Coupling and Preload Analysis of Piezoelectric Actuator and Nonlinear Stiffness Mechanism
Abstract
1. Introduction
2. System Description
3. Piezoelectric-Mechanism Coupling Analysis
3.1. Displacement Response Under Preload Conditions
3.2. Modal Analysis of the Positioning System
3.3. Nonlinear Stiffness Effects Under Varying Preload
4. Results and Experimental Validation
4.1. Results
4.1.1. Static Displacement Response Under Preload
4.1.2. Dynamic Response Under Preload
4.1.3. Validation of the Separation–Avoidance Criterion
4.2. Experimental Validation
4.2.1. Experimental Results
4.2.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PZT | Piezoelectric actuator |
FNF | First natural frequency |
NSM | Nonlinear Stiffness Mechanism |
References
- Lyu, Z.; Xu, Q. Novel Design of a Piezoelectrically Actuated Compliant Microgripper with High Area-Usage Efficiency. Precis. Eng. 2022, 76, 1–11. [Google Scholar] [CrossRef]
- Tan, L.; Wang, X.; Yu, Q.; Yu, B.; Meng, Y.; Li, L.; Zhang, X.; Zhu, L. An Electromagnetic-Piezoelectric Hybrid Actuated Nanopositioner for Atomic Force Microscopy. IEEE Trans. Instrum. Meas. 2024, 73, 1–13. [Google Scholar] [CrossRef]
- van Schoot, J.; Troost, K.; Bornebroek, F.; van Ballegoij, R.; Lok, S.; Krabbendam, P.; Stoeldraijer, J.; Loopstra, E.; Benschop, J.P.; Finders, J.; et al. High-NA EUV Lithography Enabling Moore’s Law in the Next Decade. In International Conference on Extreme Ultraviolet Lithography, Proceedings of the SPIE Photomask Technology and EUV Lithography 2017, Monterey, CA, USA, 1–5 October 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10450, pp. 109–128. [Google Scholar] [CrossRef]
- Ling, M.; Cao, J.; Li, Q.; Zhuang, J. Design, Pseudostatic Model, and PVDF-Based Motion Sensing of a Piezo-Actuated XYZ Flexure Manipulator. IEEE/ASME Trans. Mechatron. 2018, 23, 2837–2848. [Google Scholar] [CrossRef]
- Lyu, Z.; Wu, Z.; Xu, Q. Design of a Flexure-Based XYZ Micropositioner with Active Compensation of Vertical Crosstalk. IEEE Trans. Autom. Sci. Eng. 2023, 21, 6868–6881. [Google Scholar] [CrossRef]
- Hu, G.; Xin, W.; Zhang, M.; Chen, G.; Man, J.; Tian, Y. Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining. Micromachines 2024, 15, 1050. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-C.; Lu, J.-F.; Su, W.-J.; Yen, J.-Y. Precision Positioning Control of a Long-Stroke Stage Employing Multiple Switching Control. Microsyst. Technol. 2022, 28, 319–332. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Q. Design and Robust Repetitive Control of a New Parallel-Kinematic XY Piezostage for Micro/Nanomanipulation. IEEE/ASME Trans. Mechatron. 2011, 17, 1120–1132. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Tian, Y.; Zhao, X.; Zhang, D. Design of a Piezoelectric-Actuated Microgripper with a Three-Stage Flexure-Based Amplification. IEEE/ASME Trans. Mechatron. 2014, 20, 2205–2213. [Google Scholar] [CrossRef]
- Qin, Y.; Shirinzadeh, B.; Zhang, D.; Tian, Y. Design and Kinematics Modeling of a Novel 3-DOF Monolithic Manipulator Featuring Improved Scott-Russell Mechanisms. J. Mech. Des. 2013, 135, 101004. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Q. Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator. IEEE Trans. Robot. 2009, 25, 645–657. [Google Scholar] [CrossRef]
- Chun, H.; Guo, X.; Kim, J.S.; Lee, C. A Review: Additive Manufacturing of Flexure Mechanism for Nanopositioning System. Int. J. Adv. Manuf. Technol. 2020, 110, 681–703. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Gao, Y.; Dong, W. A Review on the Flexure-Based Displacement Amplification Mechanisms. IEEE Access 2020, 8, 205919–205937. [Google Scholar] [CrossRef]
- Yue, Y.; Gao, F.; Zhao, X.; Ge, Q.J. Relationship among Input-Force, Payload, Stiffness and Displacement of a 3-DOF Perpendicular Parallel Micro-Manipulator. Mech. Mach. Theory 2010, 45, 756–771. [Google Scholar] [CrossRef]
- Berselli, G.; Guerra, A.; Vassura, G.; Andrisano, A.O. An Engineering Method for Comparing Selectively Compliant Joints in Robotic Structures. IEEE/ASME Trans. Mechatron. 2014, 19, 1882–1895. [Google Scholar] [CrossRef]
- Hao, G.; Yu, J. Design, Modelling and Analysis of a Completely-Decoupled XY Compliant Parallel Manipulator. Mech. Mach. Theory 2016, 102, 179–195. [Google Scholar] [CrossRef]
- Tian, Y.; Huo, Z.; Wang, F.; Liang, C.; Shi, B.; Zhang, D. A Novel Friction-Actuated 2-DOF High Precision Positioning Stage with Hybrid Decoupling Structure. Mech. Mach. Theory 2022, 167, 104511. [Google Scholar] [CrossRef]
