Magnetoelectric BAW and SAW Devices: A Review
Abstract
:1. Introduction
2. Magnetoelectric Materials for BAW and SAW Devices
2.1. BAW and SAW
SAW/SAW Mode | BAW Thickness Extensional Mode | SAW Rayleigh Wave | SAW Love Wave |
---|---|---|---|
Resonator structure and acoustic wave profile | |||
Wavelength | |||
Resonance frequency |
2.2. Magnetoelectric Composites and Materials
2.2.1. ME Composites
2.2.2. Piezoelectric Materials
2.2.3. Magnetostrictive Materials
3. Magnetoelectric Sensors
3.1. BAW ME Sensor
3.1.1. Bulk ME Sensors
3.1.2. Thin-Film ME Sensor
Cantilever-Based ME Sensor
NPR ME Sensor
NPR Array ME Sensor
3.2. SAW Thin-Film ME Sensor
4. Magnetoelectric Antennas
4.1. BAW ME Antenna
4.1.1. FBAR
4.1.2. SMR
4.2. SAW ME Antenna
4.3. Very-Low-Frequency Antennas
5. Magnetoelectric BAW/SAW Devices for Non-Reciprocity and NV− Center Excitation
5.1. Magnetoacoustic SAW Non-Reciprocal Isolators
Magnetic Stack | Piezoelectric Substrate | Mechanism | DC Bias Field (mT) | Operation Frequency f (GHz) | Magnetic Stack Length l (um) | Off Magnetoacoustic Resonance Insertion Loss (dB) | On Magnetoacoustic Resonance Insertion Loss (dB) | Non-Reciprocity | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ta/CoFeB(1.6 nm) | Y-cut Z-propagation LiNbO3 | SAW-SW HM, iDMI | 110 | 6.1 | - | - | - | - | [284] |
CoFeB(5 nm)/Pt | Y-cut Z-propagation LiNbO3 | SAW-SW HM, iDMI | 21 | 6.77 | 750 | 71 | 87.5 | 28 | [285] |
FeGaB(20 nm)/Al2O3(5 nm)/ FeGaB(20 nm) | Y-cut Z-propagation LiNbO3 | IDC | 1 | 1.435 | 2200 | 60 | 65 | 22 | [294] |
NiFe(20 nm)/Au(5 nm)/CoFeB(5 nm) | Y-cut Z-propagation LiNbO3 | IDC | 21 | 6.87 | 500 | 89 | 89.8 | 74 | [297] |
CoFeB(20 nm)/Ru(0.46 nm)/ CoFeB(20 nm) | 128°-rotated Y-cut X-propagation LiNbO3 | IDC, RKKY | 5 | 1.4 | 1000 | 29 | 33 | 37 | [308] |
Pt/Co(2 nm)/Ru(0.85 nm)/Co(4 nm)/ Pt | Y-cut Z-propagation LiNbO3 | IDC, iDMI, RKKY | 60 | 6.77 | 750 | 81 | 81.75 | 3 | [309] |
CoFeB(16 nm)/Ru(0.55 nm)/ CoFeB(5 nm) | 128°-rotated Y-cut X-propagation LiNbO3 | IDC, RKKY | 20 | 5.08 | 150 | 81 | 81.135 | 250 | [295] |
Ta(2 nm)/Ru(2 nm)/CoFeB(16 nm)/Ru(0.55 nm)/CoFeB(14 nm)/Si3N4(3 nm) | Y-cut Z-propagation LiNbO3 | IDC, RKKY | 13.8 | 3 4.86 6.96 | 100 | 45.6 57.8 90.3 | 45.6 57.8 90.3 | 60 100 70 | [304] |
FeCoSi-B(10 nm)/NiFeCu(10 nm) | 36°-rotated Y-cut X-propagation LiTaO3 substrate | IDC | 9 | 2.33 | 500 | 54 | 69 | 60 | [305] |
Ni (16 nm)/Ti (8 nm)/FeCoSiB(16 nm)/Ti (10 nm) | 42°-rotated Y-cut X-propagation LiTaO3 | IDC | 5.7 | 2.333 | 500 | 53 | 55 | 82 | [307] |
5.2. Magnetoacoustic BAW/SAW Devices for NV− Center Excitation
6. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 2001, 40, 4948. [Google Scholar] [CrossRef]
- Srinivasan, G.; Rasmussen, E.T.; Gallegos, J.; Srinivasan, R.; Bokhan, Y.I.; Laletin, V.M. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 2001, 64, 214408. [Google Scholar] [CrossRef]
- Will-Cole, A.R.; Hassanien, A.E.; Calisgan, S.D.; Jeong, M.-G.; Liang, X.; Kang, S.; Rajaram, V.; Martos-Repath, I.; Chen, H.; Risso, A.; et al. Tutorial: Piezoelectric and magnetoelectric N/MEMS—Materials, devices, and applications. J. Appl. Phys. 2022, 131, 241101. [Google Scholar] [CrossRef]
- Luo, B.; Will-Cole, A.R.; Dong, C.; He, Y.; Liu, X.; Lin, H.; Huang, R.; Shi, X.; McConney, M.; Page, M. Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT. Nat. Rev. Electr. Eng. 2024, 1, 317–334. [Google Scholar] [CrossRef]
- Bichurin, M.I.; Filippov, D.A.; Petrov, V.M.; Laletsin, V.M.; Paddubnaya, N.; Srinivasan, G. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 2003, 68, 132408. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 2006, 88, 062510. [Google Scholar] [CrossRef]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of magnetoelectric sensor systems for cardiological applications. Measurement 2018, 116, 230–238. [Google Scholar] [CrossRef]
- Mackert, B.-M. Magnetoneurography: Theory and application to peripheral nerve disorders. Clin. Neurophysiol. 2004, 115, 2667–2676. [Google Scholar] [CrossRef]
- Elzenheimer, E.; Laufs, H.; Schulte-Mattler, W.; Schmidt, G. Magnetic measurement of electrically evoked muscle responses with optically pumped magnetometers. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 756–765. [Google Scholar] [CrossRef]
- Hayes, P.; Jovičević Klug, M.; Toxværd, S.; Durdaut, P.; Schell, V.; Teplyuk, A.; Burdin, D.; Winkler, A.; Weser, R.; Fetisov, Y.; et al. Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields. Sci. Rep. 2019, 9, 16355. [Google Scholar] [CrossRef]
- Hayes, P.; Salzer, S.; Reermann, J.; Yarar, E.; Röbisch, V.; Piorra, A.; Meyners, D.; Höft, M.; Knöchel, R.; Schmidt, G.; et al. Electrically modulated magnetoelectric sensors. Appl. Phys. Lett. 2016, 108, 182902. [Google Scholar] [CrossRef]
- Hayes, P.; Schell, V.; Salzer, S.; Burdin, D.; Yarar, E.; Piorra, A.; Knöchel, R.; Fetisov, Y.K.; Quandt, E. Electrically modulated magnetoelectric AlN/FeCoSiB film composites for DC magnetic field sensing. J. Phys. D Appl. Phys. 2018, 51, 354002. [Google Scholar] [CrossRef]
- Thormählen, L.; Hayes, P.; Elzenheimer, E.; Spetzler, E.; Schmidt, G.; Höft, M.; McCord, J.; Meyners, D.; Quandt, E. Low-noise inverse magnetoelectric magnetic field sensor. Appl. Phys. Lett. 2024, 124, 172402. [Google Scholar] [CrossRef]
- Zaeimbashi, M.; Nasrollahpour, M.; Khalifa, A.; Romano, A.; Liang, X.F.; Chen, H.H.; Sun, N.; Matyushov, A.; Lin, H.; Dong, C.Z.; et al. Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat. Commun. 2021, 12, 3141. [Google Scholar] [CrossRef] [PubMed]
- Nan, T.X.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.L.; Chen, H.H.; Sun, N.; Wei, S.J.; Wang, Z.G.; Li, M.H.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.; Gao, Y.; Lin, H.; Sun, N.X. Mechanically driven SMR-based MEMS magnetoelectric antennas. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Toronto, ON, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 661–662. [Google Scholar]
- Liang, X.; Matyushov, A.; Hayes, P.; Schell, V.; Dong, C.; Chen, H.; He, Y.; Will-Cole, A.; Quandt, E.; Martins, P.; et al. Roadmap on Magnetoelectric Materials and Devices. IEEE Trans. Magn. 2021, 57, 400157. [Google Scholar] [CrossRef]
- Liang, X.F.; Chen, H.H.; Hu, Z.Q.; Lin, H.; Huang, H.; Guo, J.H.; Ju, D.F.; Liu, M.; Sun, N.X. Experimental Demonstration of Ground Plane Immunity for Magnetoelectric Antennas. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 27–29 November 2022. [Google Scholar] [CrossRef]
- Luo, B.; Liang, X.; Chen, H.; Sun, N.; Lin, H.; Sun, N. Gain Enhancement and Ground Plane Immunity of Mechanically Driven Thin-Film Bulk Acoustic Resonator Magnetoelectric Antenna Arrays. Adv. Funct. Mater. 2024, 34, 2403244. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.; Luo, B.; Golubeva, E.; Müller, C.; Mahat, S.; Wei, Y.; Dong, C.; Zaeimbashi, M.; et al. Mechanically Driven Solidly Mounted Resonator-Based Nanoelectromechanical Systems Magnetoelectric Antennas. Adv. Eng. Mater. 2023, 25, 2300425. [Google Scholar] [CrossRef]
- Lee, E.W. Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 1955, 18, 184–229. [Google Scholar] [CrossRef]
- Kittmann, A.; Durdaut, P.; Zabel, S.; Reermann, J.; Schmalz, J.; Spetzler, B.; Meyners, D.; Sun, N.X.; McCord, J.; Gerken, M.; et al. Wide Band Low Noise Love Wave Magnetic Field Sensor System. Sci. Rep. 2018, 8, 278. [Google Scholar] [CrossRef]
- Schell, V.; Müller, C.; Durdaut, P.; Kittmann, A.; Thormählen, L.; Lofink, F.; Meyners, D.; Höft, M.; McCord, J.; Quandt, E. Magnetic anisotropy controlled FeCoSiB thin films for surface acoustic wave magnetic field sensors. Appl. Phys. Lett. 2020, 116, 073503. [Google Scholar] [CrossRef]
- Meyer, J.M.; Schell, V.; Su, J.; Fichtner, S.; Yarar, E.; Niekiel, F.; Giese, T.; Kittmann, A.; Thormählen, L.; Lebedev, V.; et al. Thin-Film-Based SAW Magnetic Field Sensors. Sensors 2021, 21, 8166. [Google Scholar] [CrossRef] [PubMed]
- Schell, V.; Spetzler, E.; Wolff, N.; Bumke, L.; Kienle, L.; McCord, J.; Quandt, E.; Meyners, D. Exchange biased surface acoustic wave magnetic field sensors. Sci. Rep. 2023, 13, 8446. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef]
- Yang, Y.; Dejous, C.; Hallil, H. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review. Micromachines 2023, 14, 43. [Google Scholar] [CrossRef]
- Dai, X.; Fang, L.; Zhang, C.; Sun, H. Design of a Novel Passive Wireless Integrated SAW-Based Antenna Sensor for Structural Health Monitoring. J. Sens. 2020, 2020, 6121907. [Google Scholar] [CrossRef]
- Bao, X.; Bar-Cohen, Y.; Sherrit, S.; Badescu, M.; Louyeh, S. Transport powder and liquid samples by surface acoustic waves. In Proceedings of the Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2009, San Diego, CA, USA, 9–11 March 2009; Volume 7291, p. 72910M. [Google Scholar]
- Atashbar, M.Z.; Sadek, A.Z.; Wlodarski, W.; Sriram, S.; Bhaskaran, M.; Cheng, C.J.; Kaner, R.B.; Kalantar-zadeh, K. Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64° YX LiNbO3 for H2 sensing. Sens. Actuators B Chem. 2009, 138, 85–89. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita, N. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sens. Actuators B Chem. 2008, 132, 296–304. [Google Scholar] [CrossRef]
- Levit, N.; Pestov, D.; Tepper, G. High surface area polymer coatings for SAW-based chemical sensor applications. Sens. Actuators B Chem. 2002, 82, 241–249. [Google Scholar] [CrossRef]
- Li, D.; Feng, Y.; Zhou, L.; Ye, Z.; Wang, J.; Ying, Y.; Ruan, C.; Wang, R.; Li, Y. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal. Chim. Acta 2011, 687, 89–96. [Google Scholar] [CrossRef]
- Chang, K.; Pi, Y.; Lu, W.; Wang, F.; Pan, F.; Li, F.; Jia, S.; Shi, J.; Deng, S.; Chen, M. Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array. Biosens. Bioelectron. 2014, 60, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Green, R.; Nair, R.R.; Howell, M.; Mohapatra, S.; Guldiken, R.; Mohapatra, S.S. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures. Sensors 2015, 15, 32045–32055. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, T.; Pensala, T.; Vartiainen, J.; Knuuttila, J.V.; Kaitila, J.; Salomaa, M.M. Estimating materials parameters in thin-film BAW resonators using measured dispersion curves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K. RF Bulk Acoustic Wave Filters for Communications; Artech House: London, UK, 2009; ISBN 1596933224. [Google Scholar]
