Double-Sided Fabrication of Low-Leakage-Current Through-Silicon Vias (TSVs) with High-Step-Coverage Liner/Barrier Layers
Abstract
1. Introduction
- Etching through holes in the device wafer, which is attached to a support wafer by silicone oil with good thermal conductivity to enable etching;
- The double-sided deposition of parylene liners via chemical vapor deposition (CVD);
- Double-sided electroless nickel (Ni) plating to form barrier layers (which simultaneously serve as seed layers) in the TSV;
- Double-sided electroplating for the complete filling of the structure;
- Conducting front-side and back-side photolithography separately and RDL etching synchronously.
2. Fabrication Flow and Results
2.1. Double-Sided Liner and Barrier Layer Deposition
- Surface cleaning with an alkaline solution;
- Catalyst activation using a solution containing PdCl2/HCl;
- Catalyst reduction in sodium hypophosphite;
- Ni deposition using a Ni-P bath.
2.2. Double-Sided Electroplating
3. Evaluation and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TSV | Through-silicon via |
CMP | Chemical–mechanical polishing |
MEMS | Microelectromechanical system |
IC | Integrated circuit |
RF | Radio frequency |
RDL | Redistribution layer |
CTE | Coefficient of thermal expansion |
CVD | Chemical vapor deposition |
References
- Wang, Z. 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelectromech. Syst. 2015, 24, 1211–1244. [Google Scholar] [CrossRef]
- Song, C.; Wang, L.; Yang, Y.; Wang, Z.; Zhang, W.; Cao, L. Robust and low cost TSV backside reveal for 2.5D multi-die integration. In Proceedings of the IEEE 66th Electronic Components asnd Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 316–321. [Google Scholar] [CrossRef]
- Ren, Q.; Loh, W.L.; Chui, K.; Mao, Y.J.; Wickramanayanaka, S. CMP process optimization on temporary-bonded wafer for via-last through-silicon-via from backside. In Proceedings of the IEEE 17th Electronics Packagingand Technology Conference (EPTC), Singapore, 2–4 December 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Xiao, L.; Hao, Y.; Wang, H.; Ding, Y.; Zhang, Z. Fabrication and electrical characterization of high aspect ratio through-silicon vias with polyimide liner for 3D integration. Micromachines 2022, 13, 1147. [Google Scholar] [CrossRef] [PubMed]
- Tung, B.T.; Cheng, X.; Watanabe, N.; Kato, F.; Kikuchi, K.; Aoyagi, M. Investigation of low-temperature deposition high-uniformity coverage Parylene-HT as a dielectric layer for 3D interconnection. In Proceedings of the IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 27–30 May 2014; pp. 1926–1931. [Google Scholar] [CrossRef]
- Li, K.; Wu, H.; Chen, W.; Yu, D. Double-sided electroplating process for through glass vias (TGVs) filling. In Proceedings of the 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021. [Google Scholar] [CrossRef]
- Hao, Y.; Ding, Y.; Yang, B.; Pan, X.; Chen, Z.; Zhang, Z. A Novel Liner Formation Strategy for Double-sided Through-silicon-via (TSV) Process. In Proceedings of the 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi, China, 8–11 August 2023. [Google Scholar] [CrossRef]
- Ramm, P.; Wolf, M.J.; Klumpp, A.; Wieland, R.; Wunderle, B.; Michel, B.; Reichl, H. Through silicon via technology—Processes and reliability for wafer-level 3D system integration. In Proceedings of the IEEE 58th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 841–846. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Sundaram, V.; Sitaraman, S.K.; Tummala, R.R. Double-side process and reliability of through-silicon vias for passive interposer applications. IEEE Trans. Device Mater. Reliab. 2014, 14, 1041–1048. [Google Scholar] [CrossRef]
- Bui, T.T.; Watanabe, N.; Cheng, X.; Kato, F.; Kikuchi, K.; Aoyagi, M. Copper-filled through-silicon vias with parylene-HT liner. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 510–517. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Z.; Cheng, Z.; Zhou, L.; Chen, Z.; Ding, Y. Low cost polyimide liner formation with vacuum-assisted spin coating for through-silicon-vias. In Proceedings of the IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 8–11 November 2016. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, B.; Chen, L.; Wang, W.; Jin, Y. Transmission Structures Using Parylene C and TSV for Silicon-based Low-loss and Low-profile Heterogeneous Integrations at Ka-band. In Proceedings of the 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi, China, 8–11 August 2023. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, M.; Chen, L.; Zhang, P.; Jin, Y.; Wang, W. Silicon-Based Stretchable Structure via Parylene Kirigami Interconnection. J. Microelectromech. Syst. 2023, 32, 82–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Yang, B.; Hao, Y.; Su, Y.; Ding, Y. Enabling Low-k Liner in Ultra-high Aspect Ratio TSVs by the Timing of Vacuum Treatment in the Vacuum-assisted Spin-coating Technique. In Proceedings of the 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 8–11 August 2023. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, H.; Sundaram, V.; Tummala, R.R. Modeling, fabrication, and reliability of through vias in polycrystalline silicon panels. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 938–944. [Google Scholar] [CrossRef]
