo, Q.; Liu, X.; Huang, L.; Wang, H.; Qiu, C.-W. See-Through Conformable Holographic Metasurface Patches for Augmented Reality. Laser Photonics Rev. 2025, 19, 2401240. [Google Scholar] [CrossRef]
- Bi, Q.; Lin, Y.; Peng, Y.; Fang, X.; Zhang, J. Chiral Quasi Bound States in the Continuum for Augmented Reality. Opt. Express 2024, 32, 16103–16114. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, Z.Q.; Zhang, Q.B.; Sun, Y.; Tao, C.N.; Li, J. Metalens Eyepiece for 3D Holographic Near-Eye Display. Nanomaterials 2021, 11, 1920. [Google Scholar] [CrossRef]
- Nikolov, D.K.; Bauer, A.; Cheng, F.; Kato, H.; Vamivakas, A.N.; Escuti, M.J. Metaform Optics: Bridging Nanophotonics and Freeform Optics. Sci. Adv. 2021, 7, eabe5112. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, L.; Li, H.; Ma, X.; Li, J. Hybrid Meta-Optics Enabled Compact Augmented Reality Display with Computational Image Reinforcement. ACS Photonics 2024, 11, 3794–3803. [Google Scholar] [CrossRef]
- Song, W.T.; Liang, X.N.; Li, S.Q.; Li, D.D.; Paniagua-Domínguez, R.; Qiu, C.-W. Large-Scale Huygens’ Metasurfaces for Holographic 3D Near-Eye Displays. Laser Photonics Rev. 2021, 15, 2000538. [Google Scholar] [CrossRef]
- Song, W.; Li, D.; Wang, H.; Paniagua-Domínguez, R.; Qiu, C.-W. Retinal Projection Near-Eye Displays with Huygens’ Metasurfaces. Adv. Opt. Mater. 2023, 11, 2202348. [Google Scholar] [CrossRef]
- Boo, H.; Lee, Y.S.; Yang, H.B.; Matthews, B.; Lee, T.G.; Park, H.J. Metasurface Wavefront Control for High-Performance User-Natural Augmented Reality Waveguide Glasses. Sci. Rep. 2022, 12, 5832. [Google Scholar] [CrossRef]
- Tian, Z.; Zhu, X.; Surman, P.A.; Chen, Z.; Sun, X.W. An Achromatic Metasurface Waveguide for Augmented Reality Displays. Light Sci. Appl. 2025, 14, 94. [Google Scholar] [CrossRef]
- Choi, T.; Kim, M.; Seo, H.; Lee, K.; Rho, J. Multiwavelength Achromatic Deflector in the Visible Using a Single-Layer Freeform Metasurface. Nano Lett. 2024, 24, 10980–10986. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Lee, D.; Lee, C.; Yang, Y.; Rho, J. Two-Dimensional Angular Bandwidth Broadening of Metasurface Grating. Adv. Photonics Res. 2022, 3, 2200158. [Google Scholar] [CrossRef]
- Moon, S.; Kim, H.; Jeong, H.; Kim, M.; Lee, S.Y. Single-Layer Waveguide Displays Using Achromatic Metagratings for Full-Colour Augmented Reality. Nat. Nanotechnol. 2025. advance online publication. [Google Scholar] [CrossRef]
- Gopakumar, M.; Lee, G.-Y.; Choi, S.; Chao, B.; Peng, Y.; Kim, J.; Wetzstein, G. Full-Colour 3D Holographic Augmented-Reality Displays with Metasurface Waveguides. Nature 2024, 629, 791–797. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Yang, L.; Chen, W.; Wang, Z. On-Chip Integrated Metasystem with Inverse-Design Wavelength Demultiplexing for Augmented Reality. ACS Photonics 2023, 10, 4380–4389. [Google Scholar] [CrossRef]
- Tang, J.; Wan, S.; Shi, Y.Y.; Wan, C.W.; Wang, Z.J.; Chen, H. Dynamic Augmented Reality Display by Layer-Folded Metasurface via Electrically Driven Liquid Crystal. Adv. Opt. Mater. 2022, 10, 2200418. [Google Scholar] [CrossRef]
- Song, W.; Li, D.; Wang, H.; Qiu, C.-W. Full-Color Waveguide-Type Near-Eye Displays with Huygens’ Metasurfaces. Adv. Opt. Mater. 2025, 13, 2500096. [Google Scholar] [CrossRef]
- Park, J.S.; Zhang, S.Y.; She, A.L.; Chen, W.T.; Lin, P.; Capasso, F. All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Lett. 2019, 19, 8673–8682. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seong, J.; Kim, W.; Lee, G.Y.; Kim, S.; Park, H.J. Scalable Manufacturing of High-Index Atomic Layer-Polymer Hybrid Metasurfaces for Metaphotonics in the Visible. Nat. Mater. 2023, 22, 474–481. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Broadband Achromatic Metasurface-Refractive Optics. Nano Lett. 2018, 18, 7801–7808. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Li, Y.; Wu, Q.; Lu, L. Achromatic and Coma-Corrected Hybrid Meta-Optics for High-Performance Thermal Imaging. Nano Lett. 2024, 24, 7609–7615. [Google Scholar] [CrossRef]
- Yang, F.; Gu, T.; Hu, J. Analytical Design Framework for Metasurface Projection Optics. J. Opt. Soc. Am. B 2023, 40, 2211–2220. [Google Scholar] [CrossRef]