- Chen, G.; Fan, K.; Niu, R.; Zhu, S.; Xu, T.; Feng, Z. A Two-Dimensional Calibration for Resolving Nano-Positioner Pedestal Micro-Deformation Crosstalk. Rev. Sci. Instrum. 2024, 95, 073711. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Gweon, D.-G. Pseudo-Resonant Effect on a Flexure-Guided Nano-Positioning System. J. Korean Phys. Soc. 2006, 48, 363. [Google Scholar]
- Wu, Y.; Yang, Y.; Li, G.; Cui, Y.; Du, H.; Wei, Y. A Non-Redundant Piezoelectric Center-Rotation Platform with a Single-Layer Structure and a Large Working Range. Mechatronics 2022, 88, 102911. [Google Scholar] [CrossRef]
- Xu, Q. Design and Development of a Compact Flexure-Based XY Precision Positioning System with Centimeter Range. IEEE Trans. Ind. Electron. 2013, 61, 893–903. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, J.; Man, Z.; Wang, H.; Chen, X.; Chen, Y. Design and Experimental Validation of a Novel Compliant Micro-Positioning Stage with Nonlinear Stiffness. Precis. Eng. 2025, 96, 745–756. [Google Scholar] [CrossRef]
- Li, H.; Hao, G. Position-Space-Based Design of a Symmetric Spatial Translational Compliant Mechanism for Micro-/Nano-Manipulation. Micromachines 2018, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hao, G.; Li, S.; Kong, X. A Compact Mirror-Symmetrical XY Compliant Parallel Manipulator for Minimizing Parasitic Rotations. J. Mech. Des. 2022, 144, 073303. [Google Scholar] [CrossRef]
- He, X.-B.; Yu, J.; Zhang, W.-W.; Hao, G. Effect of Degree-of-Symmetry on Kinetostatic Characteristics of Flexure Mechanisms: A Comparative Case Study. Chin. J. Mech. Eng. 2018, 31, 29. [Google Scholar] [CrossRef]
- Lai, J.; Yu, L.; Yuan, L.; Liang, J.; Ling, M.; Wang, R.; Zang, H.; Li, H.; Zhu, B.; Zhang, X. An Integrated Modeling Method for Piezo-Actuated Compliant Mechanisms. Sens. Actuators A Phys. 2023, 364, 114770. [Google Scholar] [CrossRef]
- Ling, M.; Zhang, X. Coupled dynamic modeling of piezo-actuated compliant mechanisms to external loads. Mech. Mach. Theory 2021, 160, 104283. [Google Scholar] [CrossRef]
- Ling, M.; Cao, J.; Jiang, Z.; Lin, J. Modular kinematics and statics modeling for precision positioning stage. Mech. Mach. Theory 2017, 107, 274–282. [Google Scholar] [CrossRef]
- Zhang, D.; Li, M.; Dou, L.; Wang, J. Output characteristics test of piezo-stack actuators for driving high stiffness loads with different preload. Int. J. Nanomanuf. 2023, 18, 91–98. [Google Scholar] [CrossRef]
- Yong, Y.K.; Moheimani, S.O.R.; Kenton, B.J.; Leang, K.K. Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues. Rev. Sci. Instrum. 2012, 83, 121101. [Google Scholar] [CrossRef]
- Wu, H.; Tang, H.; Qin, Y. Design and Test of a 2-DOF Compliant Positioning Stage with Antagonistic Piezoelectric Actuation. Machines 2024, 12, 420. [Google Scholar] [CrossRef]
- Ling, M.; Yuan, L.; Luo, Z.; Huang, T.; Zhang, X. Enhancing Dynamic Bandwidth of Amplified Piezoelectric Actuators by a Hybrid Lever and Bridge-Type Compliant Mechanism. Actuators 2022, 11, 134. [Google Scholar] [CrossRef]
- Jung, H.K.; Crane, C.D., III; Roberts, R.G. Stiffness Mapping of Compliant Parallel Mechanisms in a Serial Arrangement. Mech. Mach. Theory 2008, 43, 271–284. [Google Scholar] [CrossRef]
- Chen, X.; Li, W. A Monolithic Self-Sensing Precision Stage: Design, Modeling, Calibration, and Hysteresis Compensation. IEEE/ASME Trans. Mechatron. 2014, 20, 812–823. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Li, Z. Inverse Compensation for Hysteresis in Piezoelectric Actuator Using an Asymmetric Rate-Dependent Model. Rev. Sci. Instrum. 2013, 84, 115003. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, X. Compensation of Hysteresis in Piezoelectric Actuators without Dynamics Modeling. Sens. Actuators A Phys. 2013, 199, 89–97. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zheng, J.; Sun, Z.; Chen, X. Coupling and Preload Analysis of Piezoelectric Actuator and Nonlinear Stiffness Mechanism. Micromachines 2025, 16, 1024. https://doi.org/10.3390/mi16091024
Wang W, Zheng J, Sun Z, Chen X. Coupling and Preload Analysis of Piezoelectric Actuator and Nonlinear Stiffness Mechanism. Micromachines. 2025; 16(9):1024. https://doi.org/10.3390/mi16091024
Chicago/Turabian StyleWang, Wei, Jinchuan Zheng, Zhe Sun, and Xiaoqi Chen. 2025. "Coupling and Preload Analysis of Piezoelectric Actuator and Nonlinear Stiffness Mechanism" Micromachines 16, no. 9: 1024. https://doi.org/10.3390/mi16091024
APA StyleWang, W., Zheng, J., Sun, Z., & Chen, X. (2025). Coupling and Preload Analysis of Piezoelectric Actuator and Nonlinear Stiffness Mechanism. Micromachines, 16(9), 1024. https://doi.org/10.3390/mi16091024