Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms
Abstract
:1. Introduction
2. DEP Theoretical Background
3. External Forces in DEP System
4. DEP Temperature Effects
5. Protein DEP Theoretical Considerations
6. DEP Applications in Clinical Diagnostics
7. Fabrication Technologies for DEP Microfluidic Platforms
8. Case Studies and Performance Metrics of DEP-Based Microfluidic Systems
9. DEP Experimental Application of Protein Manipulation
9.1. Trapping
9.2. Focusing
9.3. Separations
10. Protein DEP Microfluidic Platform
10.1. Electrode-Based DEP (eDEP)
10.1.1. Metal Electrode Limitation in eDEP
10.1.2. Electrode Contamination in eDEP
10.2. Insulator-Based DEP (iDEP)
11. Protein DEP Platform in AC and DC
11.1. Direct Current of Protein DEP
Protein Exhibits Less Conductivity in DC Electric Field
11.2. Alternative Current of Protein DEP
12. Protein DEP Platform Design Consideration
13. Protein Particle Consideration and Factors
13.1. Protein Aggregation and Agglomeration
13.2. Protein Absorption
14. Medium Consideration for Protein DEP
14.1. Medium pH
14.2. Medium Conductivity
15. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Khoshmanesh, K.; Nahavandi, S.; Baratchi, S.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 2011, 26, 1800–1814. [Google Scholar] [CrossRef] [PubMed]
- Mauro, A. Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields. Q. Rev. Biol. 1980, 55, 68–69. [Google Scholar] [CrossRef]
- Gascoyne, P.R.C.; Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis 2002, 23, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Ibrahim, F.; Yafouz, B. Dielectrophoresis for biomedical sciences applications: A review. Sensors 2017, 17, 449. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Neuzil, P. EP-on-a-chip: Dielectrophoresis applied to microfluidic platforms. Micromachines 2019, 10, 423. [Google Scholar] [CrossRef]
- Michael, P.H. Michael Pycraft Hughes Nanoelectromechanics in Engineering and Biology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; Available online: https://www.routledge.com/Nanoelectromechanics-in-Engineering-and-Biology/Hughes/p/book/9780849311833 (accessed on 19 August 2020).
- Dukhin, A.S.; Ulberg, Z.R.; Gruzina, T.G.; Karamushka, V.I. Colloid and Interface Science in Pharmaceutical Research and Development; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 193–222. [Google Scholar]
- Morgan, H.; Green, N.G. Dielectrophoretic manipulation of rod-shaped viral particles. J. Electrostat. 1997, 42, 279–293. [Google Scholar] [CrossRef]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ghallab, Y.; Badawy, W. Sensing methods for dielectrophoresis phenomenon: From bulky instruments to lab-on-a-chip. IEEE Circuits Syst. Mag. 2004, 4, 5–15. [Google Scholar] [CrossRef]
- Castellanos, A.; Ramos, A.; González, A.; Green, N.G.; Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D Appl. Phys. 2003, 36, 2584–2597. [Google Scholar] [CrossRef]
- Camacho-Alanis, F.; Ros, A. Protein Dielectrophoresis and The Link to Dielectric Properties. Bioanalysis 2015, 7, 353–371. [Google Scholar] [CrossRef]
- Voldman, J.; Braff, R.A.; Toner, M.; Gray, M.L.; Schmidt, M.A. Holding forces of single-particle dielectrophoretic traps. Biophys. J. 2001, 80, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Çetin, B.; Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 2011, 32, 2410–2427. [Google Scholar] [CrossRef]
- Siva Kumar Gunda, N.; Bhattacharjee, S.; Mitra, S.K. Study on the use of dielectrophoresis and electrothermal forces to produce on-chip micromixers and microconcentrators. Biomicrofluidics 2012, 6, 1–23. [Google Scholar] [CrossRef]
- Salari, A.; Navi, M.; Lijnse, T.; Dalton, C. AC Electrothermal Effect in Microfluidics: A Review. Micromachines 2019, 10, 762. [Google Scholar] [CrossRef]
- Walid Rezanoor, M.; Dutta, P. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles. Appl. Phys. Rev. 2016, 10, 2. [Google Scholar] [CrossRef]
- García-Sánchez, P.; Flores-Mena, J.E.; Ramos, A. Modeling the AC Electrokinetic Behavior of Semiconducting Spheres. Micromachines 2019, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Mutabazi, I. Dielectrophoretic buoyancy and heat transfer in a dielectric liquid contained in a cylindrical annular cavity. J. Appl. Phys. 2019, 125, 184902. [Google Scholar] [CrossRef]
- Park, S.; Beskok, A. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes. Anal. Chem. 2008, 80, 2832–2841. [Google Scholar] [CrossRef]
- Lindemann, T.; Zengerle, R. Droplet dispensing. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer Science and Business Media LLC: Boston, MA, USA, 2008; pp. 402–411. [Google Scholar]
- Md Ali, M.A.; Kayani, A.B.A.; Yeo, L.Y.; Chrimes, A.F.; Ahmad, M.Z.; Ostrikov, K.; Majlis, B.Y. Dielectrophoresis of amyloid-beta proteins as a microfluidic template for Alzheimer’s research. Int. J. Mol. Sci. 2019, 14, 3595. [Google Scholar] [CrossRef]
- What Are Proteins and What Do They Do?—Genetics Home Reference–NIH. Available online: https://ghr.nlm.nih.gov/primer/howgeneswork/protein (accessed on 17 June 2020).
