Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
Abstract
1. Introduction
2. Experiment
2.1. Preparation of the TiO2 Film
2.2. Preparation of the SrTiO3 Film
2.3. Preparation of the PZT Film
2.4. Deposition of Electrodes for Electrical Characterization
2.5. Preparation of FIB Cross-Section Samples
3. Results and Discussion
3.1. XRD Characterization and FWHM Evaluation
3.2. FIB Cross-Section and EDX Elemental Analysis
3.3. SEM Surface Morphology Analysis
3.4. PFM Characterization of d33 Response
3.5. Ferroelectric P–E Loop Characterization
3.5.1. Comparative Analysis of P–E Loops for Different Film Structures
3.5.2. Ferroelectric Fatigue Behavior of STO-Based PZT Films
3.6. I–V Characteristics and Leakage Current Analysis
3.7. Impedance and Phase Angle Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Zhang, X.; Lu, C. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chem. Sci. 2024, 15, 16436–16466. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Hisano, K.; Zhu, M.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible multifunctional sensors for wearable and robotic applications. Adv. Mater. Technol. 2019, 4, 1800626. [Google Scholar] [CrossRef]
- Williams, D.; Khodaparast, H.H.; Yang, C. Active vibration control of a flexible link robot with the use of piezoelectric actuators. MATEC Web Conf. 2018, 165, 11005. [Google Scholar] [CrossRef]
- Xing, J.; Jin, W.; Yang, K.; Howard, I. A bionic piezoelectric robotic jellyfish with a large deformation flexure hinge. IEEE Trans. Ind. Electron. 2023, 70, 12596–12605. [Google Scholar] [CrossRef]
- Hwang, G.-T.; Byun, M.; Jeong, C.K.; Lee, K.J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 2015, 4, 646–658. [Google Scholar] [CrossRef]
- Li, T.; Qu, M.; Carlos, C.; Gu, L.; Jin, F.; Yuan, T.; Wu, X.; Xiao, J.; Wang, T.; Dong, W. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 2021, 33, 2006093. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef]
- Pan, H.H.; Guan, J.-C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor. Constr. Build. Mater. 2022, 324, 126685. [Google Scholar] [CrossRef]
- Feng, G.H.; Yeh, C.T. Ferroelectric film-based stretch sensor with successive stretch and release motions characterized by a combined piezoelectric and electrostrictive effect. Smart Mater. Struct. 2023, 32, 125017. [Google Scholar] [CrossRef]
- Kim, N.-I.; Chang, Y.-L.; Chen, J.; Barbee, T.; Wang, W.; Kim, J.-Y.; Kwon, M.-K.; Shahab, S.; Moradnia, M.; Pouladi, S. Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications. Sens. Actuators A Phys. 2020, 305, 111940. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lo, S.-C.; Wang, S.; Wang, Y.-J.; Wu, M.; Fang, W. On the PZT/Si unimorph cantilever design for the signal-to-noise ratio enhancement of piezoelectric MEMS microphone. J. Micromech. Microeng. 2021, 31, 105003. [Google Scholar] [CrossRef]
- Ghamry, S.A.; Mahmoud, A.K.; Abdelrassoul, R.A.; Morsi, I.G. Analysis sensing voltage of lead zirconate titanate (PZT) piezoelectric MEMS gyroscope and comparing with aluminum nitride (AlN), zinc oxide (ZnO) and barium titanate (BaTiO3). In Proceedings of the 2023 International Telecommunications Conference (ITC-Egypt), Cairo, Egypt, 6–8 March 2023; pp. 674–677. [Google Scholar]
