Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine
Abstract
1. Introduction
2. MEMS and BioMEMS: Fundamentals and Evolution
3. Internet of Bodies and Medical Device Integration
3.1. IoB System Architecture
- Sensing layer: embedded MEMS/BioMEMS sensors capture raw physiological data (e.g., temperature, pressure, motion, biochemical composition).
- Processing and analytics layer: on-board microcontrollers perform initial data filtering. Cloud-based analytics—often supported by AI—identify patterns, trigger alerts, or optimize treatment plans [41].
- Application layer: interfaces for physicians, patients, and caregivers provide dashboards, alerts, and decision support tools to act upon the processed health information.
- These systems support both real-time diagnostics and longitudinal monitoring, offering clinicians a continuous and contextualized view of a patient’s health status—unachievable with conventional episodic care
3.2. Cross-Domain Context of IoB: From IoT to Human Integration
3.3. IoB Device Classification and Interaction with the Human Body
3.4. IoB Connectivity and Data Flow
4. Cases of MEMs and IoB in Personalized Medicine
4.1. Diabetic Monitoring and Smart Orthotic Systems
4.2. Cardiovascular and Respiratory Monitoring
4.3. Neurophysiological and Sleep Monitoring
4.4. Smart Shoes and Mobility Enhancement
4.5. Summary of Use Cases and Technology Mapping
5. Device Taxonomy and Technology Readiness
5.1. Classification by Interconnection Modality
5.2. Technology Readiness and Clinical Adoption
6. Security, Privacy and Regulatory Landscape
6.1. Data Privacy and Ethical Concerns
6.2. Cybersecurity Threats to Body-Connected Systems
6.3. Regulatory Landscape and Compliance Strategies
7. Future Perspectives and Open Challenges
7.1. Emerging Trends in IoB-Enabled Healthcare
7.2. Persistent Scientific and Technical Challenges
7.3. Research Directions and Collaborative Opportunities
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MEMS | Micro-Electro-Mechanical Systems |
BioMEMS | Biological Micro-Electro-Mechanical Systems |
IoB | Internet of Bodies |
PM | Personalized medicine |
MIoT | Medical Internet of Things |
AI | Artificial intelligence |
BLE | Bluetooth Low Energy |
GelMA | Gelatin-methacryloyl |
PLA | Polylactic acid |
PEG | Poly(ethylene glycol) |
PDMS | Polydimethylsiloxane |
TRLs | Technology readiness levels |
NEMS | Nano-electro-mechanical systems |
POCT | Point-of-care testing |
CGM | Continuous glucose monitoring |
LOC | Lab-on-chip |
BCIs | Brain–computer interfaces |
PPG | Photoplethysmography |
R-NIR | Red and near-infrared |
ECG | Electrocardiogram |
RF | Radiofrequency |
TENGs | Triboelectric nanogenerators |
COPD | Chronic obstructive pulmonary disease |
E-tattoos | Electronic tattoos |
CNT | Carbon nanotube |
EEG | Electroencephalogram |
EMG | Electromyogram |
IMUs | Inertial measurement units |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
E2EE | End-to-end encryption ( |
OTA | Over-the-air |
SaMD | Software as a medical device |
MDR | Medical Device Regulation |
HL7 | Health Level Seven |
FHIR | Fast Healthcare Interoperability Resources |
EHRs | Electronic health records |
DBS | Deep brain stimulation |
TEGs | Thermoelectric generators |
References
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Perlekar, P.; Desai, A. The Role of Artificial Intelligence in Personalized Medicine: Challenges and Opportunities. Metall. Mater. Eng. 2025, 31, 85–92. [Google Scholar] [CrossRef]
- Abhinav, V.; Basu, P.; Verma, S.S.; Verma, J.; Das, A.; Kumari, S.; Yadav, P.R.; Kumar, V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. Micromachines 2025, 16, 522. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Grumezescu, A.M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines 2022, 13, 164. [Google Scholar] [CrossRef]
- Celik, A.; Salama, K.N.; Eltawil, A.M. The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. IEEE Internet Things J. 2022, 9, 321–345. [Google Scholar] [CrossRef]
- AlAmoudi, A.; Celik, A.; Eltawil, A.M. Cooperative body channel communications for energy-efficient internet of bodies. IEEE Internet Things J. 2022, 10, 3468–3483. [Google Scholar] [CrossRef]
- Szymoniak, S.; Kuczyński Ł Overview of Modern Technologies for Acquiring Analysing Acoustic Information Based on AI and I. o.T. Appl. Sci. 2025, 15, 6690. [Google Scholar] [CrossRef]
- Faham, S.; Salimi, A.; Ghavami, R. Electrochemical-based remote biomarker monitoring: Toward Internet of Wearable Things in telemedicine. Talanta 2023, 253, 123892. [Google Scholar] [CrossRef]
- Park, H.; Park, W.; Lee, C.H. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 2021, 13, 23. [Google Scholar] [CrossRef]
- Schwaitzberg, S. Medical Care Delivery. In The Internet Encyclopedia; John Wiley & Sons: Hoboken, NJ, USA, 2004; p. 1. [Google Scholar]
- Welburn, L.; Javadi, A.M.M.; Nguyen, L.; Desai, S. Prospects and Trends in Biomedical Microelectromechanical Systems (MEMS) Devices: A Review. Biomolecules 2025, 15, 898. [Google Scholar] [CrossRef]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Gazzarata, R.; Almeida, J.; Lindsköld, L.; Cangioli, G.; Gaeta, E.; Fico, G.; Chronaki, C.E. HL7 Fast Healthcare Interoperability Resources (HL7 FHIR) in digital healthcare ecosystems for chronic disease management: Scoping review. Int. J. Med. Inform. 2024, 189, 105507. [Google Scholar] [CrossRef] [PubMed]
- Freyer, O.; Wiest, I.C.; Kather, J.N.; Gilbert, S. A future role for health applications of large language models depends on regulators enforcing safety standards. Lancet Digit. Health 2024, 6, e662–e672. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M.R. Procese de Fabricatie a Sistemelor Micro-Electro-Mecanice cu Aplicatii in Medicina; AGIR: Bucharest, Romania, 2023; pp. 13–21. [Google Scholar]
