High-Performance Carbon Nanotube Electronic Devices: Progress and Challenges
Abstract
:1. Introduction
2. Fundamental Properties of CNTs
2.1. Structural Properties of CNTs
2.2. Electrical Properties of CNTs
2.3. Thermal and Mechanical Properties of CNT
3. Physical Mechanisms of High-Performance CNT Devices
3.1. Types of Channel Materials
3.2. Types of Contact
4. Key Advances in High-Performance CNT Electronics
4.1. CNT Field-Effect Transistors
4.2. CNT Radiofrequency Devices
4.2.1. Planar Gate Structures
4.2.2. T-Shaped Gate Structures
4.2.3. U-Shaped and Y-Shaped Gate Structures
4.2.4. Principle Demonstrations of RF Transistor Applications
4.2.5. RF Diodes
4.3. CNT Logic Circuits
4.3.1. Development of CNT-Based Digital Integrated Circuits
4.3.2. Speed of High-Performance Digital Integrated Circuits
4.4. Breakthroughs and Applications of CNT 3D Integration Technology
4.4.1. Evolution of Monolithic 3D Integration
4.4.2. Potential of Carbon Nanotubes in Thermal Optimization of 3D Integrated Circuits
4.5. CNT-Based Neuromorphic Devices
4.6. CNT Optoelectronic Integration
4.7. Devices of Novel Mechanism
4.7.1. Dirac Source Transistor
4.7.2. Ternary Logic Device
5. Technical Challenges and Development
5.1. CNT Materials
5.1.1. Selective Catalytic Growth via CVD
5.1.2. Post-Processing Purification for CNT Array Preparation
5.2. Device Structure Optimization
5.2.1. Scaling Down
5.2.2. Optimization of Gate Control Capability
5.2.3. Contact Optimization
5.2.4. Interface States
5.3. Challenges to the Integration
6. Future Development Directions for High-Performance CNT Devices
6.1. Material Optimization and Fabrication Techniques
6.2. Device Structure and Process Innovations
6.3. Performance Limit Breakthroughs
6.4. Expansion of Application Scenarios
6.5. Addressing Industrialization Challenges
6.6. Roadmap for Industrialization
- (1)
- Short-Term GoalsSpecialized Chips: Enable practical use in radiation-resistant circuits (aerospace), low-temperature circuits, flexible electronics, display drivers and biosensors, etc. At present, CNT-based sensors such as hydrogen sensors have been commercialized.
- (2)
- Mid-Term GoalsHigh-Frequency RF Modules: partially replace GaAs and InP devices, targeting applications in 6G base stations.
- (3)
- Long-Term GoalsLogic Circuit Replacement: replace silicon-based CMOS technology at 3 nm and below nodes, capturing the high-end chip market.
7. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Haensch, W.; Nowak, E.J.; Dennard, R.H.; Solomon, P.M.; Bryant, A.; Dokumaci, O.H.; Kumar, A.; Wang, X.; Johnson, J.B.; Fischetti, M.V. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 2006, 50, 339–361. [Google Scholar] [CrossRef]
- Cavin, R.K.; Lugli, P.; Zhirnov, V.V. Science and Engineering Beyond Moore’s Law. Proc. IEEE 2012, 100, 1720–1749. [Google Scholar] [CrossRef]
- Liu, S.; Gaudiot, J.-L. IEEE International Roadmap for Devices and Systems (IRDS) Autonomous Machine Computing White Paper 2023. Available online: https://irds.ieee.org/editions/2023 (accessed on 9 April 2025).
- Franklin, A.D.; Koswatta, S.O.; Farmer, D.B.; Smith, J.T.; Gignac, L.; Breslin, C.M.; Han, S.J.; Tulevski, G.S.; Miyazoe, H.; Haensch, W.; et al. Carbon Nanotube Complementary Wrap-Gate Transistors. Nano Lett. 2013, 13, 2490–2495. [Google Scholar] [CrossRef] [PubMed]
- Cress, C.D.; Datta, S. Nanoscale Transistors-Just Around the Gate? Science 2013, 341, 140–141. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Martel, R.; Schmidt, T.; Shea, H.R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449. [Google Scholar] [CrossRef]
- Tans, S.J.; Verschueren, A.R.M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52. [Google Scholar] [CrossRef]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, X.; Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; Zhou, W.; Li, Y.; Yao, Y.; et al. Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Lett. 2007, 7, 3603–3607. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Pitner, G.; Zhang, Z.; Lin, Q.; Su, S.K.; Gilardi, C.; Kuo, C.; Kashyap, H.; Weiss, T.; Yu, Z.; Chao, T.A.; et al. Sub-0.5 nm Interfacial Dielectric Enables Superior Electrostatics: 65 mV/dec Top-Gated Carbon Nanotube FETs at 15 nm Gate Length. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 3.5.1–3.5.4. [Google Scholar] [CrossRef]
- Cao, Q.; Tersoff, J.; Farmer, D.B.; Zhu, Y.; Han, S.-J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372. [Google Scholar] [CrossRef]
- Yang, Y.; Fedorov, G.; Shafranjuk, S.E.; Klapwijk, T.M.; Cooper, B.K.; Lewis, R.M.; Lobb, C.J.; Barbara, P. Electronic Transport and Possible Superconductivity at Van Hove Singularities in Carbon Nanotubes. Nano Lett. 2015, 15, 7859–7866. [Google Scholar] [CrossRef] [PubMed]
- Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040. [Google Scholar] [CrossRef]
- Durkop, T.; Getty, S.A.; Cobas, E.; Fuhrer, M.S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, C.; Zhao, C.; Zhang, Z.; Peng, L.-M. Insight Into Ballisticity of Room-Temperature Carrier Transport in Carbon Nanotube Field-Effect Transistors. IEEE Trans. Electron. Devices 2019, 66, 3535–3540. [Google Scholar] [CrossRef]