- Ruby, R. 11E-2 Review and Comparison of Bulk Acoustic Wave FBAR, SMR Technology. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 1029–1040. [Google Scholar]
- Thalhammer, R.; Aigner, R. Energy loss mechanisms in SMR-type BAW devices. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005; pp. 225–228. [Google Scholar]
- Liang, X. RF Magnetoelectric Microsystems; Northeastern University: Boston, MA, USA, 2021. [Google Scholar]
- Haydl, W.H.; Hiesinger, P.; Smith, R.S.; Dischler, B.; Heber, K. Design of Quartz and Lithium Niobate SAW Resonators Using Aluminum Metallization. In Proceedings of the 30th Annual Symposium on Frequency Control, Atlantic City, NJ, USA, 2–4 June 1976; pp. 346–357. [Google Scholar]
- Yantchev, V.; Plessky, V. COMSOL for Modelling of STW Devices. In Proceedings of the 2015 COMSOL Conference, Grenoble, France, 14–16 October 2015. [Google Scholar]
- Curie, P. Sur la symétrie dans les phénomènes physiquessymétrie d’ un champ électrique et d’ un champ magnétique To cite this version. J. Phys. Theor. Appl. 1894, 3, 395–415. [Google Scholar] [CrossRef]
- Astrov, D.N. The magnetoelectric effect in antiferromagnetics. J. Exp. Theor. Phys. 1960, 38, 984–985. [Google Scholar]
- Lebeugle, D.; Colson, D.; Forget, A.; Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 2007, 91, 22907. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Mao, X.; Wang, W.; Chen, X.; Lu, Y. Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 2009, 95, 82901. [Google Scholar] [CrossRef]
- Mao, X.; Sun, H.; Wang, W.; Lu, Y.; Chen, X. Effects of Co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramics. Solid State Commun. 2012, 152, 483–487. [Google Scholar] [CrossRef]
- Bai, W.; Gao, Y.Q.; Zhu, J.Y.; Meng, X.J.; Lin, T.; Yang, J.; Zhu, Z.Q.; Chu, J.H. Electrical, magnetic, and optical properties in multiferroic Bi5Ti3FeO15 thin films prepared by a chemical solution deposition route. J. Appl. Phys. 2011, 109, 64901. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Hiraoka, Y.; Honda, T.; Ishikura, T.; Nakamura, H.; Kimura, T. Low-field magnetoelectric effect at room temperature. Nat. Mater. 2010, 9, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.; Canévet, E.; Morin, M.; Sheptyakov, D.; Fernández-Díaz, M.T.; Pomjakushina, E.; Medarde, M. Design of magnetic spirals in layered perovskites: Extending the stability range far beyond room temperature. Sci. Adv. 2024, 4, eaau6386. [Google Scholar] [CrossRef] [PubMed]
- Van Run, A.M.J.G.; Terrell, D.R.; Scholing, J.H. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 1974, 9, 1710–1714. [Google Scholar] [CrossRef]
- Van Den Boomgaard, J.; Terrell, D.R.; Born, R.A.J.; Giller, H.F.J.I. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 1974, 9, 1705–1709. [Google Scholar] [CrossRef]
- Zhai, J.; Cai, N.; Shi, Z.; Lin, Y.; Nan, C.W. Junyi Zhai; Ning Cai; Zhan Shi; Yuanhua Lin; Ce-Wen Nan Magnetic-dielectric properties of NiFe2O4/PZT particulate composites. J. Phys. D Appl. Phys. 2004, 37, 823. [Google Scholar] [CrossRef]
- Islam, R.A.; Bedekar, V.; Poudyal, N.; Liu, J.P.; Priya, S. Magnetoelectric properties of core-shell particulate nanocomposites. J. Appl. Phys. 2008, 104, 104111. [Google Scholar] [CrossRef]
- Islam, R.A.; Priya, S. Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites. J. Mater. Sci. 2008, 43, 3560–3568. [Google Scholar] [CrossRef]
- Zeng, M.; Wan, J.G.; Wang, Y.; Yu, H.; Liu, J.-M.; Jiang, X.P.; Nan, C.W. Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 2004, 95, 8069–8073. [Google Scholar] [CrossRef]
- Srinivasan, G.; DeVreugd, C.P.; Flattery, C.S.; Laletsin, V.M.; Paddubnaya, N. Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl. Phys. Lett. 2004, 85, 2550–2552. [Google Scholar] [CrossRef]
- Wu, D.; Gong, W.; Deng, H.; Li, M. Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D Appl. Phys. 2007, 40, 5002. [Google Scholar] [CrossRef]
- Venkata Ramanaa, M.; Ramamanohar Reddy, N.; Sreenivasulu, G.; Siva kumar, K.V.; Murty, B.S.; Murthy, V.R.K. Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites—Dielectric, piezoelectric and magnetic properties. Curr. Appl. Phys. 2009, 9, 1134–1139. [Google Scholar] [CrossRef]
- Ryu, J.; Priya, S.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites. J. Am. Ceram. Soc. 2001, 84, 2905–2908. [Google Scholar] [CrossRef]
- Dong, S.; Zhai, J.; Bai, F.; Li, J.F.; Viehland, D. Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 2005, 87, 10–13. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, D.; Berry, D.; Gao, J.; Li, M.; Li, J.; Viehland, D. An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 2011, 23, 4111. [Google Scholar] [CrossRef]
- Li, M.; Gao, J.; Wang, Y.; Gray, D.; Li, J.; Viehland, D. Enhancement in magnetic field sensitivity and reduction in equivalent magnetic noise by magnetoelectric laminate stacks. J. Appl. Phys. 2012, 111, 104504. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, Y.L.; Schlom, D.G.; Chen, L.Q.; Zavaliche, F.; Ramesh, R.; Jia, Q.X. Phase-field model for epitaxial ferroelectric and magnetic nanocomposite thin films. Appl. Phys. Lett. 2007, 90, 52909. [Google Scholar] [CrossRef]
- Wu, H.; Chai, G.; Zhou, T.; Zhang, Z.; Kitamura, T.; Zhou, H. Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction. J. Appl. Phys. 2014, 115, 114105. [Google Scholar] [CrossRef]
- Amrillah, T.; Bitla, Y.; Shin, K.; Yang, T.; Hsieh, Y.-H.; Chiou, Y.-Y.; Liu, H.-J.; Do, T.H.; Su, D.; Chen, Y.-C.; et al. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy. ACS Nano 2017, 11, 6122–6130. [Google Scholar] [CrossRef]
- Yan, L.; Xing, Z.; Wang, Z.; Wang, T.; Lei, G.; Li, J.; Viehland, D. Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3–CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 2009, 94, 192902. [Google Scholar] [CrossRef]
- Oh, Y.S.; Crane, S.; Zheng, H.; Chu, Y.H.; Ramesh, R.; Kim, K.H. Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 2010, 97, 52902. [Google Scholar] [CrossRef]
- Greve, H.; Woltermann, E.; Quenzer, H.-J.; Wagner, B.; Quandt, E. Giant magnetoelectric coefficients in (Fe90Co10) 78Si12B10-AlN thin film composites. Appl. Phys. Lett. 2010, 96, 182501. [Google Scholar] [CrossRef]
- Nair, S.S.; Pookat, G.; Saravanan, V.; Anantharaman, M.R. Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. J. Appl. Phys. 2013, 114, 64309. [Google Scholar] [CrossRef]
- Jahns, R.; Piorra, A.; Lage, E.; Kirchhof, C.; Meyners, D.; Gugat, J.L.; Krantz, M.; Gerken, M.; Knöchel, R.; Quandt, E. Giant Magnetoelectric Effect in Thin-Film Composites. J. Am. Ceram. Soc. 2013, 96, 1673–1681. [Google Scholar] [CrossRef]
- Erhart, J.; Půlpán, P.; Pustka, M. Piezoelectric Ceramic Resonators; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Yarar, E.; Hrkac, V.; Zamponi, C.; Piorra, A.; Kienle, L.; Quandt, E. Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 2016, 6, 75115. [Google Scholar] [CrossRef]
- Ruby, R.; Bradley, P.; Larson, J.; Oshmyansky, Y.; Figueredo, D. Ultra-miniature high-Q filters and duplexers using FBAR technology. In Proceedings of the 2001 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 7 February 2001; pp. 120–121, Digest of Technical Papers. ISSCC (Cat. No.01CH37177). [Google Scholar]
- Piazza, G.; Stephanou, P.J.; Pisano, A.P. Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators. J. Microelectromech. Syst. 2006, 15, 1406–1418. [Google Scholar] [CrossRef]
- Naik, R.S.; Lutsky, J.J.; Reif, R.; Sodini, C.G.; Becker, A.; Fetter, L.; Huggins, H.; Miller, R.; Pastalan, J.; Rittenhouse, G.; et al. Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 292–296. [Google Scholar] [CrossRef]
- Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.J.; Schujman, S.; Gaska, R. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 2004, 84, 4611–4613. [Google Scholar] [CrossRef]
- Cassella, C.; Hui, Y.; Qian, Z.; Hummel, G.; Rinaldi, M. Aluminum nitride cross-sectional Lamé mode resonators. J. Microelectromech. Syst. 2016, 25, 275–285. [Google Scholar] [CrossRef]
- Caro, M.; Zhang, S.; Riekkinen, T.; Ylilammi, M.; Moram, M.; Acevedo, O.L.; Molarius, J.; Laurila, T. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter 2015, 27, 245901. [Google Scholar] [CrossRef]
- Ambacher, O.; Christian, B.; Feil, N.; Urban, D.F.; Elsässer, C.; Prescher, M.; Kirste, L. Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 2021, 130, 45102. [Google Scholar] [CrossRef]
- Matloub, R.; Hadad, M.; Mazzalai, A.; Chidambaram, N.; Moulard, G.; Sandu, C.S.; Metzger, T.; Muralt, P. Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors. Appl. Phys. Lett. 2013, 102, 152903. [Google Scholar] [CrossRef]
- Dubois, M.-A.; Muralt, P. Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications. Appl. Phys. Lett. 1999, 74, 3032–3034. [Google Scholar] [CrossRef]
- Fichtner, S.; Reimer, T.; Chemnitz, S.; Lofink, F.; Wagner, B. Stress controlled pulsed direct current co-sputtered Al1−xScxN as piezoelectric phase for micromechanical sensor applications. APL Mater. 2015, 3, 116102. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Xu, Q.; Xie, Y.; Cai, Y.; Liu, J.; Liu, W.; Tovstopyat, A.; Sun, C. ScAlN/AlN Film-Based Lamé Mode Resonator With High Effective Electromechanical Coupling Coefficient. J. Microelectromech. Syst. 2021, 30, 677–679. [Google Scholar] [CrossRef]
- Esteves, G.; Young, T.R.; Tang, Z.; Yen, S.; Bauer, T.M.; Henry, M.D.; Olsson, R.H., III. Al0.68Sc0.32N Lamb wave resonators with electromechanical coupling coefficients near 10.28%. Appl. Phys. Lett. 2021, 118, 171902. [Google Scholar] [CrossRef]
- Lozzi, A.; Yen, E.T.-T.; Muralt, P.; Villanueva, L.G. Al0.83Sc0.17N Contour-Mode Resonators With Electromechanical Coupling in Excess of 4.5%. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 146–153. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sato, S.; Teshigahara, A.; Nakamura, T.; Kano, K. High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 637–642. [Google Scholar] [CrossRef]
- Wang, W.; Mayrhofer, P.M.; He, X.; Gillinger, M.; Ye, Z.; Wang, X.; Bittner, A.; Schmid, U.; Luo, J.K. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient. Appl. Phys. Lett. 2014, 105, 133502. [Google Scholar] [CrossRef]