- Nakano, A.; Ros, A. Protein dielectrophoresis: Advances, challenges, and applications. Electrophoresis 2013, 34, 1085–1096. [Google Scholar] [CrossRef]
- Uzman, A.; Lodish, H.; Berk, A.; Zipursky, L.; Baltimore, D. Biochemistry and molecular biology education. In Molecular Cell Biology, 4th ed.; Lodish, H., Berk, B., Lawrence, S., Zipursky, S., Matsudaira, P., Baltimore, D., Darnell, J., Eds.; Freeman & Co.: New York, NY, USA, 1999; pp. 126–128. [Google Scholar]
- Hölzel, R.; Calander, N.; Chiragwandi, Z.; Willander, M.; Bier, F.F. Trapping single molecules by dielectrophoresis. Phys. Rev. Lett. 2005, 95, 128102. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, R.; Pethig, R. Protein dielectrophoresis: I. Status of experiments and an empirical theory. Micromachines 2020, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.W.; Piper, J.D.; Ying, L.; Klenerman, D. Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys. Rev. Lett. 2007, 98, 198102. [Google Scholar] [CrossRef] [PubMed]
- Nakano, A.; Camacho-Alanis, F.; Ros, A. Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices. Analyst 2015, 140, 860–868. [Google Scholar] [CrossRef]
- Velmanickam, L.; Jayasooriya, V.; Sarma Vemuri, M.; Tida, U.R.; Nawarathna, D. Recent Advances in Dielectrophoresis toward Biomarker Detection: A Summary of Studies Published between 2014 and 2021. Electrophoresis 2021, 43, 212–231. [Google Scholar] [CrossRef]
- Nasimi, H.; Madsen, J.S.; Zedan, A.H.; Malmendal, A.; Osther, P.J.S.; Alatraktchi, F.A.Z. Protein Biomarker Detection in Prostate Cancer: A Comprehensive Review of Electrochemical Biosensors. Sens. Actuators Rep. 2023, 6, 100168. [Google Scholar] [CrossRef]
- Iweala, E.E.J.; Amuji, D.N.; Nnaji, F.C. Protein Biomarkers for Diagnosis of Breast Cancer. Sci. Afr. 2024, 25, e02308. [Google Scholar] [CrossRef]
- Varmazyari, V.; Habibiyan, H.; Ghafoorifard, H.; Ebrahimi, M.; Ghafouri-Fard, S. A Dielectrophoresis-Based Microfluidic System Having Double-Sided Optimized 3D Electrodes for Label-Free Cancer Cell Separation with Preserving Cell Viability. Sci. Rep. 2022, 12, 12100. [Google Scholar] [CrossRef]
- Najafipour, I.; Sadeh, P.; Amani, A.M.; Kamyab, H.; Chelliapan, S.; Rajendran, S.; Peñaherrera-Pazmiño, A.B.; Jamalpour, S. Dielectrophoresis-Based Microfluidics for Detection and Separation of Circulating Tumor Cells. Sens. Actuators Rep. 2025, 9, 100304. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive Manufacturing by Digital Light Processing: A Review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Kotz, F.; Rapp, B.E.; Helmer, D. Additive Manufacturing of Microfluidic Glass Chips. In Microfluidics, BioMEMS, and Medical Microsystems XVI.; Gray, B.L., Becker, H., Eds.; SPIE: Cergy, France, 2018; p. 9. [Google Scholar]
- Shafique, H.; Karamzadeh, V.; Kim, G.; Morocz, Y.; Sohrabi-Kashani, A.; Shen, M.L.; Juncker, D. High-Resolution Low-Cost LCD 3D Printing of Microfluidics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Santiago, J.G.L.; Martínez, O.M.R.; Sundaram, P.A. 3D-Printed Microfluidic and Millifluidic Devices for Cell Culture and Mechanotransduction Studies: A Review. J. Micromanufactur. 2024, 7, 216–230. [Google Scholar] [CrossRef]
- Karamzadeh, V.; Sohrabi-Kashani, A.; Shen, M.; Juncker, D. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems. Adv. Mater. 2023, 35, 47. [Google Scholar] [CrossRef] [PubMed]
- Esene, J.E.; Boaks, M.; Bickham, A.V.; Nordin, G.P.; Woolley, A.T. 3D Printed Microfluidic Device for Automated, Pressure-Driven, Valve-Injected Microchip Electrophoresis of Preterm Birth Biomarkers. Microchim. Acta 2022, 189, 204. [Google Scholar] [CrossRef]
- Kim, Y.T.; Ahmadianyazdi, A.; Folch, A. A ‘Print–Pause–Print’ Protocol for 3D Printing Microfluidics Using Multimaterial Stereolithography. Nat. Protoc. 2023, 18, 1243–1259. [Google Scholar] [CrossRef]
- Karamzadeh, V.; Shen, M.L.; Shafique, H.; Lussier, F.; Juncker, D. Nanoporous, Gas Permeable PEGDA Ink for 3D Printing Organ-on-a-Chip Devices. Adv. Funct. Mater. 2024, 34, 28. [Google Scholar] [CrossRef]
- Boonkaew, S.; Szot-Karpińska, K.; Niedziółka-Jönsson, J.; Pałys, B.; Jönsson-Niedziółka, M. Point-of-Care Testing for C-Reactive Protein in a Sequential Microfluidic Device. Sens. Actuators B Chem. 2023, 397, 134659. [Google Scholar] [CrossRef]