- Baek, R.-H.; Kim, J.S.; Kim, D.-K.; Kim, T.; Kim, D.-H. High-performance logic transistor DC benchmarking toward 7 nm technology-node between III–V and Si tri-gate n-MOSFETs using virtual-source injection velocity model. Solid-State Electron. 2016, 116, 100–103. [Google Scholar] [CrossRef]
- Biercuk, M.J.; Ilani, S.; Marcus, C.M.; McEuen, P.L. Electrical Transport in Single-Wall Carbon Nanotubes; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; Volume 111, pp. 455–493. [Google Scholar] [CrossRef]
- Xu, L.; Yang, J.; Qiu, C.G.; Liu, S.Q.; Zhou, W.J.; Li, Q.H.; Shi, B.W.; Ma, J.C.; Yang, C.; Lu, J.; et al. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length? ACS Appl. Mater. Interfaces 2021, 13, 31957–31967. [Google Scholar] [CrossRef]
- Lin, Y.X.; Liang, S.B.; Xu, L.; Liu, L.J.; Hu, Q.L.; Fan, C.W.; Liu, Y.F.; Han, J.; Zhang, Z.Y.; Peng, L.M. Enhancement-Mode Field-Effect Transistors and High-Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Adv. Funct. Mater. 2022, 32, 2104539. [Google Scholar] [CrossRef]
- Hsueh, F.-K.; Hung, J.-M.; Huang, S.-P.; Huang, Y.-H.; Xue, C.-X.; Shen, C.-H.; Shieh, J.-M.; Chiu, W.-C.; Lin, C.-C.; Chen, B.-Y.; et al. First Demonstration of Ultrafast Laser Annealed Monolithic 3D Gate-All-Around CMOS Logic and FeFET Memory with Near-Memory-Computing Macro. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 40.44.41–40.44.44. [Google Scholar] [CrossRef]
- Franklin, A.D.; Luisier, M.; Han, S.J.; Tulevski, G.; Breslin, C.M.; Gignac, L.; Lundstrom, M.S.; Haensch, W. Sub-10 nm Carbon Nanotube Transistor. Nano Lett. 2012, 12, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Han, S.J.; Tersoff, J.; Franklin, A.D.; Zhu, Y.; Zhang, Z.; Tulevski, G.S.; Tang, J.S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Berber, S.; Kwon, Y.K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef]
- Cao, J.X.; Yan, X.H.; Xiao, Y.; Ding, J.W. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process. Phys. Rev. B 2004, 69, 073407. [Google Scholar] [CrossRef]
- Fujii, M.; Zhang, X.; Xie, H.Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502. [Google Scholar] [CrossRef]
- Yang, L.; Greenfeld, I.; Wagner, H.D. Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci. Adv. 2016, 2, e1500969. [Google Scholar] [CrossRef]
- Vinet, M.; Batude, P.; Tabone, C.; Previtali, B.; LeRoyer, C.; Pouydebasque, A.; Clavelier, L.; Valentian, A.; Thomas, O.; Michaud, S.; et al. 3D monolithic integration: Technological challenges and electrical results. Microelectron. Eng. 2011, 88, 331–335. [Google Scholar] [CrossRef]
- Liu, L.J.; Qiu, C.G.; Zhong, D.L.; Si, J.; Zhang, Z.Y.; Peng, L.M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 2017, 9, 9615–9621. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, Y.; Ding, S.; Zhang, P.; Xu, L.; Liu, C.; Hu, Q.; Jin, C.; Peng, L.-M.; Zhang, Z. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nat. Electron. 2023, 6, 506–515. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, S.; Wang, Z.X.; Ding, L.; Pei, T.; Hu, Z.D.; Liang, X.L.; Chen, Q.; Li, Y.; Peng, L.M. Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. Acs Nano 2009, 3, 3781–3787. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Zhang, Z.Y.; Zeng, Q.S.; Wang, Z.X.; Pei, T.; Yang, L.J.; Liang, X.L.; Shen, J.; Chen, Q.; et al. Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Lett. 2009, 9, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhang, Z.Y.; Liang, S.B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W.W.; Liu, J.; Peng, L.M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Wang, S.; Ding, L.; Liang, X.L.; Pei, T.; Shen, J.; Xu, H.L.; Chen, O.; Cui, R.L.; Li, Y.; et al. Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Lett. 2008, 8, 3696–3701. [Google Scholar] [CrossRef]
- Franklin, A.D.; Chen, Z.H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Wang, B.; Zhang, Z.; Lin, Y.; Xu, L.; Yang, Y.; Jin, C.; Peng, L.-M.; Zhang, Z. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays. ACS Nano 2022, 16, 21482–21490. [Google Scholar] [CrossRef]
- Safron, N.; Chao, T.-A.; Li, S.; Natani, S.; Liew, S.-L.; Gilardi, C.; Chiu, H.-Y.; Su, S.-K.; Bechdolt, A.; Zeevi, G.; et al. High Performance Transistor of Aligned Carbon Nanotubes in a Nanosheet Structure. In Proceedings of the 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 16–20 June 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Li, S.; Zhong, D.; Gilardi, C.; Safron, N.; Chao, T.-A.; Zeevi, G.; Van Rijs, S.; Bechdolt, A.D.; Passlack, M.; Pitner, G.; et al. ISO-Performance N-Type and P-Type MOSFETs on Densely Aligned CNT Array Enabled by Self-Aligned Extension Doping with Barrier Booster. In Proceedings of the 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, Z.; Fan, C.; Wu, Z.; Ding, L.; Peng, L.-m. Aligned carbon nanotube–based electronics on glass wafer. Sci. Adv. 2024, 10, eadl1636. [Google Scholar] [CrossRef]