- Takada, Y.; Mimura, K.; Kato, K. Fabrication and piezoelectric properties of Pb(Zr,Ti)O3 cubes synthesized by hydrothermal method. J. Ceram. Soc. Jpn. 2018, 126, 326–330. [Google Scholar] [CrossRef]
- Bian, K.; Gu, Q.; Zhu, K.; Zhu, R.; Wang, J.; Liu, J.; Qiu, J. Improved sintering activity and piezoelectric properties of PZT ceramics from hydrothermally synthesized powders with Pb excess. J. Mater. Sci. Mater. Electron. 2016, 27, 8573–8579. [Google Scholar] [CrossRef]
- Feng, G.-H.; Lee, K.-Y. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator. R. Soc. Open Sci. 2017, 4, 171363. [Google Scholar] [CrossRef]
- Piticescu, R.-R.; Motoc, A.M.; Tudor, A.I.; Rusti, C.F.; Piticescu, R.M.; Ramiro-Sanchez, M.D. Hydrothermal synthesis of nanostructured materials for energy harvesting applications. Int. J. Mater. Chem. Phys. 2015, 1, 31. [Google Scholar]
- Wang, Y.; Ouyang, J.; Hongbo, C.; Shi, Y.; Nishikado, T.; Kanno, I. High performance LaNiO3-buffered, (001)-oriented PZT piezoelectric films integrated on (111) Si. Appl. Phys. Lett. 2022, 121, 182902. [Google Scholar] [CrossRef]
- Minh, D.H.; Loi, N.V.; Duc, N.H.; Trinh, B.N.Q. Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci. Adv. Mater. Devices 2016, 1, 75–79. [Google Scholar] [CrossRef]
- Xiao, M.; Li, S.; Lei, Z. Study of (111)-oriented PZT thin films prepared by a modified sol–gel method. J. Mater. Sci. Mater. Electron. 2015, 26, 4031–4037. [Google Scholar] [CrossRef]
- Okura, M.; Ito, Y.; Shiraishi, T.; Kiguchi, T.; Konno, T.J.; Funakubo, H.; Uchida, H. Lower-temperature processing of potassium niobate films by microwave-assisted hydrothermal deposition technique. J. Ceram. Soc. Jpn. 2022, 130, 123–130. [Google Scholar] [CrossRef]
- Kiguchi, T.; Shimizu, T.; Shiraishi, T.; Konno, T.J. Epitaxial growth mechanism of Pb(Zr,Ti)O3 thin films on SrTiO3 by chemical solution deposition via self-organized seed layer. J. Ceram. Soc. Jpn. 2020, 128, 501–511. [Google Scholar] [CrossRef]
- Li, Z.; Song, J.; Huang, S.; Li, H.; Ju, X.; Zhang, X.; Ou, J.; Sun, H.; Lu, X.; Zhou, G. Solution derived transparent PZT/FTO heterojunction and its high-temperature ferroelectric photovoltaic effect. Ceram. Int. 2024, 50, 20026–20034. [Google Scholar] [CrossRef]
- Shoghi, A.; Abdizadeh, H.; Shakeri, A.; Golobostanfard, M.R. Sol–gel synthesis of PZT thin films on FTO glass substrates for electro-optic devices. J. Sol-Gel Sci. Technol. 2020, 93, 623–632. [Google Scholar] [CrossRef]
- Rath, M.; Varadarajan, E.; Natarajan, V.; Rao, M.R. A comparative study on macroscopic and nanoscale polarization mapping on large area PLD grown PZT thin films. Ceram. Int. 2018, 44, 8749–8755. [Google Scholar] [CrossRef]
- Shimamoto, K.; Hayama, T.; Yoshimura, T.; Fujimura, N. Composition control of YbFe2O4 electronic ferroelectric thin films with PLD growth process monitoring. APL Mater. 2025, 13, 031101. [Google Scholar] [CrossRef]
- Strnad, N.A.; Potrepka, D.M.; Hanrahan, B.M.; Fox, G.R.; Polcawich, R.G.; Pulskamp, J.S.; Knight, R.R.; Rudy, R.Q. Extending atomic layer deposition for use in next-generation piezoMEMS: Review and perspective. J. Vac. Sci. Technol. A 2023, 41, 050801. [Google Scholar] [CrossRef]