- Shiriny, A.; Bayareh, M.; Taheri, Z. Dielectrophoretic Microfluidic Device for the Separation of Foodborne Bacteria from Blood. Iran. J. Chem. Chem. Eng. 2024, 43, 469–479. [Google Scholar] [CrossRef]
- Kartanas, T.; Levin, A.; Toprakcioglu, Z.; Scheidt, T.; Hakala, T.A.; Charmet, J.; Knowles, T.P.J. Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection. Anal. Chem. 2021, 93, 2848–2853. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.; Kim, M.; Kim, B.; Yoon Kang, J. Negative-Dielectrophoresis Separation Modules Based High Throughput and High Efficient Cell Sorting Platform for Leukemia Cell. In Proceedings of the 2011 IEEE SENSORS Proceedings, Limerick, Ireland, 28–31 October 2011; IEEE: New York, NY, USA, 2011; pp. 1874–1877. [Google Scholar]
- Hanson, C.; Sieverts, M.; Tew, K.; Dykes, A.; Salisbury, M.; Vargis, E. The use of microfluidics and dielectrophoresis for separation, concentration, and identification of bacteria. Microfluid. BioMEMS Med. Microsyst. XIV 2016, 9705, 97050E. [Google Scholar]
- Lapizco-Encinas, B.H.; Ozuna-Chacón, S.; Rito-Palomares, M. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J. Chromatogr. A 2008, 1206, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.W.; White, S.S.; Zhou, D.; Ying, L.; Klenerman, D. Trapping of proteins under physiological conditions in a nanopipette. Angew. Chem.-Int. Ed. 2005, 4, 3747–3750. [Google Scholar] [CrossRef]
- Collins, J.L.; Moncada Hernandez, H.; Habibi, S.; Kendrick, C.E.; Wang, Z.; Bihari, N.; Bergstrom, P.L.; Minerick, A.R. Electrical and Chemical Characterizations of Hafnium (IV) Oxide Films for Biological Lab-on-a-Chip Devices. Thin Solid. Film. 2018, 662, 60–69. [Google Scholar] [CrossRef]
- Pain, S.L.; Khorani, E.; Niewelt, T.; Wratten, A.; Paez Fajardo, G.J.; Winfield, B.P.; Bonilla, R.S.; Walker, M.; Piper, L.F.J.; Grant, N.E.; et al. Electronic Characteristics of Ultra-Thin Passivation Layers for Silicon Photovoltaics. Adv. Mater. Interfaces 2022, 9, 28. [Google Scholar] [CrossRef]
- Staišiūnas, L.; Kalinauskas, P.; Juzeliūnas, E.; Grigucevičienė, A.; Leinartas, K.; Niaura, G.; Stanionytė, S.; Selskis, A. Silicon Passivation by Ultrathin Hafnium Oxide Layer for Photoelectrochemical Applications. Front. Chem. 2022, 10, 859023. [Google Scholar] [CrossRef]
- Le, H.T.T.; Liem, N.T.; Giang, N.C.; Hoang, P.H.; Minh Phuong, N.T. Improving Electrochemical Performance of Hybrid Electrode Materials by a Composite of Nanocellulose, Reduced Oxide Graphene and Polyaniline. RSC Adv. 2023, 13, 22375–22388. [Google Scholar] [CrossRef]
- Hanssen, B.L.; Siraj, S.; Wong, D.K.Y. Recent Strategies to Minimise Fouling in Electrochemical Detection Systems. Rev. Anal. Chem. 2016, 35, 1. [Google Scholar] [CrossRef]
- Abdollahi, J.; Alavi Moghaddam, M.R.; Habibzadeh, S. The Role of the Current Waveform in Mitigating Passivation and Enhancing Electrocoagulation Performance: A Critical Review. Chemosphere 2023, 312, 137212. [Google Scholar] [CrossRef]
- Poh, Y.R.; Yuen-Zhou, J. Stirring effects on AC-induced chemoselectivity in reversible electrochemical reactions. Phys. Chem. Princ. AC Electrosynthesis 2024, 129, 3561–3569. [Google Scholar] [CrossRef]
- De Bon, F.; Vaz Simões, A.; Serra, A.C.; Coelho, J.F.J. Alternating and Pulsed Current Electrolysis for Atom Transfer Radical Polymerization. Chempluschem 2025, 90, e202400661. [Google Scholar] [CrossRef]
- Choe, S.W.; Kim, B.; Kim, M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. Biosensors 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Williams, S. AC dielectrophoresis lab-on-chip devices. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: Boston, MA, USA, 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Minerick, A.R. DC dielectrophoresis in lab-on-a-chip devices. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: Boston, MA, USA, 2008; pp. 331–334. [Google Scholar] [CrossRef]
- Cetin, B.; Li, D. Effect of Joule heating on electrokinetic transport. Electrophoresis 2008, 29, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Minerick, A.R. DC Dielectrophoresis in Lab-on-a-Chip Devices. In Encyclopedia of Microfluidics and Nanofluidics; Li, D., Ed.; Springer: New York, NY, USA, 2015; pp. 529–536. [Google Scholar] [CrossRef]