- Yanagitani, T.; Suzuki, M. Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary. Appl. Phys. Lett. 2014, 105, 122907. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Fichtner, S.; Wolff, N.; Lofink, F.; Kienle, L.; Wagner, B. AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 2019, 125, 114103. [Google Scholar] [CrossRef]
- Parsapour, F.; Pashchenko, V.; Nicolay, P.; Murali, P. Material constants extraction for AlScN thin films using a dual mode baw resonator. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 763–766. [Google Scholar]
- Parsapour, F.; Pashchenko, V.; Mertin, S.; Sandu, C.; Kurz, N.; Nicolay, P.; Muralt, P. Ex-situ AlN seed layer for (0001)-textured Al 0.84 Sc 0.16 N thin films grown on SiO2 substrates. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Mayrhofer, P.M.; Persson, P.O.Å.; Bittner, A.; Schmid, U. Properties of ScxAl1−xN (x = 0.27) thin films on sapphire and silicon substrates upon high temperature loading. Microsyst. Technol. 2016, 22, 1679–1689. [Google Scholar] [CrossRef]
- Li, C.; Xu, B.; Lin, D.; Zhang, S.; Bellaiche, L.; Shrout, T.R.; Li, F. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Phys. Rev. B 2020, 101, 140102. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, X.; Luo, H. Single crystal PZN–PT, PMN–PT, PSN–PT and PIN–PT-based piezoelectric materials. In Advanced Piezoelectric Materials; Woodhead Publishing Series in Electronic and Optical Materials; Uchino, K., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 239–286. ISBN 978-1-84569-534-7. [Google Scholar]
- Crisler, D.F.; Cupal, J.J.; Moore, A.R. Dielectric, piezoelectric, and electromechanical coupling constants of zinc oxide crystals. Proc. IEEE 1968, 56, 225–226. [Google Scholar] [CrossRef]
- Yanagitani, T.; Kiuchi, M.; Matsukawa, M.; Watanabe, Y. Shear mode electromechanical coupling coefficient k15 and crystallites alignment of (112¯) textured ZnO films. J. Appl. Phys. 2007, 102, 24110. [Google Scholar] [CrossRef]
- Takeuchi, M.; Yamada, H.; Yoshino, Y.; Makino, T.; Arai, S. Effective electromechanical coupling coefficient (kt2) for fundamental mode of thickness extensional mode thin film bulk acoustic wave resonator fabricated by ZnO thin film. Vacuum 2002, 66, 463–466. [Google Scholar] [CrossRef]
- Gopal, P.; Spaldin, N.A. Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO. J. Electron. Mater. 2006, 35, 538–542. [Google Scholar] [CrossRef]
- Kang, D.J.; Kim, J.S.; Jeong, S.W.; Roh, Y.; Jeong, S.H.; Boo, J.H. Structural and electrical characteristics of R.F. magnetron sputtered ZnO films. Thin Solid Films 2005, 475, 160–165. [Google Scholar] [CrossRef]
- Rahimi, N.; Dalouji, V.; Rezaee, S. Effect of annealing processing on morphology, spectroscopy studies, Urbach disordering energy, and WDD dispersion parameters in Cu-Al doped zinc oxide films. J. Dispers. Sci. Technol. 2022, 43, 990–999. [Google Scholar] [CrossRef]
- Rahimi, N.; Dalouji, V. Room temperature AC electrical, surface micro texture analysis, microwave permittivity and dielectric loss tangent in ZnO films doped by Cu, Al, and CuAl. Opt. Mater. 2024, 148, 114788. [Google Scholar] [CrossRef]
- Zaka, H.; Parditka, B.; Erdélyi, Z.; Atyia, H.E.; Sharma, P.; Fouad, S.S. Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD. Optik 2020, 203, 163933. [Google Scholar] [CrossRef]
- Fu, S.; Wang, W.; Li, Q.; Lu, Z.; Chen, Z.; Luo, J.; Shen, J.; Wang, R.; Song, C.; Zeng, F.; et al. High-frequency V-doped ZnO/SiC surface acoustic wave devices with enhanced electromechanical coupling coefficient. Appl. Phys. Lett. 2019, 114, 113504. [Google Scholar] [CrossRef]
- Chen, Y.-Y. Theoretical Analysis of Electromechanical Coupling Coefficient of Lamb Waves in ZnO/Si Multilayered Piezoelectric Plates. Jpn. J. Appl. Phys. 2010, 49, 07HD23. [Google Scholar] [CrossRef]
- Workie, T.B.; Tang, P.; Bao, J.; Hashimoto, K. Analysis of high electromechanical coupling coefficient zinc oxide Lame’ mode resonators and a design technique for spurious mode mitigation. Chin. J. Phys. 2022, 77, 483–496. [Google Scholar] [CrossRef]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors 2023, 23, 3859. [Google Scholar] [CrossRef]
- Bouchy, S.; Zednik, R.J.; Bélanger, P. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Lithium Niobate from 25 °C to 900 °C Using Electrochemical Impedance Spectroscopy Resonance Method. Materials 2022, 15, 4716. [Google Scholar] [CrossRef]
- Huang, S.; Shuai, Y.; Lv, L.; Wei, Z.; Fan, W.; Wang, Y.; Zhu, D.; Pan, X.; Luo, W.; Wu, C.; et al. LiNbO3 Surface Acoustic Wave Resonators with Large Effective Electromechanical Coupling. Electronics 2023, 12, 2964. [Google Scholar] [CrossRef]
- Ma, R.; Liu, W.; Sun, X.; Zhou, S.; Lin, D. FEM Simulation of a High-Performance 128° Y–X LiNbO3/SiO2/Si Functional Substrate for Surface Acoustic Wave Gyroscopes. Micromachines 2022, 13, 202. [Google Scholar] [CrossRef]
- Dai, Z.; Cheng, H.; Xiao, S.; Sun, H.; Zuo, C. Coupled Shear SAW Resonator With High Electromechanical Coupling Coefficient of 34% Using X-Cut LiNbO3-on-SiC Substrate. IEEE Electron Device Lett. 2024, 45, 720–723. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Y.; Link, S.; Gong, S. A1 Resonators in 128° Y-cut Lithium Niobate with Electromechanical Coupling of 46.4%. J. Microelectromech. Syst. 2020, 29, 313–319. [Google Scholar] [CrossRef]
- Jacob, M.V.; Hartnett, J.G.; Mazierska, J.; Giordano, V.; Krupka, J.; Tobar, M.E. Temperature dependence of permittivity and loss tangent of lithium tantalate at microwave frequencies. IEEE Trans. Microw. Theory Tech. 2004, 52, 536–541. [Google Scholar] [CrossRef]
- Bousquet, M.; Perreau, P.; Castellan, G.; Bertucchi, M.; Maeder-Pachurka, C.; Delaguillaumie, F.; Joulie, A.; Enyedi, G.; Sailler, B.; Mariolle, D.; et al. Potentialities of LiTaO3 for Bulk Acoustic Wave Filters. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar]
- Saigusa, Y. Quartz-Based Piezoelectric Materials. In Advanced Piezoelectric Materials, 2nd ed.; Uchino, K., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 197–233. ISBN 978-0-08-102135-4. [Google Scholar]
- Hayashi, J.; Yamaya, K.; Suzuki, M.; Kakio, S.; Suzaki, H.; Yonai, T.; Kishida, K.; Mizuno, J. High coupling and highly stable leaky surface acoustic waves on LiTaO3 thin plate bonded to quartz substrate. Jpn. J. Appl. Phys. 2018, 57, 07LD21. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Wu, J.; Zheng, P.; Zhou, H.; Yao, H.; Li, Z.; Huang, K.; Sun, H.; Ou, X. High-Performance Acoustic Wave Devices on LiTaO3/SiC Hetero-Substrates. IEEE Trans. Microw. Theory Tech. 2023, 71, 4182–4192. [Google Scholar] [CrossRef]
- Heyliger, P.; Ledbetter, H.; Kim, S. Elastic constants of natural quartz. J. Acoust. Soc. Am. 2003, 114, 644–650. [Google Scholar] [CrossRef]
- Mazierska, J.; Jacob, M.V.; Ledenyov, D.; Krupk, J. Loss tangent measurements of dielectric substrates from 15 K to 300 K with two resonators: Investigation into accuracy issues. In Proceedings of the 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China, 4–7 December 2005; Volume 4, p. 4. [Google Scholar]
- Fenske, K.; Misra, D. Dielectric materials at microwave frequencies. Appl. Microw. Wirel. 2000, 12, 92–100. [Google Scholar]
- Zhgoon, S.; Shvetsov, A.; Ancev, I.; Bogoslovsky, S.; Sapozhnikov, G.; Trokhimets, K.; Derkach, M. SAW temperature sensor on Quartz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1066–1075. [Google Scholar] [CrossRef]
- Schmitt, R.F.; Allen, J.W.; Vetelino, J.F.; Parks, J.; Zhang, C. Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes. Sens. Actuators B Chem. 2001, 76, 95–102. [Google Scholar] [CrossRef]
- Joule, J.P. On a new class of magnetic forces. Ann. Electr. Magn. Chem. 1842, 8, 219–224. [Google Scholar]
- Villari, E. Intorno alle modificazioni del momento magnetico di una verga di ferro e di acciaio, prodotte per la trazione della medesima e pel passaggio di una corrente attraverso la stessa. Nuovo Cim. 1864, 20, 317–362. [Google Scholar] [CrossRef]
- Hristoforou, E.; Ktena, A. Magnetostriction and magnetostrictive materials for sensing applications. J. Magn. Magn. Mater. 2007, 316, 372–378. [Google Scholar] [CrossRef]
- Cullen, J.R.; Clark, A.E. Magnetostriction and structural distortion in rare-earth intermetallics. Phys. Rev. B 1977, 15, 4510–4515. [Google Scholar] [CrossRef]
- Clark, A.E.; DeSavage, B.F.; Bozorth, R. Anomalous Thermal Expansion and Magnetostriction of Single-Crystal Dysprosium. Phys. Rev. 1965, 138, A216–A224. [Google Scholar] [CrossRef]
- Rhyne, J.J.; Legvold, S. Magnetostriction of Tb Single Crystals. Phys. Rev. 1965, 138, A507–A514. [Google Scholar] [CrossRef]
- Clark, A.; Abbundi, R.; Gillmor, W. Magnetization and magnetic anisotropy of TbFe2, DyFe2, Tb0.27Dy0.73Fe2 and TmFe2. IEEE Trans. Magn. 1978, 14, 542–544. [Google Scholar] [CrossRef]
- Clark, A.E. Chapter 7 Magnetostrictive rare earth-Fe2 compounds. In Handbook of Ferromagnetic Materials; Elsevier: Amsterdam, The Netherlands, 1980; Volume 1, pp. 531–589. ISBN 1574-9304. [Google Scholar]
- Clark, A.E.; Wun-Fogle, M.; Restorff, J.B.; Lograsso, T.A. Magnetostrictive properties of Galfenol alloys under compressive stress. Mater. Trans. 2002, 43, 881–886. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef]
- Quandt, E.; Ludwig, A.; Betz, J.; Mackay, K.; Givord, D. Giant magnetostrictive spring magnet type multilayers. J. Appl. Phys. 1997, 81, 5420–5422. [Google Scholar] [CrossRef]
- Quandt, E.; Ludwig, A. Giant magnetostrictive multilayers (invited). J. Appl. Phys. 1999, 85, 6232–6237. [Google Scholar] [CrossRef]
- Chu, Y.W.; Kharel, P.; Yoon, T.; Frunzio, L.; Rakich, P.T.; Schoelkopf, R.J. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 2018, 563, 666–670. [Google Scholar] [CrossRef]
- Engdahl, G.; Mayergoyz, I.D. Handbook of Giant Magnetostrictive Materials; Elsevier: Amsterdam, The Netherlands, 2000; Volume 107. [Google Scholar]
- Dong, C.Z.; Li, M.H.; Liang, X.F.; Chen, H.H.; Zhou, H.M.; Wang, X.J.; Gao, Y.; McConney, M.E.; Jones, J.G.; Brown, G.J.; et al. Characterization of magnetomechanical properties in FeGaB thin films. Appl. Phys. Lett. 2018, 113, 262401. [Google Scholar] [CrossRef]
- Material properties Metglas, Inc. Available online: https://metglas.com/magnetic-materials/ (accessed on 4 October 2024).