- Rezk, A.; Saadat, I. ALD Al-doped ZnO thin film as semiconductor and piezoelectric material: Characterization. In The IoT Physical Layer: Design and Implementation; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–68. [Google Scholar]
- Chamankar, N.; Khajavi, R.; Yousefi, A.A.; Rashidi, A.S.; Golestanifard, F. Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. J. Mater. Sci. Mater. Electron. 2019, 30, 8721–8735. [Google Scholar] [CrossRef]
- Chandrakala, E.; Praveen, J.P.; Hazra, B.K.; Das, D. Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT-BCT ceramics. Ceram. Int. 2016, 42, 4964–4977. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Wang, X.; Liu, Y.; Zhou, J. Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings. Coatings 2021, 11, 944. [Google Scholar] [CrossRef]
- Thongrit, P.; Chananonnawathorn, C.; Horprathum, M.; Triamnak, N.; Lertvanithphol, T.; Eitssayeam, S.; Pengpat, K.; Bintachitt, P. Improving the microstructure and properties of PZT thin films via annealing prepared by RF magnetron sputtering using Pb(Zr0.52Ti0.48)O3 target. Ceram. Int. 2023, 49, 12912–12924. [Google Scholar] [CrossRef]
- Pronin, V.P.; Dolgintsev, D.M.; Osipov, V.V.; Pronin, I.P.; Senkevich, S.V.; Kaptelov, E.Y. The change in the phase state of thin PZT layers in the region of the morphotropic phase boundary obtained by the RF magnetron sputtering with varying target-substrate distance. IOP Conf. Ser. Mater. Sci. Eng. 2018, 387, 012063. [Google Scholar] [CrossRef]
- Byrappa, K.; Adschiri, T. Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166. [Google Scholar] [CrossRef]
- Iijima, T.; Tashiro, T.; Watanabe, Y.; Saitoh, M.; Suzuki, M.; Sakabe, Y.; Okamura, S. Ferroelectric and piezoelectric properties of disk shape lead zirconate titanate thick films. Mater. Trans. 2004, 45, 233–235. [Google Scholar] [CrossRef]
- Kitsunai, H.; Kawashima, N.; Takeuchi, S.; Ishikawa, M.; Kurosawa, M.; Odaira, E. Development of miniature needle-type hydrophone with lead zirconate titanate polycrystalline film deposited by hydrothermal method. Jpn. J. Appl. Phys. 2006, 45, 4688. [Google Scholar] [CrossRef]
- Abe, T.; Ozeki, S.; Kurosawa, M.K.; Takeuchi, S. Fundamental study of hydrothermally synthesized lead zirconate titanate polycrystals deposited on a Ti substrate during nucleation. Jpn. J. Appl. Phys. 2015, 54, 07HB06. [Google Scholar] [CrossRef]
- Shimomura, K.; Tsurumi, T.; Ohba, Y.O.Y.; Daimon, M.D.M. Preparation of lead zirconate titanate thin film by hydrothermal method. Jpn. J. Appl. Phys. 1991, 30, 2174. [Google Scholar] [CrossRef]
- Ullah, S.; Pramanik, T.; Kong, J.; Zheng, G.P.; Li, Y.; Pramanick, A. Highly enhanced electrothermal properties of 001-textured Pb-free ferroelectric (Ba,Ca)(Ti,Zr,Sn)O3 for energy harvesting and solid-state cooling. J. Eur. Ceram. Soc. 2025, 45, 116830. [Google Scholar] [CrossRef]
- Xia, T.; Lu, L.; Zhang, H.; Wang, J.; Huang, Z.; Wang, H.; Yang, W.; Gao, S.; Li, Q. Inducing piezoelectricity in distorted rutile TiO2 for enhanced tetracycline hydrochloride degradation through photopiezocatalysis. J. Adv. Ceram. 2024, 13, 323–331. [Google Scholar] [CrossRef]