- Liu, Y.F.; Pan, Z.; Ding, S.; Li, W.; Ze, Y.; Si, J.; Zhang, Y.; Jin, C.; Ding, L.; Peng, L.M.; et al. High-Performance Aligned Carbon Nanotube FETs with Record Transconductance of 3.7 mS/μm. In Proceedings of the 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Shen, P.; Chen, J.; Wang, S.; Wang, B.; Ma, S.; Lyu, B.; Zhou, X.; Lou, S.; et al. Homochiral carbon nanotube van der Waals crystals. Science 2025, 387, 1310–1316. [Google Scholar] [CrossRef]
- Burke, P.J. AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid-State Electron. 2004, 48, 1981–1986. [Google Scholar] [CrossRef]
- Bethoux, J.M.; Happy, H.; Dambrine, G.; Derycke, V.; Goffman, M.; Bourgoin, J.P. An 8-GHz f/sub t/ carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron Device Lett. 2006, 27, 681–683. [Google Scholar] [CrossRef]
- Le Louarn, A.; Kapche, F.; Bethoux, J.M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M.F.; Bourgoin, J.P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108. [Google Scholar] [CrossRef]
- Nougaret, L.; Happy, H.; Dambrine, G.; Derycke, V.; Bourgoin, J.P.; Green, A.A.; Hersam, M.C. 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 2009, 94, 243505. [Google Scholar] [CrossRef]
- Steiner, M.; Engel, M.; Lin, Y.-M.; Wu, Y.; Jenkins, K.; Farmer, D.B.; Humes, J.J.; Yoder, N.L.; Seo, J.-W.T.; Green, A.A.; et al. High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl. Phys. Lett. 2012, 101, 53123. [Google Scholar] [CrossRef]
- Kang, S.J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M.A.; Rotkin, S.V.; Rogers, J.A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236. [Google Scholar] [CrossRef]
- Kocabas, C.; Kim, H.-s.; Banks, T.; Rogers, J.A.; Pesetski, A.A.; Baumgardner, J.E.; Krishnaswamy, S.V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA 2008, 105, 1405–1409. [Google Scholar] [CrossRef]
- Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X.; Kim, H.-S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; et al. High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes. Nano Lett. 2009, 9, 1937–1943. [Google Scholar] [CrossRef]
- Zhong, D.; Shi, H.; Ding, L.; Zhao, C.; Liu, J.; Zhou, J.; Zhang, Z.; Peng, L.-M. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. ACS Appl. Mater. Interfaces 2019, 11, 42496–42503. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Shi, H.; Zhu, M.; Cheng, X.; Ren, L.; Ding, L.; Peng, L.-M.; Zhang, Z. Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. ACS Appl. Mater. Interfaces 2021, 13, 37475–37482. [Google Scholar] [CrossRef]
- Shi, H.; Ding, L.; Zhong, D.; Han, J.; Liu, L.; Xu, L.; Sun, P.; Wang, H.; Zhou, J.; Fang, L.; et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 2021, 4, 405–415. [Google Scholar] [CrossRef]
- Che, Y.; Badmaev, A.; Jooyaie, A.; Wu, T.; Zhang, J.; Wang, C.; Galatsis, K.; Enaya, H.A.; Zhou, C. Self-Aligned T-Gate High-Purity Semiconducting Carbon Nanotube RF Transistors Operated in Quasi-Ballistic Transport and Quantum Capacitance Regime. ACS Nano 2012, 6, 6936–6943. [Google Scholar] [CrossRef]
- Ding, L.; Wang, Z.; Pei, T.; Zhang, Z.; Wang, S.; Xu, H.; Peng, F.; Li, Y.; Peng, L.-M. Self-Aligned U-Gate Carbon Nanotube Field-Effect Transistor with Extremely Small Parasitic Capacitance and Drain-Induced Barrier Lowering. ACS Nano 2011, 5, 2512–2519. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, Q.; Zhang, X.g.; Huang, Z.; Chang, Y.; Chang, H.; Huang, S.; Liu, H.; Sun, B. Terahertz Schottky Barrier Diodes Based on Aligned Carbon Nanotube Arrays. IEEE Electron Device Lett. 2023, 44, 845–848. [Google Scholar] [CrossRef]
- Qian, J.; Cheng, X.; Zhou, J.; Cao, J.; Ding, L. Aligned Carbon Nanotubes-Based Radiofrequency Transistors for Amplitude Amplification and Frequency Conversion at Millimeter Wave Band. ACS Nano 2023, 17, 14742–14749. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ren, L.; Li, H.; Cheng, X.; Pan, Z.; Zhang, Z.; Ding, L.; Peng, L.-M. Carbon Nanotube Radiofrequency Transistors With fT/fMAX of 376/318 GHz. IEEE Electron Device Lett. 2023, 44, 329–332. [Google Scholar] [CrossRef]
- Cao, Y.; Brady, G.J.; Gui, H.; Rutherglen, C.; Arnold, M.S.; Zhou, C. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz. ACS Nano 2016, 10, 6782–6790. [Google Scholar] [CrossRef]
- Rutherglen, C.; Kane, A.A.; Marsh, P.F.; Cain, T.A.; Hassan, B.I.; AlShareef, M.R.; Zhou, C.; Galatsis, K. Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz. Nat. Electron. 2019, 2, 530–539. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Ding, L.; Xu, L.; Cheng, X.; Pan, Z.; Li, H.; Zhu, M.; Liu, L.; Shi, H.; et al. Terahertz metal-oxide-semiconductor transistors based on aligned carbon nanotube arrays. Phys. Sci. 2023; under review. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, L.; Pei, T.; Zhang, Z.; Wang, S.; Yu, T.; Ye, X.; Peng, F.; Li, Y.; Peng, L.-M. Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Lett. 2010, 10, 3648–3655. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Zhong, H.; Pei, T.; Liang, S.; Yang, L.; Wang, S.; Peng, L.M. Carbon Nanotube Based Multifunctional Ambipolar Transistors for AC Applications. Adv. Funct. Mater. 2012, 23, 446–450. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, S.; Zhang, Z.; Liu, H.; Zhong, H.; Ye, L.H.; Wang, S.; Zhou, W.; Liu, J.; Chen, Y.; et al. Scalable Fabrication of Ambipolar Transistors and Radio-Frequency Circuits Using Aligned Carbon Nanotube Arrays. Adv. Mater. 2013, 26, 645–652. [Google Scholar] [CrossRef]