- Han, W.; Jeong, J.; Kim, J.; Kim, S.-J. Aberration Theory of a Flat, Aplanatic Metalens Doublet and the Design of a Meta-Microscope Objective Lens. Sensors 2023, 23, 9273. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, T.; Lee, G.Y.; Kim, C.; Bang, J.; Jang, J.; Jeong, Y.; Lee, B. Metasurface Folded Lens System for Ultrathin Cameras. Sci. Adv. 2024, 10, eadr2319. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, S.; Dai, C.; Li, Z.; Zhang, H.; Xu, J.; Chen, H. Direction Decoupled Light Emitting Metasurface via Guided Photoluminescence Manipulation. Adv. Funct. Mater. 2024, 34, 2415823. [Google Scholar] [CrossRef]
- Chen, E.; Zhou, Y.; Lee, C.; Lee, B.; Rho, J. Broadband Beam Collimation Metasurface for Full-Color Micro-LED Displays. Opt. Express 2024, 32, 10252–10264. [Google Scholar] [CrossRef]
- Gao, X.; Li, M.; Han, J.; Zhang, Y.; Zheng, Y. Circularly Polarized Light Emission from a GaN Micro-LED Integrated with Functional Metasurfaces for 3D Display. Opt. Lett. 2021, 46, 2666–2669. [Google Scholar] [CrossRef]
- Pal, D.; López, T.; Koenderink, A.F. Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays—Creating Guided Modes for Enhanced Directionality. ACS Nano 2025, 19, 1238–1250. [Google Scholar] [CrossRef]
- Shaltout, A.M.; Shalaev, V.M.; Brongersma, M.L. Spatiotemporal Light Control with Active Metasurfaces. Science 2019, 364, eaat3100. [Google Scholar] [CrossRef]
- Nam, S.W.; Kim, S.; Park, J.H.; Kim, Y.; Rho, J. Depolarized Holography with Polarization-Multiplexing Metasurface. ACM Trans. Graph. 2023, 42, 1–16. [Google Scholar] [CrossRef]
- Pinilla, S.; Xu, Y.; Ren, X.; Rho, J.; Capasso, F. Miniature Color Camera via Flat Hybrid Meta-Optics. Sci. Adv. 2023, 9, eadg7297. [Google Scholar] [CrossRef] [PubMed]
- Sitzmann, V.; Diamond, S.; Peng, Y.; Dun, X.; Boyd, S.; Heidrich, W.; Heide, F.; Wetzstein, G. End-to-End Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-Resolution Imaging. ACM Trans. Graph. 2018, 37, 114. [Google Scholar] [CrossRef]
Metrics and Type | Total System Length | Aperture Size/NA | FoV of VR | Color | Eyebox | 2D/3D | Panel Type | |
---|---|---|---|---|---|---|---|---|
Studies | ||||||||
Z. Li et al. [23] | N/A (>7 cm) | 2 mm/0.3 | >10 ° | RGB | N/A | 3D | Fiber scaning | |
Z. Li et al. [24] | N/A (>1.6 cm) | 1 cm/0.3 | N/A | 490–650 nm | N/A | 3D | Micro-LCD | |
W.-Singh et al. [25] | 35.74 mm | 2 cm/0.18 | 60 ° | Red | 5.4 mm | 2D | Micro-LED |
Metrics and Type | Transparency | Total System Length | Diffraction Efficiency | FoV | Eyebox | Polarization | 2D/3D | Panel Type | |
---|---|---|---|---|---|---|---|---|---|
Studies | |||||||||
G.-Y. Lee et al. [26] : eyepiece | ~ 70% (average) | N/A | 29, 6, 5% (RGB) | 90 ° | 10 mm | CP | 3D | SLM (Sony) | |
Y. Li et al. [27] : eyepiece | ~30% (average) | N/A | 25% (Red) | Small | Small | CP | 3D | SLM (Jasper) | |
S. C. Malek et al. [30] : eyepiece | >80% | N/A | ~ 30% | N/A | N/A | CP | N/A | N/A | |
Q. Chen et al. [35] : relay optics | High | 7.7 mm | High (505–560 nm) | 30 ° | N/A | Independent | 2D | Micro-LED |
Metrics and Type | Transparency | Diffraction Efficiency | FoV | Color | Eyebox (exit pupil) | 2D/3D | Uniformity | WG Thickness | |
---|---|---|---|---|---|---|---|---|---|
Studies | |||||||||
Z. Tian et al. [39] | High | 8%/2% (In/Out) | 45 ° | RGB | 18.3 mm | 2D | >46.3% | 1 mm | |
S. Moon et al. [42] | High (~60%) | 20%/1~24% (In/Out) | 20 ° | RGB | 9 mm | 2D | >77.5% | 0.5 mm | |
M. Gopakumar et al. [43] | High (>55%) | 9, 25, 36% (R, G, B) | 11.7 ° | RGB | 4 mm | 3D | >61.7% | 5 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, S.-J. Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays. Micromachines 2025, 16, 1026. https://doi.org/10.3390/mi16091026
Lee J, Kim S-J. Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays. Micromachines. 2025; 16(9):1026. https://doi.org/10.3390/mi16091026
Chicago/Turabian StyleLee, Junoh, and Sun-Je Kim. 2025. "Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays" Micromachines 16, no. 9: 1026. https://doi.org/10.3390/mi16091026
APA StyleLee, J., & Kim, S.-J. (2025). Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays. Micromachines, 16(9), 1026. https://doi.org/10.3390/mi16091026