- Elibol, K.; Nguyen, M.D.; Hueting, R.J.E.; Gravesteijn, D.J.; Koster, G.; Rijnders, G. Integration of epitaxial Pb(Zr0.52Ti0.48)O3 films on GaN/AlGaN/GaN/Si (111) substrates using rutile TiO2 buffer layers. Thin Solid Films 2015, 591, 66–71. [Google Scholar] [CrossRef]
- Zhu, J.; Zhan, Q.; Gao, X.S.; Chen, Y.B. Enhanced ferroelectric properties of PZT films grown on SrTiO3-buffered silicon substrates. Appl. Phys. Lett. 2014, 105, 012905. [Google Scholar]
- Chen, P.; Lu, H.; Wang, Y. Interface engineering of SrTiO3 buffer layers for improved performance in lead-free piezoelectric thin films. J. Mater. Chem. C 2017, 5, 6725–6732. [Google Scholar]
- Zhou, Z.; Bowland, C.C.; Patterson, B.A.; Malakooti, M.H.; Sodano, H.A. Conformal BaTiO3 films with high piezoelectric coupling through an optimized hydrothermal synthesis. ACS Appl. Mater. Interfaces 2016, 8, 21446–21453. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.H.; Su, P.C. Low-power wearable breath monitoring device with humidity- and ammonia-sensing functions. IEEE Sens. J. 2022, 22, 18295–18305. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Feng, G.H. Piezoelectric-film-based wearable respiratory monitoring device with breathing air temperature sensing and heating functions. IEEE Sens. Lett. 2023, 7, 5001404. [Google Scholar] [CrossRef]
- Feng, G.H.; Liu, H.J. Piezoelectric micromachined ultrasonic transducers with a cost-effective bottom-up fabrication scheme for millimeter-scale range finding. Sensors 2019, 19, 4696. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.H.; Chen, W.S. Piezoelectric micromachined ultrasonic transducer-integrated Helmholtz resonator with microliter-sized volume-tunable cavity. Sensors 2022, 22, 7471. [Google Scholar] [CrossRef] [PubMed]
- Schlom, D.G.; Chen, L.Q.; Pan, X.; Schmehl, A.; Zurbuchen, M.A. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 2008, 91, 2429–2454. [Google Scholar] [CrossRef]
- Kalyani, V.; Vasile, B.S.; Ianculescu, A.; Testino, A.; Carino, A.; Buscaglia, M.T.; Buscaglia, V.; Nanni, P. Hydrothermal synthesis of SrTiO3: Role of interfaces. Cryst. Growth Des. 2015, 15, 5712–5725. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, L.; Duan, D. A single-step direct hydrothermal synthesis of SrTiO3 nanoparticles from crystalline P25 TiO2 powders. J. Mater. Sci. 2016, 51, 1142–1152. [Google Scholar] [CrossRef]
- Mahdi, M.; Kadri, M.; Henni, L.; Mustapha, H. Sputtering parameters influence on the as-deposited PZT thin films: Surface roughness and morphology. Int. J. Thin Film Sci. Technol. 2022, 11, 187–190. [Google Scholar]
- Dagdeviren, C.; Joe, P.; Tuzman, O.L.; Park, K.-I.; Lee, K.J.; Shi, Y.; Huang, Y.; Rogers, J.A. Recent Progress in Flexible and Stretchable Piezoelectric Devices for Mechanical Energy Harvesting, Sensing and Actuation. Extreme Mech. Lett. 2016, 9, 269–281. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Ravinder, D.; Naidu, K.C.B.; Kumar, N.S.; Srinivas, K.; Basha, D.B.; Sekhar, B.C. A Review on Giant Piezoelectric Coefficient, Materials and Applications. Biointerface Res. Appl. Chem. 2019, 9, 4205–4216. [Google Scholar] [CrossRef]
- Yue, J.; Chen, Y.; Li, L.; Zhang, K.; Li, Z. UV-Assisted Low-Temperature Sol–Gel Deposition of Pb(Zr0.4Ti0.6)O3 Film and Its Photoelectrical Properties. J. Sol-Gel Sci. Technol. 2017, 83, 647–652. [Google Scholar] [CrossRef]