- Pagliano, S.; Marschner, D.E.; Maillard, D.; Ehrmann, N.; Stemme, G.; Braun, S.; Villanueva, L.G.; Niklaus, F. Micro 3D printing of a functional MEMS accelerometer. Microsyst. Nanoeng. 2022, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Tabatabaei, B.T.; Kiki, M.; Choi, J.W. Additive Manufacturing of Sensors: A Comprehensive Review. Int. J. Precis. Eng. Manuf. Green Technol. 2025, 12, 277–300. [Google Scholar] [CrossRef]
- Park, K.; Kim, M.P. Advancements in Flexible and Stretchable Electronics for Resistive Hydrogen Sensing: A Comprehensive Review. Sensors 2024, 24, 6637. [Google Scholar] [CrossRef]
- Hu, X.; Krull, P.; Graff, B.; Dowling, K.; Rogers, J.A.; Arora, W.J. Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 2011, 23, 2933–2936. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, C.; Ding, Y.; Chen, F.; Huang, Q.; Zheng, Z. A review of structure engineering of strain-tolerant arhitectures for stretchable electronics. Small Methods 2023, 7, 2300671. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, X.; Fan, J.A.; Xu, S.; Song, Y.M.; Choi, K.J.; Yeo, W.H.; Lee, W.; Nazaar, S.N.; et al. Experimental and Theoretical Studies of Serpentine Microstructures Bonded to Prestrained Elastomers for Stretchable Electronics. Adv. Funct. Mater. 2014, 24, 2028–2037. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Yang, Y.; Wang, Y.; Li, P.; Huang, J.; Li, J.; Lu, Y.; Li, Z.; Wang, Z.; et al. Kirigami-Based Highly Stretchable Thin Film. Solar Cells That Are Mechanically Stable for More than 1000 Cycles. ACS Nano 2020, 14, 1560–1568. [Google Scholar] [CrossRef]
- Hilbich, D.; Shannon, L.; Gray, B.L. Stretchable electronics for wearable and high-current applications. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Las Vegas, NV, USA, 20–24 March 2016; Volume 9802. [Google Scholar]
- Zhang, N.; Wang, Z.; Zhao, Z.; Zhang, D.; Feng, J.; Yu, L.; Lin, Z.; Guo, Q.; Huang, J.; Mao, J.; et al. 3D printing of micro-nano devices and their applications. Microsyst. Nanoeng. 2025, 11, 35. [Google Scholar] [CrossRef]
- Qu, P.; Gollapudi, S.; Bidthanapally, R.; Srinivasan, G.; Petrov, V.; Qu, H. Fabrication and characterization of a MEMS nano-Tesla ferromagnetic-piezoelectric magnetic sensor array. Appl. Phys. Lett. 2016, 108, 242412. [Google Scholar] [CrossRef]
- Chowdhury, M.D.; Agrawal, A.R.; Wilson, D.J. Membrane-based optomechanical accelerometry. Phys. Rev. Appl. 2023, 19, 024011. [Google Scholar] [CrossRef]
- Ding, J.; He, C.; Ma, H.; Zhang, W.; Fan, X. Suspended graphene-based NEMS accelerometers with direct electrical readout. Microsyst. Nanoeng. 2025, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Egert, D.; Pettibone, J.R.; Lemke, S.; Patel, P.R.; Caldwell, C.M.; Cai, D.; Ganguly, K.; Chestek, C.A.; Berke, J.D. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J. Neurophysiol. 2020, 124, 1578–1587. [Google Scholar] [CrossRef]
- He, X.; Fan, C.; Luo, Y.; Xu, T.; Zhang, X. Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint. npj Flex Electron. 2022, 6, 60. [Google Scholar] [CrossRef]
- Howick, J.; Cals, J.W.; Jones, C.; Price, C.P.; Plüddemann, A.; Heneghan, C.; Berger, M.Y.; Buntinx, F.; Hickner, J.; Pace, W.; et al. Current and future use of point-of-care tests in primary care: An international survey in Australia, Belgium, The Netherlands, the UK and the USA. BMJ Open 2014, 4, e005611. [Google Scholar] [CrossRef]
- Nichols, J.H. Chapter 19—Point-of-care testing. In Contemporary Practice in Clinical Chemistry, 4th ed.; Clarke, W., Marzinke, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 323–336. [Google Scholar]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.-K.; Jung, J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.M.; Ballensiefen, W.; Jönsson, J.I. How personalised medicine will transform healthcare by 2030: The ICPerMed vision. J. Transl. Med. 2020, 18, 180. [Google Scholar] [CrossRef]
- Dabiri, F.; Vahdatpour, A.; Noshadi, H.; Hagopian, H.; Sarrafzadeh, M. Electronic orthotics shoe: Preventing ulceration in diabetic patients. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 771–774. [Google Scholar]
- Palermi, S.; Vecchiato, M.; Ng, F.S.; Attia, Z.; Cho, Y.; Anselmino, M.; Ferrari, G.M.; Saglietto, A.; Sau, A.; Chiu, I.-M.; et al. Artificial intelligence and the electrocardiogram: A modern renaissance. Eur. J. Intern. Med. 2025, 140, 106329. [Google Scholar] [CrossRef]
- Famá, F.; Faria, J.N.; Portugal, D. An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches. Internet Things 2022, 19, 100547. [Google Scholar] [CrossRef]
- Jin, X.; Li, G.; Xu, T.; Su, L.; Yan, D.; Zhang, X. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 2022, 196, 113760. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Geng, H.; He, Y.; Xu, T.; Liu, Q.; Zhang, X. Minimally and non-invasive glucose monitoring: The road toward commercialization. Sens. Diagn. 2025, 4, 370–396. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing. Sensors 2018, 18, 2183. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, M.; Subramaniyaswamy, V.; Vijayakumar, V.; Ravi, L. Fog-assisted personalized healthcare-support system for remote patients with diabetes. J. Ambient Intell. Human. Comput. 2019, 10, 3747–3760. [Google Scholar] [CrossRef]
- Khan, T.A.; Lin, X.; Lowenmark, S.E.; Liberg, O.; Euler, S.; Sedin, J.; Yavuz, E.A.; Shokri-Razaghi, H.; Maattamem, H.-L. Internet of things from space: Transforming LTE machine type communications for non-terrestrial networks. IEEE Commun. Stand. Mag. 2022, 6, 57–63. [Google Scholar] [CrossRef]
- Chiluveru, V.B. Achieving Maximum Flow for Inter-Planetary Networks. Bachelor’s Thesis, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India, 2021. [Google Scholar]
- Alamu, O.; Olwal, T.O.; Djouani, K. Energy harvesting techniques for sustainable underwater wireless communication networks: A review. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 5, 100265. [Google Scholar] [CrossRef]
- Jayaraman, R. Beyond IoT: Internet of Underwater Things to Network the Oceans. Available online: https://www.prescouter.com/2017/06/internet-of-underwater-things/ (accessed on 5 May 2025).