- Tang, C.W.; Young, H.T.; Li, K.M. Innovative through-silicon-via formation approach for wafer-level packaging applications. J. Micromech. Microeng. 2012, 22, 45019. [Google Scholar] [CrossRef]
- Wasyluk, J.; Adley, D.; Perova, T.; Rodin, A.; Callaghan, J.; Brennan, N. Micro-raman investigation of stress distribution in laser drilled via structures. Appl. Surf. Sci. 2009, 255, 5546–5548. [Google Scholar] [CrossRef]
- Ding, Y.; Xiong, M.; Yan, Y.; Wang, S.; Chen, Q.; Wang, W.; Chen, Z. Innovative polyimide liner deposition method for high-aspect-ratioand high-density through-silicon-vias(TSVs). Microelectron. Eng. 2016, 149, 78–84. [Google Scholar] [CrossRef]
- Lu, K.H.; Zhang, X.; Ryu, S.-K.; Im, J.; Huang, R.; Ho, P.S. Thermo-mechanical reliability of 3-D ICs containing through silicon vias. In Proceedings of the IEEE 59th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2009; pp. 630–634. [Google Scholar] [CrossRef]
- Ghosh, K.; Zhang, J.; Zhang, L.; Dong, Y.; Li, H.; Tan, C.M.; Xia, G.; Tan, C.S. Integration of low-κ dielectric liner in through silicon via and thermomechanical stress relief. Appl. Phys. Exp. 2012, 5, 126601. [Google Scholar] [CrossRef]
- Majeed, B.; Pham, N.P.; Tezcan, D.S.; Beyne, E. Parylene N as a dielectric material for through silicon vias. In Proceedings of the IEEE 58th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 1556–1561. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, C.; Tan, Z.; Wang, Z. Low capacitance through-silicon-vias with uniform benzocyclobutene insulation layers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 724–731. [Google Scholar] [CrossRef]
- Civale, Y.; Tezcan, D.S.; Philipsen, H.G.G.; Duval, F.F.C.; Jaenen, P.; Travaly, Y.; Soussan, P.; Swinnen, B.; Beyne, E. 3-D wafer-level packaging die stacking using spin-on dielectric polymer liner through-silicon vias. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 833–840. [Google Scholar] [CrossRef]
- Thadesar, P.A.; Gu, J.M.; Dembla, A.; Hong, S.J.; May, G.S.; Bakir, M.S. Novel photodefined polymer-clad through-silicon via technology integrated with endpoint detection using optical emission spectroscopy. In Proceedings of the ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 14–16 May 2013; pp. 56–61. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Q.; Wu, D.; Wang, Z. High aspect ratio and low capacitance through-silicon-vias (TSVs) with polymer insulation layers. Microelectron. Eng. 2013, 104, 12–17. [Google Scholar] [CrossRef]
- Feng, W.; Watanabe, N.; Shimamoto, H.; Aoyagi, M.; Kikuchi, K. Material effect on thermal stress of annular-trench-isolated through silicon via (TSV). Jpn. J. Appl. Phys. 2020, 59, SLLH01. [Google Scholar] [CrossRef]
- Eroglu, S.E.K.; Choo, W.Y.; Leblebici, Y. Copper TSV-based die-level via-last 3D integration process with parylene-C adhesive bonding technique. In Proceedings of the IEEE International Conference on 3D System Integration (3DIC), San Francisco, CA, USA, 8–11 November 2016. [Google Scholar] [CrossRef]
- Miao, M.; Zhu, Y.; Ji, M.; Ma, S.; Sun, X.; Jin, Y. Bottom-up filling of through silicon via (TSV) with Parylene as sidewall protection layer. In Proceedings of the 2009 11th Electronics Packaging Technology Conference, Singapore, 9–11 December 2009; pp. 442–446. [Google Scholar] [CrossRef]
- Tung, B.T.; Cheng, X.; Watanabe, N.; Kato, F.; Kikuchi, K.; Aoyagi, M. Fabrication and electrical characterization of Parylene-HT liner bottom-up copper filled through silicon via (TSV). In Proceedings of the IEEE CPMT Symposium Japan 2014, Kyoto, Japan, 4–6 November 2014; pp. 154–157. [Google Scholar] [CrossRef]
- Tung, B.T.; Cheng, X.; Watanabe, N.; Kato, F.; Kikuchi, K.; Aoyagi, M. Copper filled TSV formation with Parylene-HT insulator for low-temperature compatible 3D integration. In Proceedings of the 2014 International 3D Systems Integration Conference (3DIC), Kinsdale, Ireland, 1–3 December 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Lühn, O.; Hoof, C.V.; Ruythooren, W.; Celis, J.P. Barrier and seed layer coverage in 3D structures with different aspect ratios using sputtering and ALD processes. Microelectron. Eng. 2008, 85, 1947–1951. [Google Scholar] [CrossRef]