- Velev, O.D.; Gangwal, S.; Petsev, D.N. Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem. Sect. C 2009, 105, 213–246. [Google Scholar] [CrossRef]
- Laux, E.; Bier, F.F.; Hölzel, R. Electrode-based AC electrokinetics of proteins: A mini-review. Bioelectrochemistry 2018, 120, 76–82. [Google Scholar] [CrossRef]
- Gallo-Villanueva, R.C.; Sano, M.B.; Lapizco-Encinas, B.H.; Davalos, R.V. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices. Electrophoresis 2014, 35, 352–361. [Google Scholar] [CrossRef]
- Hawkins, B.G.; Kirby, B.J. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis 2010, 31, 3622–3633. [Google Scholar] [CrossRef]
- Chaurey, V.; Rohani, A.; Su, Y.H.; Liao, K.T.; Chou, C.F.; Swami, N.S. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity. Electrophoresis 2013, 34, 1097–1104. [Google Scholar] [CrossRef]
- Leiterer, C.; Berg, S.; Eskelinen, A.; Csaki, A.; Urban, M.; Törmä, P.; Fritzsche, W. Assembling gold nanoparticle chains using an AC electrical field: Electrical detection of organic thiols. Sens. Actuators B. Chem. 2013, 176, 368–373. [Google Scholar] [CrossRef]
- Tuukkanen, S.; Kuzyk, A.; Toppari, J.J.; Hannu, H.; Rinki, M. Trapping of 27 bp–8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 2007, 18, 295204. [Google Scholar] [CrossRef]
- Ivory, C.F.; Srivastava, S.K. Direct current dielectrophoretic simulation of proteins using an array of circular insulating posts. Electrophoresis 2011, 32, 2323–2330. [Google Scholar] [CrossRef]
- Liao, K.T.; Tsegaye, M.; Chaurey, V.; Chou, C.F.; Swami, N.S. Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces. Electrophoresis 2012, 33, 1958–1966. [Google Scholar] [CrossRef]
- Bemporad, F.; Chiti, F. Protein misfolded oligomers: Experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem. Biol. 2012, 19, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Washizu, M.; Kurosawa, O.; Suzuki, S.; Nishizaka, T.; Shinohara, T. Molecular dielectrophoresis of biopolymers. IEEE Trans. Ind. Appl. 1994, 30, 835–843. [Google Scholar] [CrossRef]
- Nakano, A.; Chao, T.C.; Camacho-Alanis, F.; Ros, A. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 2011, 32, 2314–2322. [Google Scholar] [CrossRef]
- Fink, A.L. Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Fold. Des. 1998, 3, 9–23. [Google Scholar] [CrossRef]
- Nakano, A.; Camacho-Alanis, F.; Chao, T.C.; Ros, A. Tuning direct current streaming dielectrophoresis of proteins. Biomicrofluidics 2012, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Agastin, S.; King, M.R.; Jones, T.B. Rapid enrichment of biomolecules using simultaneous liquid and particulate dielectrophoresis. Lab A Chip-Miniat. Chem. Biol. 2009, 9, 2319–2325. [Google Scholar] [CrossRef]
- Staton, S.J.R.; Jones, P.V.; Ku, G.; Gilman, S.D.; Kheterpal, I.; Hayes, M.A. Manipulation and capture of Aβ amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP). Analyst 2012, 137, 3227–3229. [Google Scholar] [CrossRef]
- Gencoglu, A.; Camacho-Alanis, F.; Nguyen, V.T.; Nakano, A.; Ros, A.; Minerick, A.R. Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis 2011, 32, 2436–2447. [Google Scholar] [CrossRef]
- Liao, K.T.; Chou, C.F. Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers. J. Am. Chem. Soc. 2012, 134, 8742–8745. [Google Scholar] [CrossRef]
- Bakewell, D.J.G.; Hughes, M.P.; Milnd, J.J.; Morgan, H. Dielectrophoretic manipulation of avidin and DNA. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 29 October–1 November 1998; pp. 1079–1082. [Google Scholar]
- Kawabata, T.; Washizu, M. Manufacturing Systems Development and Applications Department-Electrostatic Processes Committee-Dielectrophoretic Detection of Molecular Bindings. IEEE Trans. Ind. Appl. 2001, 37, 1625–1633. [Google Scholar] [CrossRef]
- Asokan, S.B.; Jawerth, L.; Carroll, R.L.; Cheney, R.E.; Washburn, S.; Superfine, R. Two-dimensional manipulation and orientation of actin− myosin systems with dielectrophoresis. Nano Lett. 2003, 3, 431–437. [Google Scholar] [CrossRef]
- Zheng, L.; Brody, J.P.; Burke, P.J. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens. Bioelectron. 2004, 20, 606–619. [Google Scholar] [CrossRef]