- Vuran, M.C.; Salam, A.; Wong, R.; Irmak, S. Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Netw. 2018, 81, 160–173. [Google Scholar] [CrossRef]
- Griffiths, F.; Ooi, M. The fourth industrial revolution—Industry 4.0 and IoT [Trends in Future I&M]. IEEE Instrum. Meas. Mag. 2018, 21, 29–43. [Google Scholar]
- Saravanan, G.; Parkhe, S.S.; Thakar, C.M.; Kulkarni, V.V.; Mishra, H.G.; Gulothungan, G. Implementation of IoT in production and manufacturing: An Industry 4.0 approach. Mater. Today Proc. 2022, 51, 2427–2430. [Google Scholar] [CrossRef]
- Qazi, A.M.; Mahmood, S.H.; Haleem, A.; Bahl, S.; Javaid, M.; Gopal, K. The impact of smart materials, digital twins (DTs) and Internet of things (IoT) in an industry 4.0 integrated automation industry. Mater. Today Proc. 2022, 62, 18–25. [Google Scholar]
- Radanliev, P.; De Roure, D.; Nicolescu, R.; Huth, M.; Santos, O. Digital twins: Artificial intelligence and the IoT cyber-physical systems in Industry 4.0. Int. J. Intell. Robot. Appl. 2022, 6, 171–185. [Google Scholar] [CrossRef]
- Park, S.H.; Park, Y.J.; Jeon, Y.J.; Kang, S.J. Self-Organized Low-Power Multihop Failover Protocol for a Cellular-Based Public Safety Device Network. IEEE Internet Things J. 2022, 9, 18238–18250. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef]
- Sabban, A. Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems. Electronics 2022, 11, 427. [Google Scholar] [CrossRef]
- Hong, Z.; Hong, M.; Wang, N.; Ma, Y.; Zhou, X.; Wang, W. A wearable-based posture recognition system with AI-assisted approach for healthcare IoT. Future Gener. Comput. Syst. 2022, 127, 286–296. [Google Scholar] [CrossRef]
- Shahzad, S.; Iftikhar, F.J.; Shah, A.; Rehman, H.A.; Iwuoha, E. Novel interfaces for internet of wearable electrochemical sensors. RSC Adv. 2024, 14, 36713–36732. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rigo, B.; Wong, G.; Lee, Y.J.; Yeo, W.H. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano Micro Lett. 2024, 16, 52. [Google Scholar] [CrossRef]
- World Economic Forum. Tracking How Our Bodies Work Could Change Our Lives. Available online: https://www.weforum.org/stories/2020/06/internet-of-bodies-covid19-recovery-governance-health-data/ (accessed on 30 July 2025).
- Kos, A.; Umek, A. Wearable Sensor Devices for Prevention and Rehabilitation in Healthcare: Swimming Exercise with Real-Time Therapist Feedback. IEEE Internet Things J. 2019, 6, 1331–1341. [Google Scholar] [CrossRef]
- Lutkemeyer, D.; Heese, H.S.; Wuttke, D.A. Overcoming inefficiencies in the development of personalized medicine. Eur. J. Oper. Res. 2021, 290, 278–296. [Google Scholar] [CrossRef]
- CGM SYSTEM. Introducing the Eversense E3 CGM System. Available online: https://global.eversensediabetes.com/ (accessed on 30 July 2025).
- Arakawa, T.; Kuroki, Y.; Nitta, H.; Chouhan, P.; Toma, K.; Sawada, S.I.; Takeuchi, S.; Sekita, T.; Akiyoshi, K.; Minakuchi, S.; et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens. Bioelectron. 2016, 84, 106–111. [Google Scholar] [CrossRef]
- Telfer, S.; Munguia, J.; Pallari, J.; Dalgarno, K.; Steultjens, M.; Woodburn, J. Personalized foot orthoses with embedded temperature sensing: Proof of concept and relationship with activity. Med. Eng. Phys. 2014, 36, 9–15. [Google Scholar] [CrossRef]
- Singh, S.; Mali, H.S. Chapter Eleven—3D printed orthotic insoles for foot rehabilitation. In 3D Printing in Podiatric Medicine; Sandhu, K., Singh, S., Prakash, C., Subburaj, K., Ramakrishna, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 211–219. [Google Scholar]
- Hummady, M.M.; Fadhil, H.M. Smart Healthcare Medical Bracelet using the Internet of Things. In Proceedings of the International Conference on Computer and Applications (ICCA), Cairo, Egypt, 20–22 December 2022; pp. 1–7. [Google Scholar]
- WHOOP. The Wearable Proven to Build Better Health. Available online: https://www.whoop.com/us/en/?srsltid=AfmBOop4WvGgWJk5l_bP7O_82KYlUCWwjjeHkJs2kgs7FgQMb7XtRZtY#patents (accessed on 30 July 2025).
