An Improved YOLOv5 Model for Lithographic Hotspot Detection
Abstract
:1. Introduction
2. Data Augmentation
3. Detection Model for Lithographical HSs
3.1. YOLOv5
3.2. Spatial Attention
3.3. Transfer Learning for Data Insufficiency
4. Experiment and Results
4.1. Performance Indicator
4.2. Training Strategy
4.3. Result
4.4. HS Detection Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matsunawa, T.; Yu, B.; Pan, D.Z. Optical proximity correction with hierarchical bayes model. In Proceedings of the Optical Microlithography XXVIII, San Jose, CA, USA, 22–26 February 2015; SPIE: St. Bellingham, WA, USA, 2015; Volume 9426, pp. 238–247. [Google Scholar]
- Viswanathan, R.; Azpiroz, J.T.; Selvam, P. Process optimization through model based SRAF printing prediction. In Proceedings of the Optical Microlithography XXV, San Jose, CA, USA, 12–16 February 2012; SPIE: St. Bellingham, WA, USA, 2012; Volume 8326, pp. 437–446. [Google Scholar]
- Yang, H.; Lin, Y.; Yu, B.; Young, E.F. Lithography hotspot detection: From shallow to deep learning. In Proceedings of the 2017 30th IEEE International System-on-Chip Conference (SOCC), Munich, Germany, 5–8 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 233–238. [Google Scholar]
- Kim, J.; Fan, M. Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: A case study with aerial image simulation. In Proceedings of the 23rd Annual BACUS Symposium on Photomask Technology, Monterey, CA, USA, 9–12 September 2003; SPIE: St. Bellingham, WA, USA, 2003; Volume 5256, pp. 919–925. [Google Scholar]
- Roseboom, E.; Rossman, M.; Chang, F.C.; Hurat, P. Automated full-chip hotspot detection and removal flow for interconnect layers of cell-based designs. In Proceedings of the Design for Manufacturability Through Design-Process Integration, San Jose, CA, USA, 25 February–2 March 2007; SPIE: St. Bellingham, WA, USA, 2007; Volume 6521, pp. 120–128. [Google Scholar]
- Yu, Y.T.; Chan, Y.C.; Sinha, S.; Jiang, I.H.R.; Chiang, C. Accurate process-hotspot detection using critical design rule extraction. In Proceedings of the 49th Annual Design Automation Conference, San Francisco, CA, USA, 3–7 June 2012; pp. 1167–1172. [Google Scholar]
- Wen, W.Y.; Li, J.C.; Lin, S.Y.; Chen, J.Y.; Chang, S.C. A fuzzy-matching model with grid reduction for lithography hotspot detection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2014, 33, 1671–1680. [Google Scholar] [CrossRef]
- Chen, K.J.; Chuang, Y.K.; Yu, B.Y.; Fang, S.Y. Minimizing cluster number with clip shifting in hotspot pattern classification. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22 June 2017; pp. 1–6. [Google Scholar]
- Ding, D.; Torres, J.A.; Pan, D.Z. High performance lithography hotspot detection with successively refined pattern identifications and machine learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 1621–1634. [Google Scholar] [CrossRef]