- Wang, J.; Dong, C.; Wei, Y.; Lin, X.; Athey, B.; Chen, Y.; Winter, A.; Stephen, G.M.; Heiman, D.; He, Y.; et al. Magnetostriction, Soft Magnetism, and Microwave Properties in Co−Fe−C Alloy Films. Phys. Rev. Appl. 2019, 12, 34011. [Google Scholar] [CrossRef]
- Lou, J.; Liu, M.; Reed, D.; Ren, Y.H.; Sun, N.X. Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures. Adv. Mater. 2009, 21, 4711–4715. [Google Scholar] [CrossRef]
- Lou, J.; Insignares, R.E.; Cai, Z.; Ziemer, K.S.; Liu, M.; Sun, N.X. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films. Appl. Phys. Lett. 2007, 91, 182504. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Celestin, S.J.; Wang, X.; Chen, H.; Ziemer, K.S.; Page, M.; McConney, M.E.; Jones, J.G.; Howe, B.M.; et al. Soft Magnetism, Magnetostriction, and Microwave Properties of Fe-Ga-C Alloy Films. IEEE Magn. Lett. 2019, 10, 5500705. [Google Scholar] [CrossRef]
- Vijayalaxmi; Fatahi, M.; Speck, O. Magnetic resonance imaging (MRI): A review of genetic damage investigations. Mutat. Res. Mutat. Res. 2015, 764, 51–63. [Google Scholar] [CrossRef]
- Jahns, R.; Greve, H.; Woltermann, E.; Quandt, E.; Knöchel, R. Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators A Phys. 2012, 183, 16–21. [Google Scholar] [CrossRef]
- Elzwawy, A.; Rasly, M.; Morsy, M.; Piskin, H.; Volmer, M. Magnetic Sensors: Principles, Methodologies, and Applications. In Handbook of Nanosensors: Materials and Technological Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 891–928. [Google Scholar]
- Pereira, N.; Lima, A.C.; Lanceros-Mendez, S.; Martins, P. Magnetoelectrics: Three Centuries of Research Heading Towards the 4.0 Industrial Revolution. Materials 2020, 13, 4033. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Siakas, K.; Anastasiadis, T. Internet of things in the context of industry 4.0: An overview. Int. J. Entrep. Knowl. 2019, 7. [Google Scholar] [CrossRef]
- Cohen, D.; Givler, E. Magnetomyography: Magnetic fields around the human body produced by skeletal muscles. Appl. Phys. Lett. 2003, 21, 114–116. [Google Scholar] [CrossRef]
- Elzenheimer, E.; Laufs, H.; Sander-Thömmes, T.; Schmidt, G. Magnetoneurograhy of an Electrically Stimulated Arm Nerve. Curr. Dir. Biomed. Eng. 2018, 4, 363–366. [Google Scholar] [CrossRef]
- Zuo, S.; Heidari, H.; Farina, D.; Nazarpour, K. Miniaturized Magnetic Sensors for Implantable Magnetomyography. Adv. Mater. Technol. 2020, 5, 2000185. [Google Scholar] [CrossRef]
- Uchikawa, Y.; Kotani, M. Measurement of Magnetic Field Produced from the Human Body. IEEE Transl. J. Magn. Jpn. 1992, 7, 600–607. [Google Scholar] [CrossRef]
- Granata, C.; Vettoliere, A.; Russo, M. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications. Rev. Sci. Instrum. 2011, 82, 013901. [Google Scholar] [CrossRef]
- Nardelli, N.; Krzyzewski, S.; Korenko, B.; Romanov, G.; Hughes, J.; Alem, O.; Knappe, S. Magnetic field imaging with microfabricated optically-pumped magnetometer arrays. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; Volume Part F143-EQEC 2019. [Google Scholar]
- Gerginov, V.; Pomponio, M.; Knappe, S. Scalar magnetometry below 100 fT/Hz1/2 in a microfabricated cell. IEEE Sens. J. 2020, 20, 12684–12690. [Google Scholar] [CrossRef]
- Nardelli, N.V.; Krzyzewski, S.P.; Knappe, S.A. Reducing crosstalk in optically-pumped magnetometer arrays. Phys. Med. Biol. 2019, 64, 21NT03. [Google Scholar] [CrossRef]
- Boto, E.; Meyer, S.S.; Shah, V.; Alem, O.; Knappe, S.; Kruger, P.; Fromhold, T.M.; Lim, M.; Glover, P.M.; Morris, P.G.; et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage 2017, 149, 404–414. [Google Scholar] [CrossRef]
- Alem, O.; Mhaskar, R.; Jiménez-Martínez, R.; Sheng, D.; LeBlanc, J.; Trahms, L.; Sander, T.; Kitching, J.; Knappe, S. Magnetic field imaging with microfabricated optically-pumped magnetometers. Opt. Express 2017, 25, 7849–7858. [Google Scholar] [CrossRef]
- Knappe, S.A.; Hughes, J.; Alem, O. Microfabricated Optically-Pumped Magnetometers for Imaging Applications. In Proceedings of the SPIE QUANTUM WEST, San Francisco, CA, USA, 28 January–3 February 2023. [Google Scholar] [CrossRef]
- Knappe, S.; Alem, O.; Sheng, D.; Kitching, J. Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications. Proc. J. Phys. Conf. Ser. 2016, 723, 012055. [Google Scholar] [CrossRef]
- Dufay, B.; Saez, S.; Dolabdjian, C.P.; Yelon, A.; Ménard, D. Characterization of an Optimized Off-Diagonal GMI-Based Magnetometer. IEEE Sens. J. 2013, 13, 379–388. [Google Scholar] [CrossRef]
- Portalier, E.; Dufay, B.; Saez, S.; Dolabdjian, C. Noise Behavior of High Sensitive GMI-Based Magnetometer Relative to Conditioning Parameters. IEEE Trans. Magn. 2015, 51, 4002104. [Google Scholar] [CrossRef]
- Traore, P.-S.; Asfour, A.; Yonnet, J.-P.; Dolabdjian, C.P. Noise performance of SDR-based off-diagonal GMI sensors. IEEE Sens. J. 2017, 17, 6175–6184. [Google Scholar] [CrossRef]
- Fernández, E.; García-Arribas, A.; Barandiarán, J.M.; Svalov, A.V.; Kurlyandskaya, G.V.; Dolabdjian, C.P. Equivalent Magnetic Noise of Micro-Patterned Multilayer Thin Films Based GMI Microsensor. IEEE Sens. J. 2015, 15, 6707–6714. [Google Scholar] [CrossRef]
- Traoré, P.S.; Asfour, A.; Yonnet, J.-P.; Boudinet, C. Digital electronic conditioning approach for the high-sensitivity off-diagonal GMI sensors. Sens. Actuators A Phys. 2018, 271, 290–302. [Google Scholar] [CrossRef]
- Kikuchi, H.; Kamata, S.; Nakai, T.; Hashi, S.; Ishiyama, K. Influence of demagnetizing field on thin-film GMI magnetic sensor elements with uniaxial magnetic anisotropy. Sens. Actuators A Phys. 2015, 230, 142–149. [Google Scholar] [CrossRef]
- Wu, K.; Su, D.; Saha, R.; Wang, J.-P. Giant Magnetoresistance (GMR) Materials and Devices for Biomedical and Industrial Applications. In Spintronics; Wiley: Hoboken, NJ, USA, 2022; pp. 3–49. ISBN 9781119698968. [Google Scholar]
- Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C. Magnetocardiography with sensors based on giant magnetoresistance. Appl. Phys. Lett. 2011, 98, 153705. [Google Scholar] [CrossRef]
- Shen, H.-M.; Hu, L.; Fu, X. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections. Sensors 2018, 18, 148. [Google Scholar] [CrossRef]
- Kurashima, K.; Kataoka, M.; Nakano, T.; Fujiwara, K.; Kato, S.; Nakamura, T.; Yuzawa, M.; Masuda, M.; Ichimura, K.; Okatake, S.; et al. Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors. Sensors 2023, 23, 646. [Google Scholar] [CrossRef]
- Freitas, P.P.; Ferreira, R.; Cardoso, S. Spintronic Sensors. Proc. IEEE 2016, 104, 1894–1918. [Google Scholar] [CrossRef]
- Weitensfelder, H.; Brueckl, H.; Satz, A.; Pruegl, K.; Zimmer, J.; Luber, S.; Raberg, W.; Abert, C.; Bruckner, F.; Bachleitner-Hofmann, A.; et al. Comparison of Sensitivity and Low-Frequency Noise Contributions in Giant-Magnetoresistive and Tunneling-Magnetoresistive Spin-Valve Sensors with a Vortex-State Free Layer. Phys. Rev. Appl. 2018, 10, 054056. [Google Scholar] [CrossRef]
- Smith, N.; Katine, J.A.; Childress, J.R.; Carey, M.J. Thermal and spin-torque noise in CPP (TMR and/or GMR) read sensors. IEEE Trans. Magn. 2006, 42, 114–119. [Google Scholar] [CrossRef]
- Davies, J.E.; Watts, J.D.; Novotny, J.; Huang, D.; Eames, P.G. Magnetoresistive sensor detectivity: A comparative analysis. Appl. Phys. Lett. 2021, 118, 062401. [Google Scholar] [CrossRef]
- Fermon, C.; Pannetier-Lecoeur, M. Noise in GMR and TMR sensors. In Smart Sensors, Measurement and Instrumentation; Springer: Berlin/Heidelberg, Germany, 2013; Volume 6. [Google Scholar]
- Salzer, S.; Robisch, V.; Klug, M.; Durdaut, P.; McCord, J.; Meyners, D.; Reermann, J.; Hoft, M.; Knochel, R. Noise Limits in Thin-Film Magnetoelectric Sensors With Magnetic Frequency Conversion. IEEE Sens. J. 2018, 18, 596–604. [Google Scholar] [CrossRef]
- Zhou, Y.; Maurya, D.; Yan, Y.; Srinivasan, G.; Quandt, E.; Priya, S. Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvest. Syst. 2016, 3, 1–42. [Google Scholar] [CrossRef]
- Nan, T.X.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef]
- Jovičević Klug, M.; Thormählen, L.; Röbisch, V.; Toxværd, S.D.; Höft, M.; Knöchel, R.; Quandt, E.; Meyners, D.; McCord, J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Appl. Phys. Lett. 2019, 114, 192410. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Li, M.; Hasanyan, D.; Shen, Y.; Li, J.; Viehland, D.; Luo, H. Ultralow equivalent magnetic noise in a magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Appl. Phys. Lett. 2012, 101, 022903. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gao, J.Q.; Li, M.H.; Shen, Y.; Hasanyan, D.; Li, J.F.; Viehland, D. A review on equivalent magnetic noise of magnetoelectric laminate sensors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120455. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Viehland, D. Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 2014, 17, 269–275. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E. Inverse bilayer magnetoelectric thin film sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J.L.; Gerken, M.; Knöchel, R.; Quandt, E. Magnetoelectric thin film composites with interdigital electrodes. Appl. Phys. Lett. 2013, 103, 32902. [Google Scholar] [CrossRef]
- Salzer, S.; Jahns, R.; Piorra, A.; Teliban, I.; Reermann, J.; Höft, M.; Quandt, E.; Knöchel, R. Tuning fork for noise suppression in magnetoelectric sensors. Sens. Actuators A Phys. 2016, 237, 91–95. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, K.L.; Gao, J.; Li, M.; Li, J.; Viehland, D. Effective optimization of magnetic noise for a Metglas/Pb(Zr,Ti)O3 magnetoelectric sensor array in an open environment. Mater. Lett. 2013, 91, 307–310. [Google Scholar] [CrossRef]
- Dong, C.; Sun, C.; Chen, L.; He, Y.; Liu, Y.; Luo, B.; Sun, N.X. Ultra-Compact Magnetoelectric Sensors for Femto-Tesla Vlf Signal Reception. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5019077 (accessed on 20 November 2024).