- Oura Ring. Available online: https://ouraring.com/ (accessed on 30 July 2025).
- Sun, Y.; Greet, B.; Burkland, D.; John, M.; Razavi, M.; Babakhani, A. Wirelessly powered implantable pacemaker with on-chip antenna. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1242–1244. [Google Scholar]
- Umer, M.; Aljrees, T.; Karamti, H.; Ishaq, A.; Alsubai, S.; Omar, M.; Bashir, A.K.; Ashraf, I. Heart failure patients monitoring using IoT-based remote monitoring system. Sci. Rep. 2023, 13, 19213. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Wei, Y.; Li, D.; Zeng, Z.; Li, Z. Choosing energy sources for battery-free pacemakers. Device 2025, 3, 100746. [Google Scholar] [CrossRef]
- IoT for All. Find the Best IoT Solutions. Available online: https://marketplace.iotforall.com/ (accessed on 30 July 2025).
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Xiang, T.; Liu, Z.; Ji, N.; Lu, L.; Clifton, D.A.; Li, X.; Deen, M.J.; Lovell, N.H.; Veetil, J.C.; Zhu, H.; et al. Towards wearable sensing-based precise and rapid responding system for the early detection of future pandemic. Connect. Health Telemed. 2023, 2, 200007. [Google Scholar] [CrossRef]
- Duarte, N.; Arora, R.K.; Bennett, G.; Wang, M.; Snyder, M.P.; Cooperstock, J.R.; Wagner, C.E. Deploying wearable sensors for pandemic mitigation: A counterfactual modelling study of Canada’s second COVID-19 wave. PLOS Digit. Health 2022, 1, e0000100. [Google Scholar] [CrossRef]
- Tito, S.L.; Banzi, J.F. AI-Based Wearable Sensing: A Technological Intervention to Physiological Monitoring and Early Detection of Pandemic Diseases. In Proceedings of the International Conference on Information and Communication Technology for Development for Africa (ICT4DA), Bahir Dar, Ethiopia, 18–20 November 2024; pp. 25–30. [Google Scholar]
- Kostkova, P.; Saigí-Rubió, F.; Eguia, H.; Borbolla, D.; Verschuuren, M.; Hamilton, C.; Azzopardi-Muscat, N.; Novillo-Ortiz, D. Data and Digital Solutions to Support Surveillance Strategies in the Context of the COVID-19 Pandemic. Front. Digit. Health 2021, 3, 707902. [Google Scholar] [CrossRef]
- Anglemyer, A.; Moore, T.H.; Parker, L.; Chambers, T.; Grady, A.; Chiu, K.; Parry, M.; Wilczynska, M.; Flemyng, E.; Bero, L. Digital contact tracing technologies in epidemics: A rapid review. Cochrane Database Syst. Rev. 2020, 18, CD013699. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Karmakar, C.; Habib, A.; Neelangal, K.B.; Mir, M.; Lee, S.H.; Arnel, T. Continuous monitoring of body temperature for objective detection of health and safety risks in construction sites: An analysis of the accuracy and comfort of off-the-shelf wearable sensors. Heliyon 2024, 10, e26947. [Google Scholar] [CrossRef]
- Tracey, B.; Hsu, S.-H.; Joyner, M.; Dwyer, J.; Dong, C.; Saini, P.; Borodin, K.; Martin, S.; Crum, P.; Volfson, D.; et al. A novel, wearable, in-ear EEG technology to assess sleep and daytime sleepiness. Sleep Med. 2024, 115 (Suppl. S1), S205. [Google Scholar] [CrossRef]
- Lehnen, J.; Venkatesh, P.; Yao, Z.; Aziz, A.; Nguyen, P.V.P.; Harvey, J.; Alick-Lindstrom, S.; Doyle, A.; Podkorytova, I.; Perven, G.; et al. Real-Time Seizure Detection Using Behind-the-Ear Wearable System. J. Clin. Neurophysiol. 2025, 42, 118–125. [Google Scholar] [CrossRef]
- Aziz, A.; Pham, N.; Vora, N.; Reynolds, C.; Lehnen, J.; Venkatesh, P.; Yao, Z.; Harvey, J.; Vu, T.; Ding, K.; et al. An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection. ACM Trans. Comput. 2025, 6, 6. [Google Scholar] [CrossRef]
- Juez, J.Y.; Moumane, H.; Nassar, M.; Molina-Salcedo, I.; Segura-Quijano, F.E.; Valderrama, M.; Le Van Quyen, M. Ear-EEG Devices for the Assessment of Brain Activity: A Review. IEEE Sens. J. 2024, 24, 31606–31623. [Google Scholar] [CrossRef]
- Kaongoen, N.; Jo, S. An auditory P300-based brain-computer interface using Ear-EEG. In Proceedings of the 6th International Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 15–17 January 2018; pp. 1–4. [Google Scholar]
- Hemakom, A.; Sanguantrakul, J.; Suwannarat, A.; Seesutas, S.; Israsena, P. Development of a Personalized and Portable Ear-EEG Recording System for Enhanced Biopotential Measurements. In Proceedings of the 17th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe), Shanghai, China, 23–26 August 2024; pp. 1–6. [Google Scholar]
- Orto Proiteica. Available online: http://ortoprotetica.ro/orteza-pentru-picior-diabetic-opmi-01 (accessed on 30 July 2025).
- Medlife. Available online: https://www.medlife.ro/glosar-medical/afectiuni-medicale/picior-diabetic-cauze-simptome-tratament (accessed on 30 July 2025).