- Minoura, I.; Muto, E. Dielectric measurement of individual microtubules using the electroorientation method. Biophys. J. 2006, 90, 3739–3748. [Google Scholar] [CrossRef]
- Hübner, Y.; Hoettges, K.F.; McDonnell, M.B.; Carter, M.J.; Hughes, M.P. Applications of dielectrophoretic/electro-hydrodynamic “zipper” electrodes for detection of biological nanoparticles. Int. J. Nanomed. 2007, 2, 427–431. [Google Scholar]
- Yamamoto, T.; Fujii, T. Active immobilization of biomolecules on a hybrid three-dimensional nanoelectrode bydielectrophoresis for single-biomolecule study. Nanotechnology 2007, 18, 495503. [Google Scholar] [CrossRef]
- Uppalapati, M.; Huang, Y.-M.; Jackson, T.N.; Hancock, W.O. Microtubule alignment and manipulation using AC electrokinetics. Small 2008, 4, 1371–1381. [Google Scholar] [CrossRef]
- Castillo, J.; Tanzi, S.; Dimaki, M.; Svendsen, W. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis. Electrophoresis 2008, 29, 5026–5032. [Google Scholar] [CrossRef]
- Maruyama, H.; Nakayama, Y. Trapping protein molecules at a carbon nanotube tip using dielectrophoresis. Appl. Phys. Express 2008, 1, 1240011–1240013. [Google Scholar] [CrossRef]
- Gong, J.R. Label-free attomolar detection of proteins using integrated nanoelectronic and electrokinetic devices. Small 2010, 6, 967–973. [Google Scholar] [CrossRef]
- Laux, E.M.; Kaletta, U.C.; Bier, F.F.; Wenger, C.; Hölzel, R. Functionality of dielectrophoretically immobilized enzyme molecules. Electrophoresis 2014, 35, 459–466. [Google Scholar] [CrossRef]
- Otto, S.; Kaletta, U.; Bier, F.F.; Wenger, C.; Hölzel, R. ielectrophoretic immobilisation of antibodies on microelectrode arrays. Lab Chip 2014, 14, 998–1004. [Google Scholar] [CrossRef]
- Lesser-Rojas, L.; Ebbinghaus, P.; Vasan, G.; Chu, M.L.; Erbe, A.; Chou, C.F. Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements. Nano Lett. 2014, 14, 2242–2250. [Google Scholar] [CrossRef]
- Laux, E.-M.; Knigge, X.; Bier, F.F.; Wenger, C.; Hölzel, R. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy. Electrophoresis 2015, 36, 2094–2101. [Google Scholar] [CrossRef]
- Schäfer, C.; Kern, D.P.; Fleischer, M. Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis. Lab Chip 2015, 15, 1066–1071. [Google Scholar] [CrossRef]
- Sharma, A.; Han, C.H.; Jang, J. Rapid electrical immunoassay of the cardiac biomarker troponin I through dielectrophoretic concentration using imbedded electrodes. Biosens. Bioelectron. 2016, 82, 78–84. [Google Scholar] [CrossRef]
- Laux, E.M.; Knigge, X.; Bier, F.F.; Wenger, C.; Hölzel, R. Aligned immobilization of proteins using AC electric fields. Small 2016, 12, 1514–1520. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.; Yoo, Y.K.; Lee, J.H.; Park, J.H.; Hwang, K.S. Sensitivity improvement of an electrical sensor achieved by control of biomolecules based on the negative dielectrophoretic force. Biosens. Bioelectron. 2016, 85, 977–985. [Google Scholar] [CrossRef]
- Han, C.H.; Woo, S.Y.; Bhardwaj, J.; Sharma, A.; Jang, J. Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci. Rep. 2018, 8, 14942. [Google Scholar] [CrossRef]
- Shee Da En, Z.; Mhd Noor, E.E.; Ahmed Kayani, A.; Hussin, M.H.; Farrukh Baig, M. Electrochemical Impedance Spectroscopy in the Determination of the Dielectric Properties of Tau-441 Protein for Dielectrophoresis Response Prediction. Bioengineering 2024, 11, 698. [Google Scholar] [CrossRef]
- Kim, H.J.; Ahn, H.; Lee, D.S.; Park, D.; Kim, J.H.; Kim, J.; Yoon, D.S.; Hwang, K.S. Highly sensitive micropatterned interdigitated electrodes for enhancing the concentration effect based on dielectrophoresis. Sensors 2019, 19, 4152. [Google Scholar] [CrossRef]
- Camacho-Alanis, F.; Gan, L.; Ros, A. Transitioning streaming to trapping in DC insulator-based dielectrophoresis for biomolecules. Sens. Actuators B Chem. 2012, 173, 668–675. [Google Scholar] [CrossRef]
- Barik, A.; Otto, L.M.; Yoo, D.; Jose, J.; Johnson, T.W.; Oh, S.H. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett. 2014, 14, 2006–2012. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Varhue, W.; Chávez, J.L.; Chou, C.F.; Swami, N.S. Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel. Anal. Chem. 2014, 86, 4120–4125. [Google Scholar] [CrossRef]