- Viehland, D.; Wuttig, M.; McCord, J.; Quandt, E. Magnetoelectric magnetic field sensors. MRS Bull. 2018, 43, 834–840. [Google Scholar] [CrossRef]
- Carman, G.P.; Sun, N. Strain-mediated magnetoelectrics: Turning science fiction into reality. MRS Bull. 2018, 43, 822–828. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, H.; Shi, W.; Liu, G.; Wu, J.; Yang, J.; Dong, S. Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar] [CrossRef]
- Dong, S.X.; Cheng, J.R.; Li, J.F.; Viehland, D. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O-3 under resonant drive. Appl. Phys. Lett. 2003, 83, 4812–4814. [Google Scholar] [CrossRef]
- Wang, Y.; Hasanyan, D.; Li, M.; Gao, J.; Li, J.; Viehland, D. Equivalent magnetic noise in multi-push-pull configuration magnetoelectric composites: Model and experiment. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1227–1233. [Google Scholar] [CrossRef]
- Das, J.; Gao, J.; Xing, Z.; Li, J.F.; Viehland, D. Enhancement in the field sensitivity of magnetoelectric laminate heterostructures. Appl. Phys. Lett. 2009, 95, 092501. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, D.; Berry, D.; Li, J.; Viehland, D. Self-amplified magnetoelectric properties in a dumbbell-shaped magnetostrictive/piezoelectric composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 859–862. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Hasanyan, D.; Gao, J.; Li, J.; Viehland, D. Geometry-induced magnetoelectric effect enhancement and noise floor reduction in Metglas/piezofiber sensors. Appl. Phys. Lett. 2012, 101, 092905. [Google Scholar] [CrossRef]
- Gao, J.; Gray, D.; Shen, Y.; Li, J.; Viehland, D. Enhanced dc magnetic field sensitivity by improved flux concentration in magnetoelectric laminates. Appl. Phys. Lett. 2011, 99, 153502. [Google Scholar] [CrossRef]
- Gao, J.; Das, J.; Xing, Z.; Li, J.; Viehland, D. Comparison of noise floor and sensitivity for different magnetoelectric laminates. J. Appl. Phys. 2010, 108, 084509. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Wang, Y.; Li, J.; Viehland, D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 2013, 102, 82404. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, D.; Berry, D.; Li, M.; Gao, J.; Li, J.; Viehland, D. Influence of interfacial bonding condition on magnetoelectric properties in piezofiber/Metglas heterostructures. J. Alloys Compd. 2012, 513, 242–244. [Google Scholar] [CrossRef]
- Li, M.; Berry, D.; Das, J.; Gray, D.; Li, J.; Viehland, D. Enhanced sensitivity and reduced noise floor in magnetoelectric laminate sensors by an improved lamination process. J. Am. Ceram. Soc. 2011, 94, 3738–3741. [Google Scholar] [CrossRef]
- Wang, Y.; Gray, D.; Gao, J.; Berry, D.; Li, M.; Li, J.; Viehland, D.; Luo, H. Improvement of magnetoelectric properties in Metglas/Pb (Mg1/3Nb2/3)O3–PbTiO3 laminates by poling optimization. J. Alloys Compd. 2012, 519, 1–3. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, J.; Ma, J.; Ren, B.; Li, L.; Zhao, X.; Luo, H.; Shi, L. Frequency conversion in magnetoelectric composites for quasi-static magnetic field detection. Appl. Phys. Lett. 2013, 103, 212902. [Google Scholar] [CrossRef]
- Dong, C.; Liang, X.; Gao, J.; Chen, H.; He, Y.; Wei, Y.; Zaeimbashi, M.; Matyushov, A.; Sun, C.; Sun, N.X. Thin film magnetoelectric sensors toward biomagnetism: Materials, devices, and applications. Adv. Electron. Mater. 2022, 8, 2200013. [Google Scholar] [CrossRef]
- Srinivasan, G.; Rasmussen, E.T.; Levin, B.J.; Hayes, R. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B 2002, 65, 134402. [Google Scholar] [CrossRef]
- Laletin, V.M.; Paddubnaya, N.; Srinivasan, G.; de Vreugd, C.P.; Bichurin, M.I.; Petrov, V.M.; Filippov, D.A. Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl. Phys. Lett. 2005, 87, 222507. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Ouyang, J.; Chen, S.; Tong, B.; Zhu, Y.; Zhang, Y. A New Magnetoelectric Composite with Enhanced Magnetoelectric Coefficient and Lower Resonance Frequency. Appl. Compos. Mater. 2014, 21, 579–590. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Wen, Y.; Wang, P. Highly zero-biased magnetoelectric response in magnetostrictive/piezoelectric composite. J. Appl. Phys. 2012, 112, 24504. [Google Scholar] [CrossRef]
- Lu, C.; Li, P.; Wen, Y.; Yang, A.; Yang, C.; Wang, D.; He, W.; Zhang, J. Zero-biased magnetoelectric composite Fe73.5Cu1Nb3Si13.5B9/Ni/Pb(Zr1−x,Tix)O3 for current sensing. J. Alloys Compd. 2014, 589, 498–501. [Google Scholar] [CrossRef]
- Lu, C.; Li, P.; Wen, Y.; Yang, A.; He, W.; Zhang, J.; Yang, J.; Wen, J.; Zhu, Y.; Yu, M. Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect. Appl. Phys. A 2013, 113, 413–421. [Google Scholar] [CrossRef]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange biasing of magnetoelectric composites. Nat. Mater. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Zhou, Y.; Chul Yang, S.; Apo, D.J.; Maurya, D.; Priya, S. Tunable self-biased magnetoelectric response in homogenous laminates. Appl. Phys. Lett. 2012, 101, 232905. [Google Scholar] [CrossRef]
- Tong, B.; Yang, X.; Guo, Z.; Li, K.; Ouyang, J.; Lin, G.; Chen, S. Preparation and characterization of AlN/FeCoSiB magnetoelectric thin film composites. Ceram. Int. 2013, 39, 6853–6859. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Y.; Priya, S. Enhanced magnetoelectric effect in longitudinal-longitudinal mode laminate with cofired interdigitated electrodes. Appl. Phys. Lett. 2014, 104, 32911. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Y.; Priya, S. Giant self-biased magnetoelectric coupling in co-fired textured layered composites. Appl. Phys. Lett. 2013, 102, 52907. [Google Scholar] [CrossRef]
- Shen, L.G.; Li, M.H.; Gao, J.Q.; Shen, Y.; Li, J.F.; Viehland, D.; Zhuang, X.; Sing, M.L.C.; Cordier, C.; Saez, S.; et al. Magnetoelectric nonlinearity in magnetoelectric laminate sensors. J. Appl. Phys. 2011, 110, 114510. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Wang, Y.; Finkel, P.; Li, J.; Viehland, D. Piezomagnetic strain-dependent non-linear magnetoelectric response enhancement by flux concentration effect. Appl. Phys. Lett. 2013, 102, 172904. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Wang, Y.; Li, J.; Viehland, D. High non-linear magnetoelectric coefficient in Metglas/PMN-PT laminate composites under zero direct current magnetic bias. J. Appl. Phys. 2014, 115, 94102. [Google Scholar] [CrossRef]
- Zhuang, X.; Sing, M.L.C.; Dolabdjian, C.; Wang, Y.; Finkel, P.; Li, J.; Viehland, D. Mechanical Noise Limit of a Strain-Coupled Magneto(Elasto)electric Sensor Operating Under a Magnetic or an Electric Field Modulation. IEEE Sens. J. 2015, 15, 1575–1587. [Google Scholar] [CrossRef]
- Zabel, S.; Reermann, J.; Fichtner, S.; Kirchhof, C.; Quandt, E.; Wagner, B.; Schmidt, G.; Faupel, F. Multimode delta-E effect magnetic field sensors with adapted electrodes. Appl. Phys. Lett. 2016, 108, 222401. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Kirchhof, C.; Claus, M.; Quandt, E.; Knöchel, R.; Wagner, B. Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sens. Actuators A Phys. 2013, 189, 321–327. [Google Scholar] [CrossRef]
- Jahns, R.; Greve, H.; Woltermann, E.; Quandt, E.; Knochel, R.H. Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas. 2011, 60, 2995–3001. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Greve, H.; Quandt, E.; Knöchel, R.; Wagner, B. MEMS magnetic field sensor based on magnetoelectric composites. J. Micromech. Microeng. 2012, 22, 65024. [Google Scholar] [CrossRef]
- Marauska, S.; Claus, M.; Lisec, T.; Wagner, B. Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging. Microsyst. Technol. 2013, 19, 1119–1130. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-based MEMS magnetoelectric sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Gillette, S.M.; Geiler, A.L.; Gray, D.; Viehland, D.; Vittoria, C.; Harris, V.G. Improved Sensitivity and Noise in Magneto-Electric Magnetic Field Sensors by Use of Modulated AC Magnetostriction. IEEE Magn. Lett. 2011, 2, 2500104. [Google Scholar] [CrossRef]
- Lage, E.; Urs, N.O.; Röbisch, V.; Teliban, I.; Knöchel, R.; Meyners, D.; McCord, J.; Quandt, E. Magnetic domain control and voltage response of exchange biased magnetoelectric composites. Appl. Phys. Lett. 2014, 104, 132405. [Google Scholar] [CrossRef]
- Hrkac, V.; Lage, E.; Köppel, G.; Strobel, J.; McCord, J.; Quandt, E.; Meyners, D.; Kienle, L. Amorphous FeCoSiB for exchange bias coupled and decoupled magnetoelectric multilayer systems: Real-structure and magnetic properties. J. Appl. Phys. 2014, 116, 134302. [Google Scholar] [CrossRef]
- Röbisch, V.; Yarar, E.; Urs, N.O.; Teliban, I.; Knöchel, R.; McCord, J.; Quandt, E.; Meyners, D. Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion. J. Appl. Phys. 2015, 117, 17B513. [Google Scholar] [CrossRef]
- Lage, E.; Woltering, F.; Quandt, E.; Meyners, D. Exchange biased magnetoelectric composites for vector field magnetometers. J. Appl. Phys. 2013, 113, 17C725. [Google Scholar] [CrossRef]
- Salzer, S.; Durdaut, P.; Röbisch, V.; Meyners, D.; Quandt, E.; Höft, M.; Knöchel, R. Generalized magnetic frequency conversion for thin-film laminate magnetoelectric sensors. IEEE Sens. J. 2016, 17, 1373–1383. [Google Scholar] [CrossRef]
- Durdaut, P.; Salzer, S.; Reermann, J.; Robisch, V.; Hayes, P.; Piorra, A.; Meyners, D.; Quandt, E.; Schmidt, G.; Knochel, R.; et al. Thermal-Mechanical Noise in Resonant Thin-Film Magnetoelectric Sensors. IEEE Sens. J. 2017, 17, 2338–2348. [Google Scholar] [CrossRef]
- Röbisch, V.; Salzer, S.; Urs, N.O.; Reermann, J.; Yarar, E.; Piorra, A.; Kirchhof, C.; Lage, E.; Höft, M.; Schmidt, G.U.; et al. Pushing the detection limit of thin film magnetoelectric heterostructures. J. Mater. Res. 2017, 32, 1009–1019. [Google Scholar] [CrossRef]