- Djomeni, L.; Mourier, T.; Minoret, S.; Fadloun, S.; Piallat, F.; Burgess, S.; Price, A.; Zhou, Y.; Jones, C.; Mathiot, D.; et al. Study of low temperature MOCVD deposition of TiN barrier layer for copper diffusion in high aspect ratio through silicon vias. Microelectron. Eng. 2014, 120, 127–132. [Google Scholar] [CrossRef]
- Inoue, F.; Philipsen, H.; Radisic, A.; Armini, S.; Civale, Y.; Leunissen, P.; Kondo, M.; Webb, E.; Shingubara, S. Electroless Cu deposition on atomic layer deposited Ru as novel seed formation process in through-Si vias. Electrochim. Acta 2013, 100, 203–211. [Google Scholar] [CrossRef]
- Murugesan, M.; Mori, K.; Nakamura, A.; Hashimoto, H.; Koyanagi, M. High Aspect Ratio TSV Formation by Using Low-Cost, Electroless-Ni as Barrier and Seed Layers for 3D-LSI Integration and Packaging Applications. In Proceedings of the 2019 International Conference on Solid State Devices and Materials, Nagoya, Japan, 2–5 September 2019; pp. 421–422. [Google Scholar] [CrossRef]
- Calcagnile, P.; Blasi, L.; Rizzi, F.; Qualtieri, A.; Athanassiou, A.; Gogolides, E.; De Vittorio, M. Parylene C Surface Functionalization and Patterning with pH-Responsive Microgels. ACS Appl. Mater. Interfaces 2014, 6, 15708–15715. [Google Scholar] [CrossRef]
- Ling, B.; Cai, M.; Chen, B.; Wang, X.; Zhou, B.; Xia, Y.; Han, Y.; Wu, Y. MEMS-Oriented Single-Crystalline-Silicon Through-Silicon-Via Based on Filling and Oxidation of Silicon Powders. J. Microelectromech. Syst. 2025, 34, 73–81. [Google Scholar] [CrossRef]
- Xiao, L.; Ding, Y.; Su, Y.; Zhang, Z.; Yan, Y.; Chen, Z.; Xie, H. Ultra-deep annular Cu through-silicon-vias fabricated using single-sided process. IEEE Electron Device Lett. 2022, 43, 426–429. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Ren, A.; Zhang, Z.; Wang, K.; Chai, Z. Fabrication and characterizations of a low-warpage interposer embedded with polyimide-liner TSVs for SIP applications. In Proceedings of the 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 7–9 August 2024. [Google Scholar] [CrossRef]
- Lin, Y.; Li, H.Y.; Tan, C.S. Structural integrity of 3-D metal–insulator–metal capacitor embedded in fully filled Cu through-silicon via. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 918–921. [Google Scholar] [CrossRef]
- Zhong, P.; Dou, C.; Ye, C.; Sun, K.; Yang, H.; Li, X. High-aspect-ratio TSV process with thermomigration refilling of Au–Si eutectic alloy. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 191–199. [Google Scholar] [CrossRef]
- Kino, H.; Tashiro, M.; Sugawara, Y.; Tanikawa, S.; Fukushima, T.; Tanaka, T. Minimized hysteresis and low parasitic capacitance TSV with PBO (polybenzoxazole) liner to achieve ultra-high-speed data transmission. In Proceedings of the 2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, Taiwan, 16–18 May 2017. [Google Scholar] [CrossRef]
- Jacobs, K.J.P.; Li, Y.; Stucchi, M.; De Wolf, I.; Van Huylenbroeck, S.; De Vos, J.; Beyne, E. Optical beam-based defect localization methodologies for open and short failures in micrometer-scale 3-D TSV interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1542–1551. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, Y.; Xiao, L.; Cai, Z.; Yang, B.; Chen, Z.; Xie, H. Enabling continuous Cu seed layer for deep through-silicon-vias with high aspect ratio by sequential sputtering and electroless plating. IEEE Electron Device Lett. 2021, 42, 1520–1523. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Sun, H.; Zhu, K.; Wang, X. Double-Sided Fabrication of Low-Leakage-Current Through-Silicon Vias (TSVs) with High-Step-Coverage Liner/Barrier Layers. Micromachines 2025, 16, 750. https://doi.org/10.3390/mi16070750
Yang B, Sun H, Zhu K, Wang X. Double-Sided Fabrication of Low-Leakage-Current Through-Silicon Vias (TSVs) with High-Step-Coverage Liner/Barrier Layers. Micromachines. 2025; 16(7):750. https://doi.org/10.3390/mi16070750
Chicago/Turabian StyleYang, Baoyan, Houjun Sun, Kaiqiang Zhu, and Xinghua Wang. 2025. "Double-Sided Fabrication of Low-Leakage-Current Through-Silicon Vias (TSVs) with High-Step-Coverage Liner/Barrier Layers" Micromachines 16, no. 7: 750. https://doi.org/10.3390/mi16070750
APA StyleYang, B., Sun, H., Zhu, K., & Wang, X. (2025). Double-Sided Fabrication of Low-Leakage-Current Through-Silicon Vias (TSVs) with High-Step-Coverage Liner/Barrier Layers. Micromachines, 16(7), 750. https://doi.org/10.3390/mi16070750