- Chiou, C.H.; Chien, L.J.; Kuo, J.N. Nanoconstriction-based electrodeless dielectrophoresis chip for nanoparticle and protein preconcentration. Appl. Phys. Express 2015, 8, 085201. [Google Scholar] [CrossRef]
- Mata-Gómez, M.A.; Gallo-Villanueva, R.C.; González-Valdez, J.; Martínez-Chapa, S.O.; Rito-Palomares, M. Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts. Electrophoresis 2016, 37, 519–528. [Google Scholar] [CrossRef]
- Rohani, A.; Sanghavi, B.J.; Salahi, A.; Liao, K.T.; Chou, C.F.; Swami, N.S. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale 2017, 9, 12124–12131. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration. Biofabrication 2017, 9, 045003. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, Y.; Liu, Y.; Dong, S.; Chen, X.; Bai, F.; Song, S.; Fu, J. Dielectrophoresis-based protein enrichment for a highly sensitive immunoassay using Ag/SiO2 nanorod arrays. Small 2018, 14, 1703265. [Google Scholar] [CrossRef]
Condition | Response | DEP Spectrum | |
---|---|---|---|
Case 1 | σp < σm | Re[ƒCM] is negative at low frequencies and positive at high frequencies. | Graph A |
εp > εm | |||
Case 2 | σp > σm | Re[ƒCM] is positive at low frequencies and negative at high frequencies. | Graph B |
εp < εm |
Forces | Generation | Solution | References |
---|---|---|---|
Drag Force | Induced by the interaction of particle with the medium flow field. | For sub-micrometer particles and small systems prefer at high frequencies. | [12,14] |
Electrothermal Force | Caused by the joule heating or external heating from microscope lighting that affects the temperature gradient, altering the permittivity and conductivity gradient of the fluid and inducing an electrical body force. | Reduce high electrical field frequency and high voltage. | [15,16,17] |
AC electro-osmotic Force | Caused by a nonlinear electrokinetic effect of induced-charge electro-osmotic flow around electrodes from applied AC voltage. | Prevent operation in a lower frequency range and small system size. | [15,18,19] |
Buoyancy Force | Buoyant forces are proportional to the volume and do not scale favorably as the device size is reduced. | Buoyancy dominates at average system sizes of the order of greater than 1 mm. | [12,20] |
Brownian Motion | The random movement of particles suspended in a fluid by the result of the molecules colliding or induced by thermal effects. | For a particle with size larger than 1 µm, Brownian motion is negligible. | [15,21] |
Application Area | Study Focus | Performance Metrics | References |
---|---|---|---|
Circulating Tumor Cells (CTCs) | DEP-based microfluidic system with 3D sidewall electrodes for viable cancer cell separation. | High capture efficiency; 95% viability of MDA-MB-231 cells | [34] |
Point-of-Care CRP Detection | Sequential flow-through microfluidic chip with DEP-enhanced immunoassay. | Detection limit: 47 pg/mL; linear range: 0.01 ng/mL–100 µg/mL. | [44] |
Bacteria Separation from Blood | DEP microfluidic device for isolating E. coli and S. aureus from blood cells. | Electrode distance of 60 µm, an applied potential of 100 V, a frequency of 0.1 MHz, and a buffer-to-sample flow rate of 3. | [45] |
Label-Free Protein Detection | Coupling of liquid chromatography with a quartz crystal microbalance (QCM) platform. | Sensitivity limit of 100 μg/mL for protein detection. | [46] |
Cell Sorting for Leukemia Diagnosis | n-DEP platform for sorting leukemia cells (k-562) based on dielectric properties. | 83% separation efficiency, cell viability by culture process is approximately 85%. | [47] |
DC-DEP | AC-DEP | |
---|---|---|
Electrode |
|
|
Advantages |
|
|
Disadvantages |
|
|
Target Protein | MW (kDa) | DEP Operation | DEP Platform Characteristics | Electrode Gap Spacing | Suspending Medium | Voltage | Frequency | Electric Field | Investigators | References |
---|---|---|---|---|---|---|---|---|---|---|
eDEP | ||||||||||
Avidin Concanavalin A Chymotrypsinogen A Ribonuclease A | 68 52 25 13.7 | Trapping and Separation | Interdigitated electrodes | 4, 15, 55 µm | Distilled water | 0–15 V | 0.001–1 MHz | 3 × 106 V/m | Washizu et al., 1994 | [74] |
Avidin | 68 | Separation | Interdigitated electrodes | 15 µm | Distilled water | 0–40 V | 1 kHz | 3 × 106 V/m | Washizu et al., 1994 | [74] |