- Durdaut, P.; Salzer, S.; Reermann, J.; Rbisch, V.; McCord, J.; Meyners, D.; Quandt, E.; Schmidt, G.; Knchel, R.; Hft, M. Improved magnetic frequency conversion approach for magnetoelectric sensors. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Trolier-McKinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Zhuang, X.; Sing, M.L.C.; Dolabdjian, C. Investigation of the near-carrier noise for strain-driven ME laminates by using cross-correlation techniques. IEEE Trans. Magn. 2012, 49, 120–123. [Google Scholar] [CrossRef]
- Zhuang, X.; Lam Chok Sing, M.; Dolabdjian, C.; Wang, Y.; Finkel, P.; Li, J.; Viehland, D. Dynamic Sensitivity and Noise Floor of a Bonded Magneto(Elasto)Electric Laminate for Low Frequency Magnetic Field Sensing under Strain Modulations. Key Eng. Mater. 2015, 644, 236–239. [Google Scholar] [CrossRef]
- Fetisov, Y.K.; Petrov, V.M.; Srinivasan, G. Inverse magnetoelectric effects in a ferromagnetic–piezoelectric layered structure. J. Mater. Res. 2007, 22, 2074–2080. [Google Scholar] [CrossRef]
- Hockel, J.L.; Wu, T.; Carman, G.P. Voltage bias influence on the converse magnetoelectric effect of PZT/terfenol-D/PZT laminates. J. Appl. Phys. 2011, 109, 064106. [Google Scholar] [CrossRef]
- Naeli, K.; Brand, O. Dimensional considerations in achieving large quality factors for resonant silicon cantilevers in air. J. Appl. Phys. 2009, 105, 014908. [Google Scholar] [CrossRef]
- Kirchhof, C.; Krantz, M.; Teliban, I.; Jahns, R.; Marauska, S.; Wagner, B.; Knöchel, R.; Gerken, M.; Meyners, D.; Quandt, E. Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 2013, 102, 232905. [Google Scholar] [CrossRef]
- Zabel, S.; Kirchhof, C.; Yarar, E.; Meyners, D.; Quandt, E.; Faupel, F. Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields. Appl. Phys. Lett. 2015, 107, 152402. [Google Scholar] [CrossRef]
- Hanna, S.M. Magnetic Field Sensors Based on SAW Propagation in Magnetic Films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1987, 34, 191–194. [Google Scholar] [CrossRef]
- Elhosni, M.; Petit-Watelot, S.; Hehn, M.; Hage-Ali, S.; Aissa, K.A.; Lacour, D.; Talbi, A.; Elmazria, O. Experimental study of multilayer piezo-magnetic SAW delay line for magnetic sensor. Procedia Eng. 2015, 120, 870–873. [Google Scholar] [CrossRef]
- Zhou, H.; Talbi, A.; Tiercelin, N.; Bou Matar, O. Theoretical and experimental study of multilayer piezo-magnetic structure based surface acoustic wave devices for high sensitivity magnetic sensor. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Prague, Czech Republic, 21–25 July 2013; pp. 212–215. [Google Scholar] [CrossRef]
- Kittmann, A.; Müller, C.; Durdaut, P.; Thormählen, L.; Schell, V.; Niekiel, F.; Lofink, F.; Meyners, D.; Knöchel, R.; Höft, M.; et al. Sensitivity and noise analysis of SAW magnetic field sensors with varied magnetostrictive layer thicknesses. Sens. Actuators A Phys. 2020, 311, 111998. [Google Scholar] [CrossRef]
- Yang, Y.; Mengue, P.; Mishra, H.; Floer, C.; Hage-Ali, S.; Petit-Watelot, S.; Lacour, D.; Hehn, M.; Han, T.; Elmazria, O. Wireless Multifunctional Surface Acoustic Wave Sensor for Magnetic Field and Temperature Monitoring. Adv. Mater. Technol. 2022, 7, 1–9. [Google Scholar] [CrossRef]
- Hu, W.; Huang, M.; Xie, H.; Zhang, H.; Bai, F. Self-Biased Magnetic Field Sensors Based on Surface Acoustic Waves through Angle-Dependent Magnetoacoustic Coupling. Phys. Rev. Appl. 2023, 19, 1. [Google Scholar] [CrossRef]
- Labrenz, J.; Bahr, A.; Durdaut, P.; Höft, M.; Kittmann, A.; Schell, V.; Quandt, E. Frequency Response of SAW Delay Line Magnetic Field/Current Sensor. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Emori, S.; Gray, B.A.; Jeon, H.-M.; Peoples, J.; Schmitt, M.; Mahalingam, K.; Hill, M.; McConney, M.E.; Gray, M.T.; Alaan, U.S.; et al. Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Films. Adv. Mater. 2017, 29, 1701130. [Google Scholar] [CrossRef]
- Li, R.F.; Li, P.; Yi, D.; Riddiford, L.J.; Chai, Y.H.; Suzuki, Y.; Ralph, D.C.; Nan, T.X. Anisotropic Magnon Spin Transport in Ultrathin Spinel Ferrite Thin Films-Evidence for Anisotropy in Exchange Stiffness. Nano Lett. 2022, 22, 1167–1173. [Google Scholar] [CrossRef]
- Geller, S.; Gilleo, M.A. The crystal structure and ferrimagnetism of yttrium-iron garnet, Y3Fe2(FeO4)3. J. Phys. Chem. Solids 1957, 3, 30–36. [Google Scholar] [CrossRef]
- Volakis, J.L.; Chen, C.-C.; Fujimoto, K. Small Antennas: Miniaturization Techniques & Applications; McGraw Hill: New York, NY, USA, 2010. [Google Scholar]
- Yao, Z.; Wang, Y.E.; Keller, S.; Carman, G.P. Bulk Acoustic Wave-Mediated Multiferroic Antennas: Architecture and Performance Bound. IEEE Trans. Antennas Propag. 2015, 63, 3335–3344. [Google Scholar] [CrossRef]
- Domann, J.P.; Carman, G.P. Strain powered antennas. J. Appl. Phys. 2017, 121, 44905. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Z.; Fu, G.; Wang, J.; Xi, Q.; Wang, Y.; Jia, Z.; Zi, G. A Low-Frequency MEMS Magnetoelectric Antenna Based on Mechanical Resonance. Micromachines 2022, 13, 864. [Google Scholar] [CrossRef]
- Ma, M.; Chen, C.; Xu, H.; Liu, P.; Xiao, B.; Liang, S.; Fu, S.; Song, C.; Pan, F. High-Frequency Magnetoelectric Antenna by Acoustic Excitation for 5G Communication. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1518–1522. [Google Scholar] [CrossRef]
- Chang, H.; Li, P.; Zhang, W.; Liu, T.; Hoffmann, A.; Deng, L.; Wu, M. Nanometer-Thick Yttrium Iron Garnet Films With Extremely Low Damping. IEEE Magn. Lett. 2014, 5, 1–4. [Google Scholar] [CrossRef]
- Ma, M.; Chen, C.; Xu, H.; Cao, Y.; Han, L.; Xiao, B.; Liu, P.; Liang, S.; Zhu, W.; Fu, S.; et al. Enhanced Radiation Efficiency by Resonant Coupling in a Large Bandwidth Magnetoelectric Antenna. Adv. Funct. Mater. 2024, 2408699, 1–8. [Google Scholar] [CrossRef]
- Zhang, C.; Ji, Y.; Gu, H.; Zhang, P.; Liu, J.; Liang, X.; Yang, F.; Ren, T.; Nan, T. Surface Acoustic Wave Actuated MEMS Magnetoelectric Antenna. IEEE Electron Device Lett. 2024, 45, 2009–2012. [Google Scholar] [CrossRef]
- Chen, H.; Liang, X.; Sun, N.; Sun, N.-X.; Lin, H.; Gao, Y. An ultra-compact ME antenna design for implantable wireless communication. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Toronto, ON, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 655–656. [Google Scholar]
- Dong, C.; Wang, X.; Lin, H.; Gao, Y.; Sun, N.X.; He, Y.; Li, M.; Tu, C.; Chu, Z.; Liang, X.; et al. A Portable Very Low Frequency (VLF) Communication System Based on Acoustically Actuated Magnetoelectric Antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Dong, C.; He, Y.; Liu, X.; Sun, N.X. VLF Mechanical Antenna Arrays for Underwater Wireless Communications. In Proceedings of the 16th International Conference on Underwater Networks & Systems, Boston, MA, USA, 14–16 November 2022; pp. 1–5. [Google Scholar]
- He, Y. Magnetic and Magnetoelectric Devices for Communication and Energy Harvesting Applications; Northeastern University: Boston, MA, USA, 2023. [Google Scholar]
- Sun, N.X.; Li, M. Magnetoelectric Very Low Frequency Communication System. U.S. Patent 10,720,564, 21 July 2020. [Google Scholar]
- Hu, L.; Zhang, Q.; Wu, H.; You, H.; Jiao, J.; Luo, H.; Wang, Y.; Duan, C.; Gao, A. A very low frequency (VLF) antenna based on clamped bending-mode structure magnetoelectric laminates. J. Phys. Condens. Matter 2022, 34, 414002. [Google Scholar] [CrossRef]
- Du, Y.; Xu, Y.; Wu, J.; Qiao, J.; Wang, Z.; Hu, Z.; Jiang, Z.; Liu, M. Very-Low-Frequency Magnetoelectric Antennas for Portable Underwater Communication: Theory and Experiment. IEEE Trans. Antennas Propag. 2023, 71, 2167–2181. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, J.; Jiang, T.; Wu, H.; Fang, Z.; Jiao, J.; Sokolov, O.; Ivanov, S.; Bichurin, M.; Wang, Y. Bias-free very low frequency magnetoelectric antenna. Appl. Phys. Lett. 2023, 122, 262901. [Google Scholar] [CrossRef]
- Zhou, J.; Reiskarimian, N.; Krishnaswamy, H. 9.8 Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 178–180. [Google Scholar]
- Reiskarimian, N.; Dastjerdi, M.B.; Zhou, J.; Krishnaswamy, H. 18.2 Highly-linear integrated magnetic-free circulator-receiver for full-duplex wireless. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Dinc, T.; Nagulu, A.; Krishnaswamy, H. A Millimeter-Wave Non-Magnetic Passive SOI CMOS Circulator Based on Spatio-Temporal Conductivity Modulation. IEEE J. Solid-State Circuits 2017, 52, 3276–3292. [Google Scholar] [CrossRef]
- Kord, A.; Sounas, D.L.; Alu, A. Magnet-Less Circulators Based on Spatiotemporal Modulation of Bandstop Filters in a Delta Topology. IEEE Trans. Microw. Theory Tech. 2018, 66, 911–926. [Google Scholar] [CrossRef]
- Kord, A.; Sounas, D.L.; Alù, A. Achieving Full-Duplex Communication: Magnetless Parametric Circulators for Full-Duplex Communication Systems. IEEE Microw. Mag. 2018, 19, 84–90. [Google Scholar] [CrossRef]
- Nagulu, A.; Krishnaswamy, H. 28.5 Non-Magnetic 60GHz SOI CMOS Circulator Based on Loss/Dispersion-Engineered Switched Bandpass Filters. In Proceedings of the 2019 IEEE International Solid- State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Nagulu, A.; Krishnaswamy, H. Non-Magnetic CMOS Switched-Transmission-Line Circulators With High Power Handling and Antenna Balancing: Theory and Implementation. IEEE J. Solid-State Circuits 2019, 54, 1288–1303. [Google Scholar] [CrossRef]
- Nagulu, A.; Reiskarimian, N.; Krishnaswamy, H. Non-reciprocal electronics based on temporal modulation. Nat. Electron. 2020, 3, 241–250. [Google Scholar] [CrossRef]
- Yu, Y. Microelectromechanical Magnet-Free Non-Reciprocal Devices for In-Band Full-Duplex Applications; Northeastern University: Boston, MA, USA, 2020. [Google Scholar]
- Nagulu, A.; Krishnaswamy, H. Non-Magnetic Non-Reciprocal Microwave Components—State of the Art and Future Directions. IEEE J. Microw. 2021, 1, 447–456. [Google Scholar] [CrossRef]
- Nagulu, A.; Mekkawy, A.; Tymchenko, M.; Sounas, D.; Alu, A.; Krishnaswamy, H. Ultra-Wideband Switched-Capacitor Delays and Circulators-Theory and Implementation. IEEE J. Solid-State Circuits 2021, 56, 1412–1424. [Google Scholar] [CrossRef]
- Dreher, L.; Weiler, M.; Pernpeintner, M.; Huebl, H.; Gross, R.; Brandt, M.S.; Goennenwein, S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment. Phys. Rev. B 2012, 86, 134415. [Google Scholar] [CrossRef]