- Liu, L.; Ding, L.; Zhong, D.; Han, J.; Wang, S.; Meng, Q.; Qiu, C.; Zhang, X.; Peng, L.-M.; Zhang, Z. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems. ACS Nano 2019, 13, 2526–2535. [Google Scholar] [CrossRef]
- Rutherglen, C.; Jain, D.; Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 2009, 4, 811–819. [Google Scholar] [CrossRef]
- Manohara, H.M.; Wong, E.W.; Schlecht, E.; Hunt, B.D.; Siegel, P.H. Carbon Nanotube Schottky Diodes Using Ti–Schottky and Pt–Ohmic Contacts for High Frequency Applications. Nano Lett. 2005, 5, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Lee, S.Y.; Ly, T.H.; Ghosh, A.; Dang, Q.N.; Lee, Y.H. Chemically Doped Random Network Carbon Nanotube p–n Junction Diode for Rectifier. ACS Nano 2011, 5, 9817–9823. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Yang, X.; Chahal, P. CNTs and Graphene-Based Diodes for Microwave and Millimeter-Wave Circuits on Flexible Substrates. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1766–1775. [Google Scholar] [CrossRef]
- Xue, C.; Wu, W.; Yang, Y.; Zhou, J.; Ding, L.; Wang, S. Carbon Nanotube Diodes Operating at Frequencies of Over 50 GHz. Small 2023, 19, 2207628. [Google Scholar] [CrossRef]
- Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic Circuits with Carbon Nanotube Transistors. Science 2001, 294, 1317–1320. [Google Scholar] [CrossRef]
- Cao, Q.; Kim, H.-s.; Pimparkar, N.; Kulkarni, J.P.; Wang, C.; Shim, M.; Roy, K.; Alam, M.A.; Rogers, J.A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, P.; Ding, L.; Han, J.; Qiu, S.; Li, Q.; Zhang, Z.; Peng, L.-M. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Lett. 2016, 16, 5120–5128. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.-Y.; Wong, H.S.P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Van Rethy, J.; Wu, T.F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z.; Pop, E.; Gielen, G.; Wong, H.S.P.; Mitra, S. Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths. ACS Nano 2014, 8, 3434–3443. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, L.; Han, J.; Zhang, Z.; Peng, L.-M. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano 2017, 11, 4124–4132. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, H.; Dong, G.; Zhong, D.; Han, J.; Liang, X.; Zhang, Z.; Peng, L.-M.; Hu, Y. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 2018, 1, 237–245. [Google Scholar] [CrossRef]
- Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M.D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Si, J.; Zhang, P.; Zhao, C.; Lin, D.; Xu, L.; Xu, H.; Liu, L.; Jiang, J.; Peng, L.-M.; Zhang, Z. A carbon-nanotube-based tensor processing unit. Nat. Electron. 2024, 7, 684–693. [Google Scholar] [CrossRef]
- Chen, Z.; Appenzeller, J.; Lin, Y.-M.; Sippel-Oakley, J.; Rinzler, A.G.; Tang, J.; Wind, S.J.; Solomon, P.M.; Avouris, P. An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science 2006, 311, 1735. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, L.; Chen, H.; Han, J.; Zhang, Z.; Peng, L.-M. Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Res. 2017, 11, 300–310. [Google Scholar] [CrossRef]
- Han, S.-J.; Tang, J.; Kumar, B.; Falk, A.; Farmer, D.; Tulevski, G.; Jenkins, K.; Afzali, A.; Oida, S.; Ott, J.; et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol. 2017, 12, 861–865. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, Z.; Ding, L.; Han, J.; Xiao, M.; Si, J.; Xu, L.; Qiu, C.; Peng, L.-M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2017, 1, 40–45. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Wu, T.F.; Pal, A.; Zhao, L.; Nishi, Y.; Saraswat, K.; Wong, H.S.P.; Mitra, S. Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 27.24.21–27.24.24. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Park, R.S.; Howe, R.T.; Saraswat, K.; Wong, H.S.P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78. [Google Scholar] [CrossRef]
- Wu, T.F.; Li, H.; Huang, P.-C.; Rahimi, A.; Hills, G.; Hodson, B.; Hwang, W.; Rabaey, J.M.; Wong, H.S.P.; Shulaker, M.M.; et al. Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration. IEEE J. Solid-State Circuits 2018, 53, 3183–3196. [Google Scholar] [CrossRef]
- Fan, C.; Cheng, X.; Xu, L.; Zhu, M.; Ding, S.; Jin, C.; Xie, Y.; Peng, L.M.; Zhang, Z. Monolithic three-dimensional integration of aligned carbon nanotube transistors for high-performance integrated circuits. InfoMat 2023, 5, e12420. [Google Scholar] [CrossRef]