- Suhail, M.; Khan, A.; Rahim, M.A.; Naeem, A.; Fahad, M.; Badshah, S.F.; Jabar, A.; Janakiraman, A.K. Micro and nanorobot-based drug delivery: An overview. J. Drug Target. 2022, 30, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, X.; Song, T.; Long, J.; Chen, X.; Dong, R.; Liu, Z.; Guo, Z. The swarmable magnetic-driven nanorobots for facilitating trans-intestinal mucosal delivery of oral vaccines to enhance mucosal and systemic immune responses. Nano Today 2025, 62, 102721. [Google Scholar] [CrossRef]
- Lv, S.; Tang, L.V.; Hu, Y. Application of nanotechnology and micro/nanorobots in thrombotic diseases. EngMedicine 2025, 2, 100061. [Google Scholar] [CrossRef]
- Zhang, H.; Ju, X.; Chi, D.; Feng, L.; Liu, Z.; Yew, K.; Zhu, M.; Li, T.; Wei, R.; Wang, S.; et al. A neuromorphic bionic eye with broadband vision and biocompatibility using TIPS-pentacene-based phototransistor array retina. Appl. Mater. Today 2023, 33, 101885. [Google Scholar] [CrossRef]
- Hasmat, S.; Lovell, N.H.; Low, T.; Clark, J.R. Development of an implantable bionic for dynamic eye closure in facial nerve paralysis: Evolution of the design. Med. Eng. Phys. 2023, 115, 103977. [Google Scholar] [CrossRef]
- Soliman, E.R.A.; Nada, A.; Ishii, H.; Fathelbeb, A.M.R. Modeling and simulation of soft bio-mimetic fingers with a novel soft thumb design for bionic hand applications using ANN. Biotechnol. Notes 2025, 6, 164–176. [Google Scholar] [CrossRef]
- Jandial, R.; Hoshide, R. Bionic-Brain: Controlling a Prosthetic Hand. World Neurosurg. 2017, 105, 980–982. [Google Scholar] [CrossRef]
- Foster, K.R.; Torous, J. The Opportunity and Obstacles for Smartwatches and Wearable Sensors. IEEE Pulse 2019, 10, 22–25. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. A review on flexible wearables—Recent developments in non-invasive continuous health monitoring. Sens. Actuators A Phys. 2024, 366, 114993. [Google Scholar] [CrossRef]
- Bharadwaj, M.S. Regulatory Insights in Digital Health. In Multi-Sector Analysis of the Digital Healthcare Industry; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 164–197. [Google Scholar]
- Jharbade, R. Digital Therapeutics: Transforming Healthcare Through AI & Emerging Technology. IOSR J. Dent. Med. Sci. 2025, 24, 40–49. [Google Scholar]
- ITRex. What is The Internet of Bodies (IoB), and Why Should You Care? Available online: https://itrexgroup.com/blog/internet-of-bodies-iob-definition-benefits-examples/ (accessed on 30 July 2025).
- Carroll, M.; Chan, A.; Ashton, H.; Krueger, D. Characterizing Manipulation from AI Systems. In Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ‘23), New York, NY, USA, 30 October–1 November 2023; Association for Computing Machinery: New York, NY, USA, 2023; Volume 6, pp. 1–13. [Google Scholar]
- Kavoliūnaitė-Ragauskienė, E. Artificial Intelligence in Manipulation: The Significance and Strategies for Prevention. Balt. J. Law Politics 2024, 17, 116–141. [Google Scholar] [CrossRef]
- Pinto, G.P.; Prazeres, C. Data Privacy in the Internet of Things: A Perspective of Personal Data Store-Based Approaches. J. Cybersecur. Priv. 2025, 5, 25. [Google Scholar] [CrossRef]
- Mifsud Bonnici, J.P.; Tudorica, M.; Cannataci, J.A. The European Legal Framework on Electronic Evidence: Complex and in Need of Reform. In Handling and Exchanging Electronic Evidence Across Europe; Biasiotti, M., Mifsud Bonnici, J., Cannataci, J., Turchi, F., Eds.; Law, Governance and Technology Series; Springer: Cham, Switzerland, 2018; Volume 39. [Google Scholar]
- Coche, E.; Kolk, A.; Ocelík, V. Unravelling cross-country regulatory intricacies of data governance: The relevance of legal insights for digitalization and international business. J. Int. Bus. Policy 2024, 7, 112–127. [Google Scholar] [CrossRef]
- Satory, A.; Wulandari, B.T.; Bawembang, N.; Wardana, S.K.; Nugroho, T. The Legal Challenges of Data Privacy Laws, Cybersecurity Regulations, and AI Accountability in the Digital Era. Join J. Soc. Sci. 2024, 1, 656–668. [Google Scholar] [CrossRef]
- Patel, B.N. The Intersection of Law and Technology: Reviewing the Legal Implications of Artificial Intelligence. Indian J. Law 2024, 2, 91–96. [Google Scholar] [CrossRef]
- Rehman, M.M.U.; Rehman, H.Z.U.; Khan, Z.H. Cyber-Attacks on Medical Implants: A Case Study of Cardiac Pacemaker Vulnerability. Int. J. Comput. Digit. Syst. 2020, 9, 1229–1235. [Google Scholar] [CrossRef]
- Liebowitz, J.; Schaller, R. Biological Warfare: Tampering with Implantable Medical Devices. IT Prof. 2015, 17, 70–72. [Google Scholar] [CrossRef]
- Olagunju, H.I.; Alozie, E.; Imoize, A.L.; Faruk, N.; Garba, S.; Baba, B.A. Chapter 2: Cybersecurity in the Internet of Medical Things for healthcare applications. In Cybersecurity in Emerging Healthcare Systems; The Institution of Engineering and Technology: Hertfordshire, UK, 2024; pp. 41–74. [Google Scholar]