- Bömmel, H.; Dransfeld, K. Excitation of hypersonic waves by ferromagnetic resonance. Phys. Rev. Lett. 1959, 3, 83. [Google Scholar] [CrossRef]
- Weiler, M.; Dreher, L.; Heeg, C.; Huebl, H.; Gross, R.; Brandt, M.S.; Goennenwein, S.T.B. Elastically Driven Ferromagnetic Resonance in Nickel Thin Films. Phys. Rev. Lett. 2011, 106, 117601. [Google Scholar] [CrossRef]
- Xu, M.; Yamamoto, K.; Puebla, J.; Baumgaertl, K.; Rana, B.; Miura, K.; Takahashi, H.; Grundler, D.; Maekawa, S.; Otani, Y. Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling. Sci. Adv. 2020, 6, eabb1724. [Google Scholar] [CrossRef]
- Küß, M.; Heigl, M.; Flacke, L.; Hörner, A.; Weiler, M.; Albrecht, M.; Wixforth, A. Nonreciprocal dzyaloshinskii–moriya magnetoacoustic waves. Phys. Rev. Lett. 2020, 125, 217203. [Google Scholar] [CrossRef]
- Maekawa, S.; Tachiki, M. Surface acoustic attenuation due to surface spin wave in ferro-and antiferromagnets. Proc. AIP Conf. Proc. Am. Inst. Phys. 1976, 29, 542–543. [Google Scholar]
- Matsuo, M.; Ieda, J.; Saitoh, E.; Maekawa, S. Effects of mechanical rotation on spin currents. Phys. Rev. Lett. 2011, 106, 76601. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Ieda, J.; Harii, K.; Saitoh, E.; Maekawa, S. Mechanical generation of spin current by spin-rotation coupling. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 180402. [Google Scholar] [CrossRef]
- Kobayashi, D.; Yoshikawa, T.; Matsuo, M.; Iguchi, R.; Maekawa, S.; Saitoh, E.; Nozaki, Y. Spin current generation using a surface acoustic wave generated via spin-rotation coupling. Phys. Rev. Lett. 2017, 119, 77202. [Google Scholar] [CrossRef] [PubMed]
- Kurimune, Y.; Matsuo, M.; Nozaki, Y. Observation of gyromagnetic spin wave resonance in NiFe films. Phys. Rev. Lett. 2020, 124, 217205. [Google Scholar] [CrossRef]
- Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO3. Phys. Rev. B 2017, 95, 020407. [Google Scholar] [CrossRef]
- Tateno, S.; Nozaki, Y. Highly nonreciprocal spin waves excited by magnetoelastic coupling in a Ni/Si bilayer. Phys. Rev. Appl. 2020, 13, 34074. [Google Scholar] [CrossRef]
- Hernández-Mínguez, A.; Macià, F.; Hernàndez, J.M.; Herfort, J.; Santos, P. V Large nonreciprocal propagation of surface acoustic waves in epitaxial ferromagnetic/semiconductor hybrid structures. Phys. Rev. Appl. 2020, 13, 44018. [Google Scholar] [CrossRef]
- Shah, P.J.; Bas, D.A.; Lisenkov, I.; Matyushov, A.; Sun, N.X.; Page, M.R. Giant nonreciprocity of surface acoustic waves enabled by the magnetoelastic interaction. Sci. Adv. 2020, 6, eabc5648. [Google Scholar] [CrossRef]
- Küß, M.; Glamsch, S.; Kunz, Y.; Hörner, A.; Weiler, M.; Albrecht, M. Giant surface acoustic wave nonreciprocity with low magnetoacoustic insertion loss in CoFeB/Ru/CoFeB synthetic antiferromagnets. ACS Appl. Electron. Mater. 2023, 5, 5103–5110. [Google Scholar] [CrossRef]
- Verba, R.; Tiberkevich, V.; Slavin, A. Wide-Band Nonreciprocity of Surface Acoustic Waves Induced by Magnetoelastic Coupling with a Synthetic Antiferromagnet. Phys. Rev. Appl. 2019, 12, 054061. [Google Scholar] [CrossRef]
- Küß, M.; Heigl, M.; Flacke, L.; Hörner, A.; Weiler, M.; Wixforth, A.; Albrecht, M. Nonreciprocal magnetoacoustic waves in dipolar-coupled ferromagnetic bilayers. Phys. Rev. Appl. 2021, 15, 34060. [Google Scholar] [CrossRef]
- Grunberg, P. Magnetostatic Spin-Wave Modes of a Heterogeneous Ferromagnetic Double-Layer. J. Appl. Phys. 1981, 52, 6824–6829. [Google Scholar] [CrossRef]
- Szulc, K.; Graczyk, P.; Mruczkiewicz, M.; Gubbiotti, G.; Krawczyk, M. Spin-wave diode and circulator based on unidirectional coupling. Phys. Rev. Appl. 2020, 14, 34063. [Google Scholar] [CrossRef]
- Bas, D.A.; Verba, R.; Shah, P.J.; Leontsev, S.; Matyushov, A.; Newburger, M.J.; Sun, N.X.; Tyberkevich, V.; Slavin, A.; Page, M.R. Nonreciprocity of Phase Accumulation and Propagation Losses of Surface Acoustic Waves in Hybrid Magnetoelastic Heterostructures. Phys. Rev. Appl. 2022, 18, 044003. [Google Scholar] [CrossRef]
- Grünberg, P.; Barnas, J.; Saurenbach, F.; Fuβ, J.A.; Wolf, A.; Vohl, M. Layered magnetic structures: Antiferromagnetic type interlayer coupling and magnetoresistance due to antiparallel alignment. J. Magn. Magn. Mater. 1991, 93, 58–66. [Google Scholar] [CrossRef]
- Fuss, A.; Demokritov, S.; Grünberg, P.; Zinn, W. Short-and long period oscillations in the exchange coupling of Fe across epitaxially grown Al-and Au-interlayers. J. Magn. Magn. Mater. 1992, 103, L221–L227. [Google Scholar] [CrossRef]
- Verba, R.; Bankowski, E.N.; Meitzler, T.J.; Tiberkevich, V.; Slavin, A. Phase Nonreciprocity of Microwave-Frequency Surface Acoustic Waves in Hybrid Heterostructures with Magnetoelastic Coupling. Adv. Electron. Mater. 2021, 7, 2100263. [Google Scholar] [CrossRef]
- Küß, M.; Glamsch, S.; Hörner, A.; Albrecht, M. Wide-Band Nonreciprocal Transmission of Surface Acoustic Waves in Synthetic Antiferromagnets. ACS Appl. Electron. Mater. 2024, 6, 1790–1796. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.; Hu, W.; Wu, Y.; Wang, W.; He, W.; Zhang, H.; Bai, F. Large nonreciprocity of shear-horizontal surface acoustic waves induced by a magnetoelastic bilayer. Phys. Rev. Appl. 2024, 21, 14035. [Google Scholar] [CrossRef]
- Hu, W.; Huang, M.; Wu, Y.; Jia, Y.; Wang, W.; Bai, F. Giant nonreciprocity of surface acoustic waves induced by an anti-magnetostrictive bilayer. Appl. Phys. Lett. 2024, 124, 182405. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, W.; Wu, H.; Huang, M.; Wu, Y.; Jia, Y.; Wang, W.; Bai, F. Nonreciprocal transmission of surface acoustic waves induced by magneotoelastic coupling with an anti-magnetostrictive bilayer. J. Appl. Phys. 2024, 136, 163901. [Google Scholar] [CrossRef]
- Matsumoto, H.; Kawada, T.; Ishibashi, M.; Kawaguchi, M.; Hayashi, M. Large surface acoustic wave nonreciprocity in synthetic antiferromagnets. Appl. Phys. Express 2022, 15, 63003. [Google Scholar] [CrossRef]
- Küß, M.; Hassan, M.; Kunz, Y.; Hörner, A.; Weiler, M.; Albrecht, M. Nonreciprocal magnetoacoustic waves in synthetic antiferromagnets with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2023, 107, 24424. [Google Scholar] [CrossRef]
- Lenef, A.; Rand, S.C. Electronic structure of the N-V center in diamond: Theory. Phys. Rev. B 1996, 53, 13441–13455. [Google Scholar] [CrossRef]
- Ohno, K.; Heremans, F.J.; Bassett, L.C.; Myers, B.A.; Toyli, D.M.; Jayich, A.C.B.; Palmstrom, C.J.; Awschalom, D.D. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 2012, 101, 082413. [Google Scholar] [CrossRef]
- Robledo, L.; Childress, L.; Bernien, H.; Hensen, B.; Alkemade, P.F.A.; Hanson, R. High-fidelity projective read-out of a solid-state spin quantum register. Nature 2011, 477, 574–578. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 2018, 12, 516–527. [Google Scholar] [CrossRef]
- Childress, L.; Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 2013, 38, 134–138. [Google Scholar] [CrossRef]
- Taminiau, T.H.; Cramer, J.; van der Sar, T.; Dobrovitski, V.V.; Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 2014, 9, 171–176. [Google Scholar] [CrossRef]
- Fuchs, G.D.; Burkard, G.; Klimov, P.V.; Awschalom, D.D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 2011, 7, 789–793. [Google Scholar] [CrossRef]
- Taylor, J.M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, P.R.; Yacoby, A.; Walsworth, R.; Lukin, M.D. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008, 4, 810–816. [Google Scholar] [CrossRef]
- de Lange, G.; Riste, D.; Dobrovitski, V.V.; Hanson, R. Single-Spin Magnetometry with Multipulse Sensing Sequences. Phys. Rev. Lett. 2011, 106, 080802. [Google Scholar] [CrossRef] [PubMed]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, S.J.; Heremans, F.J.; Wolfowicz, G.; Awschalom, D.D.; Holt, M. V Correlating dynamic strain and photoluminescence of solid-state defects with stroboscopic x-ray diffraction microscopy. Nat. Commun. 2019, 10, 3386. [Google Scholar] [CrossRef]
- Miao, K.C.; Bourassa, A.; Anderson, C.P.; Whiteley, S.J.; Crook, A.L.; Bayliss, S.L.; Wolfowicz, G.; Thiering, G.; Udvarhelyi, P.; Ivady, V.; et al. Electrically driven optical interferometry with spins in silicon carbide. Sci. Adv. 2019, 5, eaay0527. [Google Scholar] [CrossRef]
- Andrich, P.; de las Casas, C.F.; Liu, X.Y.; Bretscher, H.L.; Berman, J.R.; Heremans, F.J.; Nealey, P.F.; Awschalom, D.D. Long-range spin wave mediated control of defect qubits in nanodiamonds. npj Quantum Inf. 2017, 3, 28. [Google Scholar] [CrossRef]
- Kikuchi, D.; Prananto, D.; Hayashi, K.; Laraoui, A.; Mizuochi, N.; Hatano, M.; Saitoh, E.; Kim, Y.; Meriles, C.A.; An, T. Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves. Appl. Phys. Express 2017, 10, 103004. [Google Scholar] [CrossRef]
- Muhlherr, C.; Shkolnikov, V.O.; Burkard, G. Magnetic resonance in defect spins mediated by spin waves. Phys. Rev. B 2019, 99, 195413. [Google Scholar] [CrossRef]
- Awschalom, D.D.; Du, C.R.; He, R.; Heremans, F.J.; Hoffmann, A.; Hou, J.; Kurebayashi, H.; Li, Y.; Liu, L.; Novosad, V.; et al. Quantum Engineering with Hybrid Magnonic Systems and Materials (Invited Paper). IEEE Trans. Quantum Eng. 2021, 2, 1–36. [Google Scholar] [CrossRef]
- Hensen, B.; Bernien, H.; Dreau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellan, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- MacQuarrie, E.R.; Gosavi, T.A.; Jungwirth, N.R.; Bhave, S.A.; Fuchs, G.D. Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond. Phys. Rev. Lett. 2013, 111, 227602. [Google Scholar] [CrossRef] [PubMed]
- Ovartchaiyapong, P.; Lee, K.W.; Myers, B.A.; Jayich, A.C.B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 2014, 5, 4429. [Google Scholar] [CrossRef] [PubMed]
- Barfuss, A.; Teissier, J.; Neu, E.; Nunnenkamp, A.; Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 2015, 11, 820–824. [Google Scholar] [CrossRef]
- Trifunovic, L.; Pedrocchi, F.L.; Loss, D. Long-Distance Entanglement of Spin Qubits via Ferromagnet. Phys. Rev. X 2013, 3, 041023. [Google Scholar] [CrossRef]