- Liu, S.; Zou, D.; Yu, X.; Wang, Z.; Yang, Z. Transfer-Free PZT Thin Films for Flexible Nanogenerators Derived from a Single-Step Modified Sol–Gel Process on 2D Mica. ACS Appl. Mater. Interfaces 2020, 12, 54991–54999. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Gao, L.; Li, N.; Gao, J.; Yan, Y.; Zhao, Y.; Ren, Z.; Gong, H.; Zhang, Y.; Liu, Y.; et al. Bottom Electrode Effects on Piezoelectricity of Pb(Zr0.52,Ti0.48)O3 Thin Film in Flexible Sensor Applications. Materials 2023, 16, 7470. [Google Scholar] [CrossRef] [PubMed]
Substrate Material | Lattice Constant a (Å) | Mismatch with PZT (%) | Crystallization Behavior |
---|---|---|---|
Titanium foil (α-Ti) | 2.951 | 25% | High mismatch; MPB-phase PZT is difficult to nucleate and grow. |
TiO2 (Rutile) | 4.593 | 16.7% | Moderate mismatch; may improve crystal growth. |
Composition Range | Crystal Structure | a-Axis Range (Å) | Description |
---|---|---|---|
Zr-rich (x > 0.6) | Rhombohedral | 4.05–4.10 | Crystal structure tends toward cubic symmetry. |
MPB (x ≈ 0.52) | Tetragonal/Rhombohedral (mixed phase) | ≈3.935 | Approximate average value. |
Ti-rich (x < 0.48) | Tetragonal | 3.88–3.91 | Elongated c-axis and slightly compressed a-axis. |
Substrate Material | Crystal Structure | Lattice Constant a (Å) | Mismatch with PZT (%) | Reference PDF Card |
---|---|---|---|---|
Titanium foil (α-Ti) | HCP | 2.951 | 25% | 04-008-1385 |
TiO2 | Rutile | 4.593 | 16.7% | 01-070-6826 |
STO | Cubic | 3.905 | 0.76% | 04-011-7249 |
PZT (MPB) | Tetragonal | 3.935 | - | 00-057-0525 |
Structure | Peak Position (2θ) | FWHM | Crystal Size, D (nm) |
---|---|---|---|
Ti/PZT | 31.29° | 0.367 | 224.93 |
Ti/TiO2/PZT | 31.10° | 0.521 | 158.07 |
Ti/TiO2/STO/PZT | 32.37° | 0.703 | 117.72 |
Structure | 1 V | 2 V | 3 V | 4 V | 5 V |
---|---|---|---|---|---|
Ti/PZT | 55 pm | 202.6 pm | 368.7 pm | 462 pm | 485.6 pm |
Ti/TiO2/PZT | 57 pm | 186.1 pm | 326.2 pm | 425.1 pm | 158.1 pm |
Ti/TiO2/STO/PZT | 62.2 pm | 173.4 pm | 327.3 pm | 514.7 pm | 623.9 pm |
Curve Number | Cycle Count | Curve Number | Cycle Count | Curve Number | Cycle Count |
---|---|---|---|---|---|
1 | 0 | 11 | 178 | 21 | 56,234 |
2 | 1 | 12 | 316 | 22 | 100,000 |
3 | 2 | 13 | 562 | 23 | 177,828 |
4 | 3 | 14 | 1000 | 24 | 316,228 |
5 | 6 | 15 | 1778 | 25 | 562,341 |
6 | 10 | 16 | 3162 | 26 | 1,000,000 |
7 | 18 | 17 | 5623 | - | - |
8 | 32 | 18 | 10,000 | - | - |
9 | 56 | 19 | 17,783 | - | - |
10 | 100 | 20 | 31,623 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-L.; Feng, G.-H. Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS. Micromachines 2025, 16, 879. https://doi.org/10.3390/mi16080879
Li C-L, Feng G-H. Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS. Micromachines. 2025; 16(8):879. https://doi.org/10.3390/mi16080879
Chicago/Turabian StyleLi, Chun-Lin, and Guo-Hua Feng. 2025. "Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS" Micromachines 16, no. 8: 879. https://doi.org/10.3390/mi16080879
APA StyleLi, C.-L., & Feng, G.-H. (2025). Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS. Micromachines, 16(8), 879. https://doi.org/10.3390/mi16080879