- Al Momin, M.A. Medical Device Security. In Research Anthology on Securing Medical Systems and Records; Information Resources Management Association, Ed.; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 255–268. [Google Scholar]
- Bonagiri, K.; Nici Marx, V.S.; Gopalsamy, M.; Iyswariya, A.; Reni Hena Helan, R.; Sultanuddin, S.J. AI-Driven Healthcare Cyber-Security: Protecting Patient Data and Medical Devices. In Proceedings of the 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), Coimbatore, India, 28–30 August 2024; pp. 107–112. [Google Scholar]
- Lahtinen, T.; Costin, A.; Suarez-Tangil, G. Position: On Potential Malware & New Attack Vectors for Internet-of-Brains (IoB). In Proceedings of the 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 8–12 July 2024; pp. 545–553. [Google Scholar]
- Seedha Devi, V.; Alangaram, S.; Sangeetha, D.; Jeeva, S.; Vengadakrishnan, T. Robust Security for Healthcare Data Using Blockchain. Int. J. Adv. Res. Comput. Commun. Eng. 2024, 13, 134189. [Google Scholar]
- Cruz, E.T.; Chandra, A.S.; Rajani, D.; Dziembek, D.; Kumar, K.S.; Lakhanpal, S.; Mamani-Chipana, L.D. Chapter—Studying the Application of Blockchain in Healthcare for Security and Transparent Record-Keeping In Recent Trends in Engineering and Science for Resource Optimization and Sustainable Development, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; p. 4. [Google Scholar]
- Sahu, D.; Tiwari, N.; Chawla, M. Blockchain as a Solution for Electronic Health Record Management: A Comprehensive Review. In Proceedings of the IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 24–25 February 2024; pp. 1–6. [Google Scholar]
- Hasan, Q.H.; Yassin, A.A.; ATA, O. Electronic Health Record System using Blockchain Technology. Spec. Issue Curr. Trends Manag. Inf. Technol. 2021, 18, 580–593. [Google Scholar] [CrossRef]
- Kumar, R.; Agrawal, A. Using blockchain to secure biometric healthcare apps. Biom. Technol. Today 2024, 2024. [Google Scholar] [CrossRef]
- Srivastava, D.; Nandini, M. Blockchain in Healthcare Department: Blockchain in Healthcare Data Management. In Ubiquitous Computing and Technological Innovation for Universal Healthcare; Kumar, A.S., Ganesan, G., Sekaran, R., Krishnan, B., Kousik, N., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 274–304. [Google Scholar]
- Farea, I.K.Q.; Hassan, A.N.A.A. Enhancing personal health record security through blockchain-based authentication. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 2203–2213. [Google Scholar] [CrossRef]
- James, A.; Potter, L.; Palmer, X.-L. Understanding Cybersecurity Threats to Implantable Medical Devices: A Review. In Proceedings of the 24th European Conference on Cyber Warfare and Security, Kaiserslautern, Germany, 26–27 June 2025; Volume 24. [Google Scholar]
- Ngamboé, M.; Berthier, P.; Ammari, N.; Dyrda, K.; Fernandez, J.M. Risk assessment of cyber-attacks on telemetry-enabled cardiac implantable electronic devices (CIED). Int. J. Inf. Secur. 2021, 20, 621–645. [Google Scholar] [CrossRef]
- FDA. Digital Health Center of Excellence Services. Available online: https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-center-excellence-services (accessed on 29 July 2025).
- One Hundred Seventeenth Congress of the United States of America—H.R.2617. Available online: www.congress.gov (accessed on 29 July 2025).
- Matrix One. How to Manage Software as a Medical Device (SaMD) Technical File with MDR and FDA? Available online: https://matrixone.health/blog/how-to-manage-software-as-a-medical-device-samd-technical-files-with-mdr-and-fda (accessed on 12 July 2025).
- Matrix One. Navigation EU MDR Certification: Tips for Manufacturers. Available online: https://matrixone.health/blog/navigating-eu-mdr-certification-tips-for-manufacturers (accessed on 12 July 2025).
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA Relevance.). Off. J. Eur. Union 2017, 117, 1–175. Available online: https://eur-lex.europa.eu/eli/reg/2017/745/oj/eng (accessed on 5 July 2025).
- ISO 14155:2020; Clinical Investigation of Medical Devices for Human Subjects—Good Clinical Practice. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/71690.html (accessed on 13 August 2025).
- Consensus. What Are the Ethical Considerations in the Design and Deployment of Social Robots? Available online: https://consensus.app/questions/what-ethical-considerations-design-deployment-social/ (accessed on 10 June 2025).
- Number Analytics. IoT Ethics Essentials. Available online: https://www.numberanalytics.com/blog/iot-ethics-essentials-data-ethics#:~:text=Principles%20of%20IoT%20Ethics%20To%20respect%20autonomy,to%20opt-out%20of%20data%20collection%20or%20usage (accessed on 2 May 2025).