Avidin | 67–68 | Trapping | Polynomial electrodes | 2, 6 µm | KCL solution | 10 VP-P | <9 MHz (pDEP) >9 MHz (nDEP) | - | Bakewell et al., 1998 | [82] |
Insulin BSA IgM | 6 66 900 | Separation | DEP chromatography corrugated shape electrodes | 7 µm | PBS | – | 1 Mhz | 0.6 × 106 V/m 1 × 106 V/m 1.4 × 106 V/m | Kawabata et al., 2001 | [83] |
Actin | 42 | Focusing | Quadrupole electrodes | 7, 12 µm | M-buffer | 10 VP-P | 0.1–30 MHz (pDEP) | 1.5 × 106 V/m | Asokan et al., 2003 | [84] |
BSA | 68 | Trapping | Quadrupole electrodes | 5, 10, 20 µm | Deionized water | 10 V | 0.05–5 MHz (pDEP) 2–3 kHz (optimum) | 106 V/m | Zheng et al., 2004 | [85] |
R-phycoerythrin | 240 | Trapping | Triangular planar electrodes | 500 nm | RPE solution, Ultrapure water | 10 Vrms | 0.1–5 Mhz 1 Mhz (optimum) | 1021 V2/m3 | Hölzel et al., 2005 | [27] |
Microtubules | - | Trapping | Indium–tin-oxide (ITO) electrode | 100 ± 1 µm | Low-salt buffer solution | 22 Vrms | 0.01–5 MHz | 5 × 104 V/m– 9 × 104 V/m | Minoura et al., 2006 | [86] |
Albumin | 66 | Focusing and Trapping | Zipper-shaped electrodes | 100 µm | Distilled water | 10 VP-P | 0.5–1.4 Mhz | - | Hübner et al., 2007 | [87] |
BSA | 66.5 | Trapping | 3D nanopillar with a bevel of 30° | 10 µm ⌀50 nm | Deionized water | – | 1 MHz (pDEP) | 3 × 106 V/m | Yamamoto et al., 2007 | [88] |
Kinesin-microtubules | 120 | Focusing | Castellated electrodes | 20 µm | BRB12 buffer | 30, 35 VP-P | 0.1–2.5 MHz (pDEP) | 1020 V2/m3 | Uppalapati et al., 2008 | [89] |
Amyloid peptide nanotubes | - | Trapping | Micro-patterned electrodes | 1 | Distilled water | 1–10 VP-P | 0.1–10 MHz (pDEP) | 1021 V2/m3 | Castillo et al., 2008 | [90] |
Streptavidin | 60 | Trapping | Carbon nanotube (CNT) tips | ⌀5–20 nm | Pure water | 2 VP-P | 1 MHz | – | Maruyama et al., 2008 | [91] |
Lectin | 120 | Separation | Patterned electrode structures | 25 µm | Deionized water, HEPES buffer | 340 Vrms | 0.1 MHz (pDEP) | 1.1 × 106 V/m– 3.4 × 106 V/m | Agastin et al., 2009 | [78] |
BSA | 66 | Separation | Patterned electrode structures | 25 µm | Deionized water, HEPES buffer | 340 Vrms | 0.1 MHz (pDEP) | 1.1 × 106 V/m– 3.4 × 106 V/m | Agastin et al., 2009 | [78] |
Fibrinogen | 340 | Separation | Patterned electrode structures | 25 µm | Deionized water, HEPES buffer | 340 Vrms | 0.1 MHz (pDEP) | 1.1 × 106 V/m– 3.4 × 106 V/m | Agastin et al., 2009 | [78] |
Prostate specific antigen (PSA) | 34 | Focusing | Parallel coplanar plate electrodes | 7 µm | Phosphate buffer | 0.1–0.5 V | 23 Hz–1 kHz 47 Hz (optimum) | – | Gong 2010 | [92] |
Horseradish peroxidase | 44 | Trapping | Indium–tin-oxide (ITO) counter electrode, Tungsten cylinder nanoelectrode pins | 2 µm | Ultrapure water, Dihydrorhodamine solution, Hydrogen peroxide | 3.5 V | 0.01 MHz | – | Laux et al., 2013 | [93] |
R-phycoerythrin (RPE) | 240 | Trapping | Cylindrical sub-microelectrodes | 2 µm | Ultra-pure water | 18 Vrms | 0.5 MHz (pDEP) | 6 × 103 V/m | Otto et al., 2014 | [94] |
IgG antibodies | 150 | Trapping | Cylindrical sub-microelectrodes | 2 µm | Ultrapure water | 14 Vrms | 0.1 MHz (pDEP) | 6 × 103 V/m | Otto et al., 2014 | [94] |
R-phycoerythrin | 240 | Trapping | Array of Ti nanogap electrode | 5, 9 nm | PBS buffer | 0.1–15 VP-P | 0.1–4 MHz | 3 × 1017 V2/m3 | Lesser-Rojas et al., 2014 | [95] |
BSA | 66.5 | Trapping | Cylindrical nanoelectrodes array | 2 µm | Ultrapure water | 0.7–14.1 Vrms | 0.01 MHz (pDEP) | 15 × 105 V/m | Laux et al., 2015 | [96] |
BSA | 66 | Trapping | Gold nanocones, ITO electrode | 1 µm, 500 nm, 250 nm, 125 nm | Aqueous solution of BSA | 10 VP-P | 2.5 MHz | – | Schäfer et al., 2015 | [97] |
Cardiac troponin I | 26 | Trapping | Gold concentration electrodes | 25, 80 µm | TBE buffer | 5 VP-P | 0.001–1 MHz | – | Sharma et al., 2015 | [98] |
Enhanced green fluorescent protein | 32.7 | Trapping | Interdigitated electrodes | 750, 450 nm | Ultrapure water | 3.5 Vrms | 10–100 kHz | – | Laux et al., 2016 | [99] |
Amyloid β 42 protein Prostate specific antigen (PSA) | 4.5 34 | Trapping | Tantalum (Ta) and platinum (Pt) Interdigitated microelectrode | 5 µm | PBS buffer | 0.5 VP-P 0.02 VP-P | 50 MHz 50 MHz | – | Kim et al., 2016 | [100] |