- Fan, C.; Cheng, X.; Xie, Y.; Liu, F.; Deng, X.; Zhu, M.; Gao, Y.; Xiao, M.; Zhang, Z. Monolithic Three-Dimensional Integration of Carbon Nanotube Circuits and Sensors for Smart Sensing Chips. ACS Nano 2023, 17, 10987–10995. [Google Scholar] [CrossRef]
- Jian, Y.; Sun, Y.; Feng, S.; Zang, C.; Li, B.; Qiu, S.; Li, Q.-W.; Yan, X.; Sun, D.-M. Laminated three-dimensional carbon nanotube integrated circuits. Nanoscale 2022, 14, 7049–7054. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, J.; Gao, B.; Yao, J.; Fan, A.; Yan, B.; Yang, Y.; Xi, Y.; Li, Y.; Li, J.; et al. Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning. Nat. Commun. 2023, 14, 7140. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.Y.; Yen, C.M.; Chang, S.Y.; Feng, Y.J.; Lien, C.; Hu, C.W.; Yao, C.W.; Lee, M.H.; Liao, M.H. The demonstration of Carbon Nano-Tubes (CNTs) as a promising high Aspect Ratio (>25) Through Silicon Vias (TSVs) material for the vertical connection in the high dense 3DICs. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 12.16.11–12.16.14. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Z.; Zhong, D.; Peng, L. Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Res. 2019, 12, 1810–1816. [Google Scholar] [CrossRef]
- Voskanian, N.; Olsson, E.; Cumings, J. Field-Dependent Heat Dissipation of Carbon Nanotube Electric Currents. Sci. Rep. 2019, 9, 10785. [Google Scholar] [CrossRef]
- Zhu, X.; Xi, M.; Wang, J.; Zhang, P.; Li, Y.; Luo, X.; Bai, L.; Chen, X.; Peng, L.-m.; Cao, Y.; et al. High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors. Sci. Adv. 2025, 11, eadt1909. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent Advances in Transistor-Based Artificial Synapses. Adv. Funct. Mater. 2019, 29, 201903700. [Google Scholar] [CrossRef]
- Zahoor, F.; Hanif, M.; Isyaku Bature, U.; Bodapati, S.; Chattopadhyay, A.; Azmadi Hussin, F.; Abbas, H.; Merchant, F.; Bashir, F. Carbon nanotube field effect transistors: An overview of device structure, modeling, fabrication and applications. Phys. Scr. 2023, 98, 082003. [Google Scholar] [CrossRef]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin-Film Transistors. Adv. Funct. Mater. 2016, 27, 1604447. [Google Scholar] [CrossRef]
- Kim, S.; Choi, B.; Lim, M.; Yoon, J.; Lee, J.; Kim, H.-D.; Choi, S.-J. Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol. ACS Nano 2017, 11, 2814–2822. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Kim, H.-D.; Choi, S.-J. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition. ACS Appl. Mater. Interfaces 2015, 7, 25479–25486. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, J.-H.; Qian, C.; Kang, J.; Hersam, M.C.; Park, J.-H.; Cho, J.H. Gate-Tunable Synaptic Dynamics of Ferroelectric-Coupled Carbon-Nanotube Transistors. ACS Appl. Mater. Interfaces 2019, 12, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Sun, Y.; Liu, Z.; Wei, B.; Wang, H.; Yuan, J.; Chen, Y.; Yang, X.; Xie, D. Threshold voltage control of carbon nanotube-based synaptic transistors via chemical doping for plasticity modulation and symmetry improvement. Carbon 2021, 184, 295–302. [Google Scholar] [CrossRef]
- Wan, H.; Zhao, J.; Lo, L.-W.; Cao, Y.; Sepúlveda, N.; Wang, C. Multimodal Artificial Neurological Sensory–Memory System Based on Flexible Carbon Nanotube Synaptic Transistor. ACS Nano 2021, 15, 14587–14597. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Cao, Y.; Lo, L.-W.; Zhao, J.; Sepúlveda, N.; Wang, C. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS Nano 2020, 14, 10402–10412. [Google Scholar] [CrossRef]
- Xia, F.; Xia, T.; Xiang, L.; Ding, S.; Li, S.; Yin, Y.; Xi, M.; Jin, C.; Liang, X.; Hu, Y. Carbon Nanotube-Based Flexible Ferroelectric Synaptic Transistors for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2022, 14, 30124–30132. [Google Scholar] [CrossRef]
- Pei, J.; Song, L.; Liu, P.; Liu, S.; Liang, Z.; Wen, Y.; Liu, Y.; Wang, S.; Chen, X.; Ma, T.; et al. Scalable Synaptic Transistor Memory from Solution-Processed Carbon Nanotubes for High-Speed Neuromorphic Data Processing. Adv. Mater. 2024, 37, 2312783. [Google Scholar] [CrossRef]
- Sanchez Esqueda, I.; Yan, X.; Rutherglen, C.; Kane, A.; Cain, T.; Marsh, P.; Liu, Q.; Galatsis, K.; Wang, H.; Zhou, C. Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing. ACS Nano 2018, 12, 7352–7361. [Google Scholar] [CrossRef]
- He, T.; Ma, H.; Wang, Z.; Li, Q.; Liu, S.; Duan, S.; Xu, T.; Wang, J.; Wu, H.; Zhong, F.; et al. On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics 2023, 18, 60–67. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Peng, L.-M. Three-dimensional integration of plasmonics and nanoelectronics. Nat. Electron. 2018, 1, 644–651. [Google Scholar] [CrossRef]
- Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350. [Google Scholar] [CrossRef]
- Khasminskaya, S.; Pyatkov, F.; Flavel, B.S.; Pernice, W.H.; Krupke, R. Waveguide-Integrated Light-Emitting Carbon Nanotubes. Adv. Mater. 2014, 26, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Pyatkov, F.; Fütterling, V.; Khasminskaya, S.; Flavel, B.S.; Hennrich, F.; Kappes, M.M.; Krupke, R.; Pernice, W.H.P. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photonics 2016, 10, 420–427. [Google Scholar] [CrossRef]