- Gao, J.R.; Yu, B.; Pan, D.Z. Accurate lithography hotspot detection based on PCA-SVM classifier with hierarchical data clustering. In Proceedings of the Design-Process-Technology Co-optimization for Manufacturability VIII, San Jose, CA, USA, 23–27 February 2014; SPIE: St. Bellingham, WA, USA, 2014; Volume 9053, pp. 114–123. [Google Scholar]
- Yu, Y.T.; Lin, G.H.; Jiang, I.H.R.; Chiang, C. Machine-learning-based hotspot detection using topological classification and critical feature extraction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 460–470. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, B.; Young, E.F. Enabling online learning in lithography hotspot detection with information-theoretic feature optimization. In Proceedings of the 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 7–10 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8. [Google Scholar]
- Zhou, K.; Zhang, K.; Liu, J.; Liu, Y.; Liu, S.; Cao, G.; Zhu, J. An imbalance aware lithography hotspot detection method based on HDAM and pre-trained GoogLeNet. Meas. Sci. Technol. 2021, 32, 125008. [Google Scholar] [CrossRef]
- Shin, M.; Lee, J.H. Accurate lithography hotspot detection using deep convolutional neural networks. J. Micro/Nanolithogr. MEMS MOEMS 2016, 15, 043507. [Google Scholar] [CrossRef]
- Matsunawa, T.; Nojima, S.; Kotani, T. Automatic layout feature extraction for lithography hotspot detection based on deep neural network. In Proceedings of the Design-Process-Technology Co-optimization for Manufacturability X, San Jose, CA, USA, 21–25 February 2016; SPIE: St. Bellingham, WA, USA, 2016; Volume 9781, pp. 149–158. [Google Scholar]
- Yang, H.; Su, J.; Zou, Y.; Yu, B.; Young, E.F. Layout hotspot detection with feature tensor generation and deep biased learning. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22 June 2017; pp. 1–6. [Google Scholar]
- Yang, H.; Luo, L.; Su, J.; Lin, C.; Yu, B. Imbalance aware lithography hotspot detection: A deep learning approach. J. Micro/Nanolithogr. MEMS MOEMS 2017, 16, 033504. [Google Scholar] [CrossRef]
- Borisov, V.; Scheible, J. Research on data augmentation for lithography hotspot detection using deep learning. In Proceedings of the 34th European Mask and Lithography Conference, Grenoble, France, 19–20 June 2018; SPIE: St. Bellingham, WA, USA, 2018; Volume 10775, pp. 204–209. [Google Scholar]
- Sim, W.; Lee, K.; Yang, D.; Jeong, J.; Hong, J.S.; Lee, S.; Lee, H. Automatic correction of lithography hotspots with a deep generative model. In Proceedings of the Optical Microlithography XXXII, San Jose, CA, USA, 24–28 February 2019; SPIE: St. Bellingham, WA, USA, 2019; Volume 10961, p. 1096105. [Google Scholar]
- Torres, J.A. ICCAD-2012 CAD contest in fuzzy pattern matching for physical verification and benchmark suite. In Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, USA, 5–8 November 2012; pp. 349–350. [Google Scholar]