Cardiac troponin I | 30 | Trapping | ITO coplanar electrodes | 25 µm | PBS buffer | 10 VP-P | 10 kHz | – | Han et al., 2018 | [101] |
Amyloid β 42 protein | 4.5 | Trapping | Gold (Au) castellated microtip electrode array | 40 µm | Deionized water | 5 VP-P | 60–100 MHz | 5 × 104 V/m | Al-Ahdal et al., 2019 | [102] |
Amyloid β 42 protein Tau-441 | 4.5 45.8 | Trapping | Patterned interdigitated microelectrodes | 3 µm | PBS buffer | 0.5 VP-P 0.6 VP-P | 50 MHz | 3.83 × 105 V/m | Kim et al., 2019 | [103] |
iDEP | ||||||||||
Protein G Immunoglobulin G | 150 21.8 | Trapping | Nanopipette electrodeless DEP | ∠3–6° ⌀100–150 nm | PBS buffer | −5, −1, +1, +2, +5 V | 5 × 10−7 MHz | 106 V/m | Clarke et al., 2005 | [50] |
BSA | 66.5 | Trapping | Cylindrical insulating posts | 520 µm | Deionized water NaOH K2HPO4 | – | – | 0.07 × 106 V/m 0.09 × 106 V/m (nDEP) 0.16 × 106 V/m (nDEP) | Lapizco-Encina 2008 | [49] |
IgG | 150 | Focusing | Triangular and elliptical post | 20 µm | Phosphate buffer | – | – | 0.3 × 106 V/m | Nakano et al., 2011 | [75,77] |
BSA | 66.5 | Focusing | Triangular and elliptical post | 20 µm | Phosphate buffer | – | – | 0.19 × 106 V/m (pDEP) | Nakano et al., 2011 | [75] |
Amyloid-beta fibrils | - | Trapping | Insulating gradient sawtooth pattern electrodes | 27 µm–10 nm | PBS buffer | 400–1000 V (pDEP) | – | – | Staton et al., 2012 | [89] |
Streptavidin Anti-human IgG | 52.8 150 | Trapping and Separate | Insulating nanoconstrictions with nanoscale molecular dams | 30 nm | PBS buffer NaCl | 200–300 VP-P | 0.01 MHz (pDEP) 1 MHz (nDEP) | 150 V/m | Liao et al., 2012 | [72,81] |
BSA | 66.5 | Focusing | Nanoposts and nanopost arrays | – | Phosphate buffer | 1500 V | – | – | Camacho-Alanis et al., 2013 | [104] |
Streptavidin | 52.8 | Trapping | Insulator constriction | 0.1, 1, 10 µm | PBS buffer | – | 100 kHz | 30 × 103 V/m | Chaurey et al., 2013 | [68] |
BSA | 65 | Trapping | Gold nanohole array, ITO electrode | ⌀140 nm 600 nm | Water medium | 6 VP-P | 1 kHz | 6 × 1018 V2/m3 | Barik et al., 2014 | [105] |
Neuropeptide Y Orexin A | 11 3.5 | Trapping | Lateral constrictions, patterned glassy carbon electrode | 50 nm | Phosphate buffer, PBS buffer | −0.7 V | 3 MHz | 300 VP-P/cm, 1.5 V/cm | Sanghavi et al., 2014 | [106] |
β-galactosidase, immunoglobulin G | 465 | Trapping | Triangular microposts | 200 nm | Phosphate buffer, CHAPS | 50–500 V | - | 0.06 × 106 V/m | Nakano et al., 2015 | [30] |
Strepavidin Phycoerythrin | 52.8 240 | Trapping | Nanoconstriction microchannel | 150 nm | TBE buffer | 200 V 470 V | 60 Hz 20 Hz | 2 × 108 V/m | Chiou et al., 2015 | [107] |
Native Ribonuclease A (RNase A) Mono-PEG RNase A Di-PEG RNase A | 13.7 33.7 53.7 | Focusing | diamond-shaped insulating posts, platinum wire electrodes | 10 µm | K2HPO4 buffer | 500–4000 V | – | 1 × 1019 V2/m3 | Mata-Gómez et al., 2016 | [108] |
Prostate specific antigen (PSA) Anti-mouse immunoglobulin antibodies | 30 150 | Trapping | Lateral insulator constrictions nanoslit structure, glassy carbon modified platinum electrodes | 50 nm | PBS buffer | – | 4–6 MHz | 70 Vrms/cm 1.5 VDC/cm | Rohani et al., 2017 | [109] |
BSA | 70 | Trapping | Gold electrode constricted channel | 1 µm | PBS buffer | 0–2 VDC 5–15 VP-P | 0.01–100 kHz | – | Zhang and Liu, 2017 | [110] |
BSA Immunoglobulin G (IgG) Prostate-specific antigen (PSA) | 66 150 34 | Trapping | Ag/SiO2 Dense arrays of nanorods, sawtooth and castellated electrode arrays | 5 µm | PBS buffer | 5 VP-P | 1–10 MHz 1 MHz 1 MHz | 2.6 × 1024 V2/m3 | Cao et al., 2018 | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shee, Z.D.E.; Mhd Noor, E.E.; Baig, M.F. Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms. Micromachines 2025, 16, 531. https://doi.org/10.3390/mi16050531
Shee ZDE, Mhd Noor EE, Baig MF. Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms. Micromachines. 2025; 16(5):531. https://doi.org/10.3390/mi16050531
Chicago/Turabian StyleShee, Zuriel Da En, Ervina Efzan Mhd Noor, and Mirza Farrukh Baig. 2025. "Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms" Micromachines 16, no. 5: 531. https://doi.org/10.3390/mi16050531
APA StyleShee, Z. D. E., Mhd Noor, E. E., & Baig, M. F. (2025). Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms. Micromachines, 16(5), 531. https://doi.org/10.3390/mi16050531