- Solodyankin, M.A.; Obraztsova, E.D.; Lobach, A.S.; Chernov, A.I.; Tausenev, A.V.; Konov, V.I.; Dianov, E.M. Mode-locked 193 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338. [Google Scholar] [CrossRef]
- Riaz, A.; Alam, A.; Selvasundaram, P.B.; Dehm, S.; Hennrich, F.; Kappes, M.M.; Krupke, R. Near-Infrared Photoresponse of Waveguide-Integrated Carbon Nanotube–Silicon Junctions. Adv. Electron. Mater. 2018, 5, 1800265. [Google Scholar] [CrossRef]
- Wu, W.; Yang, F.; Fang, X.; Cai, X.; Liu, X.; Zhang, F.; Wang, S. Ultrafast Carbon Nanotube Photodetectors with Bandwidth over 60 GHz. ACS Photonics 2023, 10, 1060–1069. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, L.; Wu, W.; Cai, X.; Yang, F.; Xiu, H.; Wang, Y.; Zhang, Q.; Xin, X.; Zhang, F.; et al. Silicon Waveguide-Integrated Carbon Nanotube Photodetector with Low Dark Current and 48 GHz Bandwidth. ACS Nano 2023, 17, 7466–7474. [Google Scholar] [CrossRef]
- Wu, W.; Ma, H.; Cai, X.; Han, B.; Li, Y.; Xu, K.; Lin, H.; Zhang, F.; Chen, Z.; Zhang, Z.; et al. High-Speed Carbon Nanotube Photodetectors for 2 μm Communications. ACS Nano 2023, 17, 15155–15164. [Google Scholar] [CrossRef]
- Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M.M.; et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 2016, 10, 727–732. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Liu, H.; Peng, L.-M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Liu, H.; Wang, S.; Peng, L.-M. Electrically driven monolithic subwavelength plasmonic interconnect circuits. Sci. Adv. 2017, 3, e1701456. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yang, L.; Liu, L.; Wang, S.; Peng, L.-M. Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. ACS Nano 2020, 14, 7191–7199. [Google Scholar] [CrossRef] [PubMed]
- Bohr, M. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE Solid-State Circuits Newsl. 2007, 12, 11–13. [Google Scholar] [CrossRef]
- Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329–337. [Google Scholar] [CrossRef]
- Salahuddin, S.; Datta, S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices. Nano Lett. 2007, 8, 405–410. [Google Scholar] [CrossRef]
- Qiu, C.G.; Liu, F.; Xu, L.; Deng, B.; Xiao, M.M.; Si, J.; Lin, L.; Zhang, Z.Y.; Wang, J.; Guo, H.; et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 2018, 361, 387–391. [Google Scholar] [CrossRef]
- Ze, Y.; Liu, Y.; Wang, B.; Yin, H.; Jin, C.; Zhang, Z. Carbon nanotube materials for future integrated circuit applications. Mater. Today 2024, 79, 97–111. [Google Scholar] [CrossRef]
- Jin, Z.; Chu, H.; Wang, J.; Hong, J.; Tan, W.; Li, Y. Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays. Nano Lett. 2007, 7, 2073–2079. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Wei, J.; Wang, J.-Q.; Xu, Z.; Peng, F.; et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, L.; Zhao, Q.; Zhong, H.; Zhang, S.; Yang, L.; Wang, Z.; Lin, J.; Li, Q.; Zhang, Z.; et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, C.; Peng, L.-m.; Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res. 2020, 14, 976–981. [Google Scholar] [CrossRef]
- Jin, S.H.; Dunham, S.N.; Song, J.; Xie, X.; Kim, J.-h.; Lu, C.; Islam, A.; Du, F.; Kim, J.; Felts, J.; et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Sharma, N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Chrzanowska, J.; Hoffman, J.; Małolepszy, A.; Mazurkiewicz, M.; Kowalewski, T.A.; Szymanski, Z.; Stobinski, L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi 2015, 252, 1860–1867. [Google Scholar] [CrossRef]
- Brukh, R.; Mitra, S. Mechanism of carbon nanotube growth by CVD. Chem. Phys. Lett. 2006, 424, 126–132. [Google Scholar] [CrossRef]
- Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, X.; Shimoyama, I.; Sun, X.; Seo, W.-S.; Dai, H. Langmuir–Blodgett Assembly of Densely Aligned Single-Walled Carbon Nanotubes from Bulk Materials. J. Am. Chem. Soc. 2007, 129, 4890–4891. [Google Scholar] [CrossRef]
- Cao, Q.; Han, S.-j.; Tulevski, G.S.; Zhu, Y.; Lu, D.D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186. [Google Scholar] [CrossRef]
- Joo, Y.; Brady, G.J.; Arnold, M.S.; Gopalan, P. Dose-Controlled, Floating Evaporative Self-assembly and Alignment of Semiconducting Carbon Nanotubes from Organic Solvents. Langmuir 2014, 30, 3460–3466. [Google Scholar] [CrossRef]
- Wu, J.; Antaris, A.; Gong, M.; Dai, H. Top-Down Patterning and Self-Assembly for Regular Arrays of Semiconducting Single-Walled Carbon Nanotubes. Adv. Mater. 2014, 26, 6151–6156. [Google Scholar] [CrossRef]
- Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J.K.; et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lu, H.; Ding, S.; Ze, Y.; Liu, Y.; Zhang, Z.; Yin, H.; Gao, B.; Li, Y.; He, L.; et al. Nonideality in Arrayed Carbon Nanotube Field Effect Transistors Revealed by High-Resolution Transmission Electron Microscopy. ACS Nano 2024, 18, 22474–22483. [Google Scholar] [CrossRef] [PubMed]