- Ng, W.W.; Hu, J.; Yeung, D.S.; Yin, S.; Roli, F. Diversified Sensitivity-Based Undersampling for Imbalance Classification Problems. IEEE Trans. Cybern. 2015, 45, 2402–2412. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ali, L.; Alnajjar, F.; Parambil, M.M.A.; Younes, M.I.; Abdelhalim, Z.I.; Aljassmi, H. Development of YOLOv5-based real-time smart monitoring system for increasing lab safety awareness in educational institutions. Sensors 2022, 22, 8820. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Yindong, X.; Xueqian, H. Learning lithography hotspot detection from ImageNet. In Proceedings of the 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, China, 1–3 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 266–273. [Google Scholar]
- Xiao, Y.; Huang, X.; Liu, K. Model transferability from ImageNet to lithography hotspot detection. J. Electron. Test. 2021, 37, 141–149. [Google Scholar] [CrossRef]
- Liao, L.; Li, S.; Che, Y.; Shi, W.; Wang, X. Lithography hotspot detection method based on transfer learning using pre-trained deep convolutional neural network. Appl. Sci. 2022, 12, 2192. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, H.; Tang, L. Lithography Hotspot Detection Based on Transfer Learning With High Resolution Networks. In Proceedings of the 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 26–27 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Chen, Y.; Li, Y.; Wu, B.; Liu, F.; Deng, Y.; Jiang, X.; Lin, Z.; Ren, K.; Gao, D. Lightweight Hotspot Detection Model Fusing SE and ECA Mechanisms. Micromachines 2024, 15, 1217. [Google Scholar] [CrossRef] [PubMed]
Name | Technology (nm) | Training Dataset | Test Dataset | ||
---|---|---|---|---|---|
HS | NHS | HS | Area (nm2) | ||
Benchmark1 | 32 | 99 | 340 | 226 | 12,516 |
Benchmark2 | 28 | 174 | 5285 | 498 | 106,954 |
Benchmark3 | 28 | 905 | 4642 | 1796 | 122,565 |
Benchmark4 | 28 | 95 | 4453 | 177 | 82,010 |
Benchmark5 | 28 | 26 | 2716 | 41 | 49,583 |
Benchmark6 | 28 | 1200 | 17,096 | 2512 | 361,112 |
Name | Training Dataset | Validation Dataset | Test Dataset | |||
---|---|---|---|---|---|---|
HS | NHS | HS | NHS | HS | Area (nm2) | |
Benchmark1 | 743 | 2579 | 32 | 142 | 226 | 12,516 |
Benchmark2 | 1251 | 4776 | 141 | 509 | 498 | 10,694 |
Benchmark3 | 800 | 4187 | 109 | 455 | 1808 | 122,565 |
Benchmark4 | 650 | 4013 | 78 | 439 | 177 | 82,010 |
Benchmark5 | 187 | 2445 | 21 | 271 | 41 | 49,583 |
Benchmark6 | 8558 | 15,378 | 941 | 1718 | 2524 | 361,112 |
Name | Methods | Recall | Precision | F1-Score | Runtime (h) |
---|---|---|---|---|---|
Benchmark1 | Faster R-CNN | 0.7035 | 0.1513 | 0.2490 | 13.93 |
YOLOv3 | 1 | 0.9150 | 0.9556 | 6.058 | |
YOLOv5 | 1 | 0.9262 | 0.9617 | 2.579 | |
YOLOv7 | 1 | 0.9658 | 0.9827 | 6.608 | |
YOLOv8 | 0.9292 | 0.9333 | 0.9313 | 1.239 |
Name | Methods | Recall | Precision | F1-Score |
---|---|---|---|---|
Benchmark1 | YOLOv5 | 1 | 0.9262 | 0.9617 |
YOLOv5+SA | 1 | 0.8933 | 0.9436 | |
Benchmark2 | YOLOv5 | 1 | 0.9188 | 0.9577 |
YOLOv5+SA | 1 | 0.9689 | 0.9842 | |
Benchmark3 | YOLOv5 | 1 | 0.4386 | 0.6097 |
YOLOv5+SA | 1 | 0.6627 | 0.7972 | |