- Damaševičius, R.; Maskeliūnas, R.; Misra, S. Supporting and Shaping Human Decisions Through Internet of Behaviors (IoB): Perspectives and Implications. In Machine Intelligence for Smart Applications. Studies in Computational Intelligence; Adadi, A., Motahhir, S., Eds.; Springer: Cham, Switzerland, 2023; Volume 1105. [Google Scholar]
- Milojevic, D.; Nisevic, M. Navigating Cybersecurity Challenges in Healthcare: Challenges, Innovations, and EU Legal Framework for Connected Medical Devices. In IoT Technologies and Wearables for HealthCare, Proceedings of the 5th EAI International Conference, HealthWear 2024, Virtual Event, 2–3 December 2024; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunica-tions Engineering; Kose, U., Alzubi, J., Eds.; Springer: Cham, Switzerland, 2024; Volume 639. [Google Scholar]
- Raza, A.; Zulfiqar, H.; Gong, Z.; Chen, Y.; Chen, Y. A Comprehensive Review on Biomedical Sensors: Technological Advancements, Applications in Molecular Informatics, and Future Trends. Preprints 2024, 2024101645. [Google Scholar]
- Moses, I.O. The rise of biochemical sensors: Technology for real-time health monitoring (applications and future scope). J. Multidiscip. Sci. MIKAILALSYS 2024, 2, 503–520. [Google Scholar] [CrossRef]
- Reddy, B.N.; Saravanan, S.; Manjunath, V.; Reddy, P.R.S. Review on Next-Gen Healthcare: The Role of MEMS and Nanomaterials in Enhancing Diagnostic and Therapeutic Outcomes. Biomater. Connect. 2024, 1, 2024.0004. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Gou, G.; Fang, Z.; Sun, J.; Chen, J.; Cheng, J.; Han, M.; Ma, T.; Liu, C.; et al. Recent advancements in physiological, biochemical, and multimodal sensors based on flexible substrates: Strategies, technologies, and integrations. ACS Appl. Mater. Interfaces 2023, 15, 21721–21745. [Google Scholar] [CrossRef]
- Vashist, S.K.; Djoko, L.G.G.; Blincko, S.; Luong, J.H.T. Future Trends for the Next Generation of Personalized and Integrated Healthcare for Chronic Diseases. In Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Aravamudhan, S. 3—MEMS for in vivo sensing. In MEMS for Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2012; pp. 81–96. [Google Scholar]
- Zurbuchen, A.; Haeberlin, A.; Pfenniger, A.; Bereuter, L.; Schaerer, J.; Jutzi, F.; Huber, C.; Fuhrer, J.; Vogel, R. Towards Batteryless Cardiac Implantable Electronic Devices—The Swiss Way. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 78–86. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, G.; Li, S.; Hu, Z.; Zhao, K.; Rogers, J.A. Advances in Bioresorbable Materials and Electronics. Chem. Rev. 2023, 123, 11722–11773. [Google Scholar] [CrossRef]
- Han, W.B.; Lee, J.H.; Shin, J.W.; Hwang, S.W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 2020, 32, 2002211. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Himalyan, S.; Sundriyal, A. Biodegradable and Flexible Electronics. In Nanodevices for Integrated Circuit Design; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 157–179. [Google Scholar]
- Peng, X.; Dong, K.; Wu, Z.; Wang, J.; Wang, Z.L. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J. Mater. Sci 2021, 56, 16765–16789. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Yin, L. Materials and Devices for Biodegradable and Soft Biomedical Electronics. Materials 2018, 11, 2108. [Google Scholar] [CrossRef]
- Kuriakose, S.M.; Joseph, J.A.R.; Kollinai, R. The Rise of Digital Twins in Healthcare: A Mapping of the Research Landscape. Cureus 2024, 16, e65358. [Google Scholar] [CrossRef]
- El-Warrak, L.; de Farias, C.M. The State of the Art of Digital Twins in Health—A Quick Review of the Literature. Computers 2024, 13, 228. [Google Scholar] [CrossRef]
- Vallée, A. Digital twin for healthcare systems. Front. Digit. Health 2023, 5, 1253050. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, K.; Katsakiori, P.F.; Papadimitroulas, P.; Strigari, L.; Kagadis, G.C. Digital Twins’ Advancements and Applications in Healthcare, Towards Precision Medicine. J. Pers. Med. 2024, 14, 1101. [Google Scholar] [CrossRef]
- Voskerician, G.; Anderson, J. Sensor biocompatibility and biofouling in real-time monitoring. In Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Park, J.; Lee, Y.; Kim, T.Y.; Hwang, S.; Seo, J. Functional bioelectronic materials for long-term biocompatibility and functionaality. ACS Appl. Electron. Mater. 2022, 4, 1449–1468. [Google Scholar] [CrossRef]
- Hartmann, H. Foreign body reactions to biomaterials and strategies to maaintain implant function. BioNanoMaterials 2010, 11, 15–23. [Google Scholar]
- Ghorbanizamani, F.; Moulahoum, H.; Guler Celik, E.; Timur, S. Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments. Appl. Sci. 2023, 13, 4630. [Google Scholar] [CrossRef]
- Vaishnavi, N.R. Wireless Biomedical Sensing: Wireless Power Communication Computation for Wearable Implantable Devices. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2018. [Google Scholar]
- Szostak, K.M.; Feng, P.; Mazza, F.; Constandinou, T.G. Distributed Neural Interfaces: Challenges and Trends in Scaling Implantable Technology. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer: Singapore, 2023. [Google Scholar]
- Sayed, A. Challenges in interoperability of IoT devices: Towards a unified standard. Int. J. Multidiscip. Researcg 2021, 3, 1–8. [Google Scholar]
- Nijeweme-D’Hollosy, W. Barriers and requirements for achieving interoperable ehealth technology in primary care. In Proceedings of the 5th Dutch Conference on Bio-Medical Engineering (BME), Egmond aan Zee, The Netherlands, 22–23 January 2015; pp. 167–168. [Google Scholar]
- Pournik, O.; Mukherjee, T.; Ghalichi, L.; Arvanitis, T.N. How Interoperability Challenges Are Addressed in Healthcare IoT Projects. Stud. Health Technol. Inform. 2023, 309, 121–125. [Google Scholar] [PubMed]