- Javey, A.; Guo, J.; Farmer, D.B.; Wang, Q.; Yenilmez, E.; Gordon, R.G.; Lundstrom, M.; Dai, H.J. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319–1322. [Google Scholar] [CrossRef]
- Wang, N.-P.; Heinze, S.; Tersoff, J. Random-Telegraph-Signal Noise and Device Variability in Ballistic Nanotube Transistors. Nano Lett. 2007, 7, 910–913. [Google Scholar] [CrossRef]
- Franklin, A.D.; Tulevski, G.S.; Han, S.-J.; Shahrjerdi, D.; Cao, Q.; Chen, H.-Y.; Wong, H.S.P.; Haensch, W. Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency. ACS Nano 2012, 6, 1109–1115. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, S.; Ding, L.; Liang, X.L.; Xu, H.L.; Shen, J.; Chen, Q.; Cui, R.L.; Li, Y.; Peng, L.M. High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Appl. Phys. Lett. 2008, 92, 133117. [Google Scholar] [CrossRef]
- Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246. [Google Scholar] [CrossRef]
- Franklin, A.D.; Bojarczuk, N.A.; Copel, M. Consistently low subthreshold swing in carbon nanotube transistors using lanthanum oxide. Appl. Phys. Lett. 2013, 102, 013108. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, H.; Zhang, Z.; Wang, S.; Ding, L.; Zeng, Q.; Yang, L.; Pei, T.; Liang, X.; Gao, M.; et al. Growth and Performance of Yttrium Oxide as an Ideal High-κ Gate Dielectric for Carbon-Based Electronics. Nano Lett. 2010, 10, 2024–2030. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Z.; Su, J.; Li, Q.; Peng, L.-M. Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors. Nanoscale 2014, 6, 11316–11321. [Google Scholar] [CrossRef]
- Xu, L.; Gao, N.; Zhang, Z.; Peng, L.-M. Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric. Appl. Phys. Lett. 2018, 113, 083105. [Google Scholar] [CrossRef]
- Lu, Y.; Bangsaruntip, S.; Wang, X.; Zhang, L.; Nishi, Y.; Dai, H. DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. J. Am. Chem. Soc. 2006, 128, 3518–3519. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y.; Dai, H. Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Lett. 2003, 3, 193–198. [Google Scholar] [CrossRef]
- Banerjee, S.; Hemraj-Benny, T.; Wong, S.S. Covalent Surface Chemistry of Single-Walled Carbon Nanotubes. Adv. Mater. 2005, 17, 17–29. [Google Scholar] [CrossRef]
- Kemelbay, A.; Tikhonov, A.; Aloni, S.; Kuykendall, T.R. Conformal High-K Dielectric Coating of Suspended Single-Walled Carbon Nanotubes by Atomic Layer Deposition. Nanomaterials 2019, 9, 1085. [Google Scholar] [CrossRef]
- Zhong, D.; Zhao, C.; Liu, L.; Zhang, Z.; Peng, L.-M. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Appl. Phys. Lett. 2018, 112, 153109. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, Z.; Zhong, D.; Si, J.; Yang, Y.; Peng, L.-M. Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano 2015, 9, 969–977. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, C.; Ding, L.; Peng, L.; Zhang, Z. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Res. 2019, 13, 1875–1881. [Google Scholar] [CrossRef]
- Zhao, C.; Zhong, D.; Liu, L.; Yang, Y.; Shi, H.; Peng, L.-M.; Zhang, Z. Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application. ACS Nano 2020, 14, 15267–15275. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Lu, H.; Lin, Y.; Jin, C.; Zhang, Z. Scaling of N-Type Field-Effect Transistors Based on Aligned Carbon Nanotube Arrays. ACS Appl. Mater. Interfaces 2024, 16, 55964–55969. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, Z.; Pei, T.; Li, R.; Li, Y.; Peng, L. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 2013, 6, 535–545. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, B.-K.; Kim, J.-J.; Lee, J.-O.; Park, N. Controllable modification of transport properties of single-walled carbon nanotube field effect transistors with in situ Al decoration. Appl. Phys. Lett. 2007, 91, 153113. [Google Scholar] [CrossRef]
- Wei, H.; Chen, H.-Y.; Liyanage, L.; Wong, H.S.P.; Mitra, S. Air-stable technique for fabricating n-type carbon nanotube FETs. In Proceedings of the 2011 IEEE International Electron Devices Meeting, Washington, DC, USA, 2–7 December 2011; pp. 23.22.21–23.22.24. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Fu, Y.; Che, Y.; Zhou, C. Air-Stable Conversion of Separated Carbon Nanotube Thin-Film Transistors from p-Type to n-Type Using Atomic Layer Deposition of High-κ Oxide and Its Application in CMOS Logic Circuits. ACS Nano 2011, 5, 3284–3292. [Google Scholar] [CrossRef] [PubMed]
- Hafizi, R.; Tersoff, J.; Perebeinos, V. Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact. Phys. Rev. Lett. 2017, 119, 207701. [Google Scholar] [CrossRef]
- Perebeinos, V.; Tersoff, J. Wetting Transition for Carbon Nanotube Arrays under Metal Contacts. Phys. Rev. Lett. 2015, 114, 085501. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, S.; Li, W.; Zhang, Z.; Pan, Z.; Ze, Y.; Gao, B.; Zhang, Y.; Jin, C.; Peng, L.-M.; et al. Interface States in Gate Stack of Carbon Nanotube Array Transistors. ACS Nano 2024, 18, 19086–19098. [Google Scholar] [CrossRef]