Benchmark4 | YOLOv5 | 1 | 0.1817 | 0.3076 |
YOLOv5+SA | 1 | 0.8028 | 0.8906 | |
Benchmark5 | YOLOv5 | 1 | 1 | 1 |
YOLOv5+SA | 1 | 0.8034 | 0.8913 | |
Benchmark6 | YOLOv5 | 1 | 0.35 | 0.5184 |
YOLOv5+SA | 1 | 0.8277 | 0.9057 |
Name | Methods | Recall | Precision | F1-Score |
---|---|---|---|---|
Benchmark1 | SENet | 1 | 0.9262 | 0.9617 |
CBAM | 1 | 0.9187 | 0.9576 | |
SA | 1 | 0.8933 | 0.9436 | |
CA | 1 | 0.9187 | 0.9576 | |
Benchmark2 | SENet | 1 | 0.9670 | 0.9832 |
CBAM | 1 | 0.9708 | 0.9852 | |
SA | 1 | 0.9689 | 0.9842 | |
CA | 1 | 0.9468 | 0.9727 | |
Benchmark3 | SENet | 1 | 0.5795 | 0.7338 |
CBAM | 1 | 0.4373 | 0.6085 | |
SA | 1 | 0.6627 | 0.7972 | |
CA | 1 | 0.3821 | 0.5530 | |
Benchmark4 | SENet | 1 | 0.7172 | 0.8353 |
CBAM | 1 | 0.5591 | 0.7172 | |
SA | 1 | 0.8028 | 0.8906 | |
CA | 1 | 0.5776 | 0.7322 | |
Benchmark5 | SENet | 1 | 0.7593 | 0.8632 |
CBAM | 1 | 1 | 1 | |
SA | 1 | 0.8034 | 0.8913 | |
CA | 1 | 1 | 1 | |
Benchmark6 | SENet | 1 | 0.3902 | 0.5614 |
CBAM | 1 | 0.3712 | 0.5414 | |
SA | 1 | 0.8277 | 0.9057 | |
CA | 1 | 0.2332 | 0.3781 |
Name | Methods | Recall | Precision | F1-Score |
---|---|---|---|---|
Benchmark1 | Wang | 0.631 | 0.995 | 0.771 |
Shin | 0.951 | 0.358 | 0.520 | |
Zhou | 0.995 | 0.324 | 0.489 | |
Chen | 0.971 | 0.976 | 0.974 | |
Ours | 1 | 0.8933 | 0.9436 | |
Benchmark2 | Wang | 0.908 | 0.921 | 0.914 |
Shin | 0.988 | 0.216 | 0.354 | |
Zhou | 0.986 | 0.702 | 0.82 | |
Chen | 0.993 | 0.893 | 0.941 | |
Ours | 1 | 0.9689 | 0.9842 | |
Benchmark3 | Wang | 0.897 | 0.980 | 0.937 |
Shin | 0.975 | 0.199 | 0.331 | |
Zhou | 0.982 | 0.443 | 0.64 | |
Chen | 0.953 | 0.861 | 0.905 | |
Ours | 1 | 0.6627 | 0.7972 | |
Benchmark4 | Wang | 0.859 | 0.886 | 0.873 |
Shin | 0.938 | 0.157 | 0.269 | |
Zhou | 0.972 | 0.355 | 0.52 | |
Chen | 0.997 | 0.927 | 0.960 | |
Ours | 1 | 0.8028 | 0.8906 | |
Benchmark5 | Wang | 0.651 | 0.948 | 0.771 |
Shin | 0.927 | 0.181 | 0.303 | |
Zhou | 0.98 | 0.549 | 0.704 | |
Chen | 0.999 | 0.956 | 0.978 | |
Ours | 1 | 0.8034 | 0.8913 | |
Benchmark6 | Wang | - | - | - |
Shin | 0.955 | 0.222 | 0.355 | |
Zhou | 0.983 | 0.475 | 0.635 | |
Chen | - | - | - | |
Ours | 1 | 0.8277 | 0.9057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; He, W.; Liu, J.; Li, F.; Luo, J.; Shen, Y. An Improved YOLOv5 Model for Lithographic Hotspot Detection. Micromachines 2025, 16, 568. https://doi.org/10.3390/mi16050568
Lin M, He W, Liu J, Li F, Luo J, Shen Y. An Improved YOLOv5 Model for Lithographic Hotspot Detection. Micromachines. 2025; 16(5):568. https://doi.org/10.3390/mi16050568
Chicago/Turabian StyleLin, Mu, Wenjing He, Jiale Liu, Fencheng Li, Jun Luo, and Yijiang Shen. 2025. "An Improved YOLOv5 Model for Lithographic Hotspot Detection" Micromachines 16, no. 5: 568. https://doi.org/10.3390/mi16050568
APA StyleLin, M., He, W., Liu, J., Li, F., Luo, J., & Shen, Y. (2025). An Improved YOLOv5 Model for Lithographic Hotspot Detection. Micromachines, 16(5), 568. https://doi.org/10.3390/mi16050568