Platform | Examples | Sensing Type | Resolution | Size | Materials | Signal Transduction | Power Req. | Sensitivity Range | TRL | Clinical Status | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
MEMS magnetic sensor | Resonant piezoelectric magnetometer | Magnetic field | nT-level | µm-scale beam | Silicon/Magnetostrictive | Piezoelectric resonance | µW–mW | 0.1–1 nT | 6–8 | Preclinical validation | [26] |
MEMS optomechanical accelerometer | Photonic-crystal cavity type | Acceleration | ~10 µg/√Hz | mm-scale chip | Silicon + photonic crystal | Optical microcavity readout | sub-mW (laser) | 5–20 µg/√Hz | 5–6 | Lab prototype | [27] |
Graphene NEMS accelerometer | Suspended graphene ribbon | Acceleration | ~µg/√Hz | Nanoscale | Graphene + Si proof mass | Piezoresistive graphene strain sensor | µW electronic bias | 0.5–2 µg/√Hz | 4–5 | Experimental | [28] |
BioMEMS implant electrode | Michigan/Utah neural probes | Neural signals | Single-unit spikes (µV-level) | Tens of µm | Si + Pt/Ir metals | Electrophysiological electrodes | µW–mW (wireless IC) | 20–200 µV | 7–9 | Clinical/research use | [29] |
BioMEMS microfluidic sweat sensor | Wearable sweat chip | Chemical biomarkers | mM-level ions | mm–cm | PDMS/PET + CNT + electrodes | Electrochemical (amperometric/potentiometric) | µW–mW | 1–10 mM | 5–7 | Pilot trials | [30] |
Domain | Content | Benefits |
---|---|---|
Space [42,43] |
|
|
Sea [44,45] |
|
|
Underground 46 |
|
|
Industrial [47,48,49,50] |
|
|
|
| |
Defense and public safety [51] |
|
|
Medical [52,53,54,55] |
|
|
Automotive |
|
|
Platform/Device | Sensor Architecture | Clinical Focus & Validation | Power & Communication | Key Advantages | Main Limitations |
---|---|---|---|---|---|
E-Vone Smart Shoes (commercial) | MEMS pressure sensors integrated into insole; inertial motion unit (IMU) | Fall detection and emergency alerting in elderly users; pilot clinical trials in retirement home settings | Rechargeable Li-ion battery (~5 days); Bluetooth Low Energy (BLE) | Commercial availability, robust wireless connectivity, simple user interface | Limited biomechanical parameter analysis; not suitable for diagnostic gait assessment |
Sensoria Smart Footwear (commercial) | Textile-integrated pressure sensors + 3-axis accelerometer | Step counting, gait pattern monitoring, rehabilitation support; validated in post-stroke gait studies | Rechargeable battery (~7 days); Bluetooth | Comfortable wearable design, clinically validated gait metrics | Limited spatial resolution; battery replacement needed for continuous clinical use |
Platform/Device | Sensor Architecture | Clinical Focus & Validation | Power & Communication | Key Advantages | Main Limitations |
Self-powered Smart Insole [25] | Nonlinear synergistic pressure sensor + IMU | Real-time gait monitoring and plantar pressure mapping (22 sensors) over daily use; validated via smartphone app & compression testing (>180,000 cycles) | Self-powered via flexible solar + wireless transmission (Bluetooth) | Full autonomy, durability, spatial mapping, real-time visualization | Field robustness not yet fully tested; reliance on solar harvesting |
Flexible Smart Insole [56] | Screen-printed nanomaterial piezoresistive sensor array (173 sensors) + integrated electronics | Daily plantar pressure monitoring; human subject trials under walking tasks | Battery-powered + Bluetooth | High spatial resolution, scalable printing method, flexibility | Power/battery lifetime & external validation still limited |
Application Domain | Device Type | Example Functionality | Sensing Mechanism | Invasiveness | Connectivity |
---|---|---|---|---|---|
Diabetes | CGM, Smart Insoles | Glucose monitoring, pressure mapping | Optical, pressure, thermal | Invasive/Non | BLE/Wi-Fi |
Cardiology | Pacemaker, ECG Patch | HR monitoring, pacing, arrhythmia alert | Electrical, acoustic | Invasive | RF, X-band |
Respiratory Disorders | Smart Bracelets, Masks | SpO2, respiratory rate, temperature | Optical, triboelectric | Non-invasive | BLE, NB-IoT |
Neurology | E-tattoos, Ear-EEG | EEG, hydration, seizure detection | Electrical, bioimpedance | Non-invasive | Bluetooth, Cloud |
Mobility/ Orthopedics | Smart Shoes, Insoles | Gait monitoring, fall detection | IMU, pressure sensors | Non-invasive | App-integrated |
Device Type | Examples | Characteristics | Key Challenges |
---|---|---|---|
Non-Invasive | Smart bracelets/watches, e-tattoos, smart shoes | Wearable, flexible, user-friendly, low risk | Signal stability, skin contact |
Invasive—Internal [86,87,88] | Pacemakers, digital pills, ingestible sensors, capsule endoscopes, chips buried under the skin | Implanted or ingested, real-time internal data | Biocompatibility, infection, surgery |
Incorporated [89,90,91,92] | Bionic eyes, bionic hand, brain–machine interfaces | Deep integration, bidirectional data flow | Ethical risk, neural interfacing, power |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinescu, M.-R.; Ionescu, O.N.; Pachiu, C.I.; Dinescu, M.A.; Muller, R.; Șuchea, M.P. Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine. Micromachines 2025, 16, 1182. https://doi.org/10.3390/mi16101182
Marinescu M-R, Ionescu ON, Pachiu CI, Dinescu MA, Muller R, Șuchea MP. Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine. Micromachines. 2025; 16(10):1182. https://doi.org/10.3390/mi16101182
Chicago/Turabian StyleMarinescu, Maria-Roxana, Octavian Narcis Ionescu, Cristina Ionela Pachiu, Miron Adrian Dinescu, Raluca Muller, and Mirela Petruța Șuchea. 2025. "Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine" Micromachines 16, no. 10: 1182. https://doi.org/10.3390/mi16101182
APA StyleMarinescu, M.-R., Ionescu, O. N., Pachiu, C. I., Dinescu, M. A., Muller, R., & Șuchea, M. P. (2025). Next-Gen Healthcare Devices: Evolution of MEMS and BioMEMS in the Era of the Internet of Bodies for Personalized Medicine. Micromachines, 16(10), 1182. https://doi.org/10.3390/mi16101182