- Sung, D.; Hong, S.; Kim, Y.-H.; Park, N.; Kim, S.; Maeng, S.L.; Kim, K.-C. Ab initio study of the effect of water adsorption on the carbon nanotube field-effect transistor. Appl. Phys. Lett. 2006, 89, 243110. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, Y.; Lu, H.; Liu, C.; Zhang, Z.; Jin, C.; Peng, L.-M.; Zhang, Z. Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface. ACS Appl. Mater. Interfaces 2023, 15, 10830–10837. [Google Scholar] [CrossRef]
- Park, R.S.; Shulaker, M.M.; Hills, G.; Suriyasena Liyanage, L.; Lee, S.; Tang, A.; Mitra, S.; Wong, H.S.P. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution. ACS Nano 2016, 10, 4599–4608. [Google Scholar] [CrossRef]
- Park, R.S.; Hills, G.; Sohn, J.; Mitra, S.; Shulaker, M.M.; Wong, H.S.P. Hysteresis-Free Carbon Nanotube Field-Effect Transistors. ACS Nano 2017, 11, 4785–4791. [Google Scholar] [CrossRef]
- Gao, X.; Si, J.; Zhang, Z. Manufacturing carbon nanotube transistors using lift-off process: Limitations and prospects. Moore More 2024, 1, 11. [Google Scholar] [CrossRef]
- Bishop, M.D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M.M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501. [Google Scholar] [CrossRef]
Ref. | Gate Type | Lch (nm) | Vgs (V) | Vds (V) | Ion | SS (mV/dec) | gm | Notes | Year |
---|---|---|---|---|---|---|---|---|---|
[11] | BG SiO2 67 nm | 300 | −7.5 | −2.4 | 25 μA/tube | 170 | / | Single tube Pd contact | 2003 |
BG SiO2 67 nm | 3500 | −5.5 | −0.7 | 25 μA/tube | 150 | / | |||
[12] | BG SiO2 100 nm | 300 | −2 | 0.5 | 20 μA/tube | 250 | / | Single tube Sc contact | 2007 |
[37] | TG HfO2 15 nm | 120 | 1.0 | 1.0 | 25 μA/tube | 100 | 25 μS | Single tube Sc contact | 2008 |
[38] | LBG HfO2 10 nm | 20 | VLBG − Vth = −1 | −0.5 | 10 μA/tube | 85 | 20 μS | Single tube | 2010 |
[4] | GAA AlOxNy 1.5 nm + Al2O3 5 nm | 20 | Vgs − Vth = −0.4 | −0.4 | ~2 μA/tube | 85–140 | / | Single tube Pd contact | 2013 |
GAA AlOxNy 1 nm + HfO2 8 nm | 30 | Vgs − Vth = 0.4 | 0.4 | ~2 μA/tube | 95–150 | / | Single tube Pd contact | ||
[15] | TG Al2O3 5 nm | 11 | −0.5 | −0.5 | 3μA/tube | 85 | / | Single tube Co-Mo end contact | 2017 |
BG HfO2 3 nm | ~40 | −3 | −0.5 | 800 μA/μm | ~500 | 0.32 mS/μm | CNT array Co-Mo end contact | ||
[7] | TG HfO2 3.5 nm | 5 | −1 | −0.1 | 2 μA/tube | 73 | 55 μS | Single tube Graphene contact | 2017 |
TG HfO2 3.5 nm | 10 | −1 | −0.1 | 6 μA/tube | 60 | / | Single tube Graphene contact | ||
TG HfO2 3.5 nm | 20 | −1.25 | −0.4 | 17.5 μA/tube | 70 | / | Single tube Pd contact | ||
TG HfO2 3.5 nm | 20 | 0.6 | 0.4 | ~10 μA/tube | 70 | / | Single tube Sc contact | ||
[13] | TG HfO2 7.3 nm | 120 | −2.5 | −1 | 1300 μA/μm | 100–200 | 0.9 mS/μm | CNT array Pd contact | 2020 |
Ionic-liquid | 290 | −1.2 | −0.1 | 50 μA/μm | 75–90 | ||||
[23] | TG HfO2 4.8 nm | 200 nm | −2 | −1 | 1180 μA/μm | 73 | 1.0 mS/μm | CNT array Pd contact | 2021 |
[39] | TG HfO2 10 nm | 300 | 4 | 2 | 600 μA/μm | 100 | 250 μS/μm | CNT array Sc contact | 2022 |
TG HfO2 10 nm | 100 | 4 | 3 | 800 μA/μm | 170 | 250 μS/μm | |||
[33] | TG HfO2 5 nm | 30 | −2.6 | −0.7 | 3310 μA/μm | / | 2.69 mS/μm | CNT array Pd contact | 2023 |
TG HfO2 5 nm | 85 | −2 | −0.8 | 2240 μA/μm | 175 | 1.64 mS/μm | |||
[40] | GAA (Nanosheet) Al2O3 1 nm + HfO2 5 nm | 70 | Vgs − Vth = −0.7 | −0.5 | 1150 μA/μm | 135 | ~1.5 mS/μm | CNT array Pd contact | 2024 |
30 | Vgs − Vth = −0.7 | −0.5 | ~2000 μA/μm | ~170 | ~2.5 mS/μm | ||||
[41] | TG Al2O3 4 nm | 250 | ~−2.5 | −1 | 220 μA/μm | 200 | / | CNT array Pd contact WOx doping | 2024 |
250 | ~2.5 | 1 | 220 μA/μm | 200 | / | CNT array Ti contact AlNx doping | |||
[42] | TG HfO2 5 nm | 200 | −1 | −1 | 1170 μA/μm | 115 | 1.83 | CNT array Pd contact Glass substract | 2024 |
300 | −1 | −1 | 830 μA/μm | 95 | 1.34 mS/μm | ||||
[43] | TG HfO2 5 nm | 100 | −1.5 | −1 | 2450 μA/μm | 100 | 3.7 mS/μm | CNT array Pd contact | 2024 |
[44] | BG SiO2 285 nm | 400 | / | 8 | 6500 μA/μm | / | / | CNT array Pd contact | 2025 |
Area | Key Goals/Metrics | Key Technologies and Challenges |
---|---|---|
Material Optimization |
|
|
Device Architecture and Process Innovation |
|
|
Performance Limit Breakthroughs |
|
|
Integration and 3D Architectures |
|
|
Expansion of Application Scenarios |
|
|
Standardization and Industrialization |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, N.; Zhang, Z. High-Performance Carbon Nanotube Electronic Devices: Progress and Challenges. Micromachines 2025, 16, 554. https://doi.org/10.3390/mi16050554
Zhang Z, Zhang N, Zhang Z. High-Performance Carbon Nanotube Electronic Devices: Progress and Challenges. Micromachines. 2025; 16(5):554. https://doi.org/10.3390/mi16050554
Chicago/Turabian StyleZhang, Zirui, Nie Zhang, and Zhiyong Zhang. 2025. "High-Performance Carbon Nanotube Electronic Devices: Progress and Challenges" Micromachines 16, no. 5: 554. https://doi.org/10.3390/mi16050554
APA StyleZhang, Z., Zhang, N., & Zhang, Z. (2025). High-Performance Carbon Nanotube Electronic Devices: Progress and Challenges. Micromachines, 16(5), 554. https://doi.org/10.3390/mi16050554