- Wang, X.C.; Xiao, Y.X.; Liu, C.P.; Lee-Wong, E.; McLaughlin, N.J.; Wang, H.F.; Wu, M.Z.; Wang, H.L.; Fullerton, E.E.; Du, C.R. Electrical control of coherent spin rotation of a single-spin qubit. npj Quantum Inf. 2020, 6, 78. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Tyberkevych, V.; Kwok, W.K.; Hoffmann, A.; Novosad, V. Hybrid magnonics: Physics, circuits, and applications for coherent information processing. J. Appl. Phys. 2020, 128, 130902. [Google Scholar] [CrossRef]
- Solanki, A.B.; Bogdanov, S.I.; Rahman, M.M.; Rustagi, A.; Dilley, N.R.; Shen, T.; Tong, W.; Debashis, P.; Chen, Z.; Appenzeller, J. Electric field control of interaction between magnons and quantum spin defects. Phys. Rev. Res. 2022, 4, L012025. [Google Scholar] [CrossRef]
- Labanowski, D.; Bhallamudi, V.P.; Guo, Q.C.; Purser, C.M.; McCullian, B.A.; Hammel, P.C.; Salahuddin, S. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond. Sci. Adv. 2018, 4, eaat6574. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, S.J.; Wolfowicz, G.; Anderson, C.P.; Bourassa, A.; Ma, H.; Ye, M.; Koolstra, G.; Satzinger, K.J.; Holt, M.V.; Heremans, F.J.; et al. Spin-phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 2019, 15, 490–495. [Google Scholar] [CrossRef]
- Hatanaka, D.; Asano, M.; Okamoto, H.; Kunihashi, Y.; Sanada, H.; Yamaguchi, H. On-Chip Coherent Transduction between Magnons and Acoustic Phonons in Cavity Magnomechanics. Phys. Rev. Appl. 2022, 17, 034024. [Google Scholar] [CrossRef]
- Durdaut, P.; Rubiola, E.; Friedt, J.-M.; Muller, C.; Spetzler, B.; Kirchhof, C.; Meyners, D.; Quandt, E.; Faupel, F.; McCord, J.; et al. Fundamental Noise Limits and Sensitivity of Piezoelectrically Driven Magnetoelastic Cantilevers. J. Microelectromech. Syst. 2020, 29, 1347–1361. [Google Scholar] [CrossRef]
- Urs, N.O.; Golubeva, E.; Röbisch, V.; Toxvaerd, S.; Deldar, S.; Knöchel, R.; Höft, M.; Quandt, E.; Meyners, D.; McCord, J. Direct Link between Specific Magnetic Domain Activities and Magnetic Noise in Modulated Magnetoelectric Sensors. Phys. Rev. Appl. 2020, 13, 24018. [Google Scholar] [CrossRef]
- Friedrich, R.-M.; Zabel, S.; Galka, A.; Lukat, N.; Wagner, J.-M.; Kirchhof, C.; Quandt, E.; McCord, J.; Selhuber-Unkel, C.; Siniatchkin, M. Magnetic particle mapping using magnetoelectric sensors as an imaging modality. Sci. Rep. 2019, 9, 2086. [Google Scholar] [CrossRef] [PubMed]
- Zaeimbashi, M.; Lin, H.; Dong, C.; Liang, X.; Nasrollahpour, M.; Chen, H.; Sun, N.; Matyushov, A.; He, Y.; Wang, X.; et al. NanoNeuroRFID: A Wireless Implantable Device Based on Magnetoelectric Antennas. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 206–215. [Google Scholar] [CrossRef]
- Hughes, G.B.; Josey, A.F.; Glasscock, M.E., III; Jackson, C.G.; Ray, W.A.; Sismanis, A. Clinical electroneurography: Statistical analysis of controlled measurements in twenty-two normal subjects. Laryngoscope 1981, 91, 1834–1846. [Google Scholar] [CrossRef]
- Zuo, S.; Schmalz, J.; Özden, M.-Ö.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive magnetoelectric sensing system for pico-tesla magnetomyography. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 971–984. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Reermann, J.; Durdaut, P.; Höft, M.; Schmidt, G.; Quandt, E.; Faupel, F. Influence of the quality factor on the signal to noise ratio of magnetoelectric sensors based on the delta-E effect. Appl. Phys. Lett. 2019, 114, 183504. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Quandt, E.; McCord, J.; Faupel, F. Magnetic Sensitivity of Bending-Mode Delta-E-Effect Sensors. Phys. Rev. Appl. 2019, 12, 64036. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, C.; Nan, T. Magnon-Phonon-Interaction-Induced Electromagnetic Wave Radiation in the Strong-Coupling Region. Phys. Rev. Appl. 2022, 18, 64050. [Google Scholar] [CrossRef]
- Rabiei, P.; Steier, W.H. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett. 2005, 86, 161115. [Google Scholar] [CrossRef]
- Churaev, M.; Wang, R.N.; Riedhauser, A.; Snigirev, V.; Blésin, T.; Möhl, C.; Anderson, M.H.; Siddharth, A.; Popoff, Y.; Drechsler, U.; et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 2023, 14, 3499. [Google Scholar] [CrossRef] [PubMed]
- Izuhara, T.; Gheorma, I.L.; Osgood, R.M.; Roy, A.N.U.; Bakhru, H.; Tesfu, Y.M.; Reeves, M.E. Single-crystal barium titanate thin films by ion slicing. Appl. Phys. Lett. 2003, 82, 616–618. [Google Scholar] [CrossRef]
- Levy, M.; Osgood, R.M.; Kumar, A.; Bakhru, H. Crystal ion slicing of single-crystal magnetic garnet films. J. Appl. Phys. 1998, 83, 6759–6761. [Google Scholar] [CrossRef]
- Guida, J.; Giribaldi, G.; Colombo, L.; Rinaldi, M.; Ghosh, S. Solidly Mounted Two-Dimensional Guided Modes in 30% Scandium Aluminum Nitride on Sapphire. In Proceedings of the 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 25–29 June 2023; pp. 2094–2097. [Google Scholar]
(a) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Material | Piezoelectric Coeff. (pC/N) | Relative Permittivity | Density (Kg/mm3) | Elastic Modulus (GPa) | Electromechanical Coupling Efficiency ) | Comments and Main Applications | |||
PZT | −243 [74] | = 574 [74] | 2440 [74] | 2870 [74] | 7500 [3] | = 23.5 [3] | 1.6 [74] | 20–35% [74] | Highly used bulk and thin films (nano-rods) as sensors, actuators, energy harvesters, and antennas. |
AlN | −2 [3] | =3.5–4.96 [3] | 9.2 [3] | 10.1 [3] | 3300 [3] | = 130, = 99 [3] | 0.025 ± 0.011 [75] | Thin-film bulk acoustic resonator (FBAR): 7% [76]; contour mode resonator (CMR): 2% [77]; contour mode Lamb wave resonator (CMLR) resonator: 5.33%~7.1% [78,79,80] | CMOS compatible, lead-free with very low loss. |
Al1-xScxN | [81] | [81] | - | [82] | 3530 (x = 0.14), 3560 (x = 0.26) [81,83], [82] | [84] | 0.025~0.1 [85] | Lamb wave resonator: 7.83~10.28% [86,87]; contour mode resonator (CMR): 3.2%~5% [88]; Sezawa SAW mode: 3.8%∼ 4.5% [89]; Rayleigh SAW: 2%~2.2% [90]; Thin-film bulk acoustic resonator (FBAR): 5% ~14% [91] | CMOS-compatible, lead-free, promising ferroelectric material [92,93,94,95,96]. |
(PMN)0.7-(PT)0.3 | = −1395 | 4963 | 1386 | 7800~7820 [97]. | = 28 | <1 | 62% | Typically used in piezoelectric transducers, sonar systems, and energy harvesters. Material properties from [98]. | |
(PZN)0.92–(PT)0.08 | = −1250 | = 2500 | 2900 | 7700 | 8315 | = 65 | 1–1.2 | 50% | Highest allows their use in ultrasonic devices in medical industry, actuators, and energy harvesters, among others. Material properties from [98] |
ZnO | = −5 [99] | = 12.4 [99] | 9.2 [3] | 12.6 [3] | 5665~5680 [100,101] | = 44 [102] | 0.025~0.05 for RF sputtered thin films [103,104,105]. ALD film: 0.0001~0.002 [106] | ZnO/SiC SAW resonator: 1.5%~3% [107]; FBAR ZnO resonator: 0.5%~3.4% [101]; Lamb wave resonator: 12.4%~14% [108,109] | Lead free, bio-compatible, and non-toxic [110] |
(b) | |||||||||
Material | Piezoelectric Coeff. (pC/N) | Relative Permittivity | Density (Kg/m3) | Elasticity (GPa) | Orientation | Electromechanical Coupling Efficiency () | Comments | ||
= | |||||||||
LiNbO3 | [3] | 84 [3] | 30 [3] | 4650 [26] | = 74.8, [3] | 0.002–0.004 [111] | 41° Y cut-X propagating | Shear-horizontal SAW: 33.54% [112] | High electromechanical coupling, low dielectric and acoustic loss, used for SAW sensors, resonators, and filters [113] |
X-cut Y propagating | coupled shear mode surface acoustic wave (CS-SAW) on LiNbO3/SiC: 34% [114] | ||||||||
128° Y cut-X propagating | Rayleigh SAW: 5.5% [113]; first-order antisymmetric (A1) Lamb mode: 46.4% [115] | ||||||||
LiTaO3 | [3] | 51 [3] | 45 [3] | 7465 [26] | = 93, [3] | 0.06 [116] | Z cut | Longitudinal BAW: 2.7% [117] | Used as a substrate material for BAW and SAW devices [118]; Used for shear horizontal wave based magnetoacoustic non-reciprocal RF devices |
X cut, 112.2°–Y propagating | FBAR: 17.4% [117]; Fast shear BAW: 21.6% [117] | ||||||||
36 ° Y Cut–X propagating | Longitudinal BAW: 9.9% [117]; Leaky-SAW (L-SAW): 5.7% [119] | ||||||||
42° Y Cut X–propagating | Longitudinal BAW:9.0% [117]; shear-horizontal SAW (SH-SAW) on LiTaO3/SiC: 5.58% [120] | ||||||||
Quartz | = 2.31, = 0.727 [118] | 4.52 [118] | 4.68 [118] | 2560 [26] | = 40.35, [121] | 0.01 [122,123] | ST-cut (42°75′ Y-cut, X-propagating) | Calculated for temperature sensor 0.14% [124] | Low acoustic loss, and high resonant frequency stability over a broad range of temperatures and pressures, used for BAW oscillators (typically AT-cut quartz with thickness shear mode) for frequency control in communication systems and clocks and SAW filters (ST-cut) [118] |
AT-quartz (35°15′ Z-cut, X-propagating) | Bulk acoustic wave devices 8.8% [125] |
(ppm) | /d33, m (ppm/Oe) | Crystallography | Fabrication Method | Thermal Stability (°C) * | Comments/Ref. | |
---|---|---|---|---|---|---|
Terfenol-D Tb0.27Dy0.73Fe2 | 1840 | 2.4 | Single crystal, bulk | Casting | 650 | highest [133,138,139] |
Galfenol (Fe81Ga19) | 395 | 3 | Single crystal, bulk | Casting | 700 | [134,140] |
FeSiBMn (2605SA1 Metglas, Inc) | 27 | - | Amorphous, ribbons | Melt spinning | 395 | Low loss, high permeability [135,141] |
(Fe90Co10)78Si12B10 | 30 | 6.3 | Amorphous, thin film | Magnetron sputtering | - | Amorphous thin film [10] |
(Co50Fe50)95.2C4.8 | 60 | 10.3 | Amorphous, thin film | Magnetron sputtering | 500 | [142] |
(Fe81Ga19)88B12 | 75 | 7 | Amorphous, thin film, as deposited | Magnetron sputtering | - | [143,144] |
(Fe81Ga19)88B12 | 75 | 12 | Amorphous, thin film, annealed @280°C for 120 min | Magnetron sputtering | - | Highest piezomagnetic coefficient [140] |
(Fe80Ga20)89C11 | 81.2 | 9.71 | Amorphous, thin film | Magnetron sputtering | - | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, B.; Velvaluri, P.; Liu, Y.; Sun, N.-X. Magnetoelectric BAW and SAW Devices: A Review. Micromachines 2024, 15, 1471. https://doi.org/10.3390/mi15121471
Luo B, Velvaluri P, Liu Y, Sun N-X. Magnetoelectric BAW and SAW Devices: A Review. Micromachines. 2024; 15(12):1471. https://doi.org/10.3390/mi15121471
Chicago/Turabian StyleLuo, Bin, Prasanth Velvaluri, Yisi Liu, and Nian-Xiang Sun. 2024. "Magnetoelectric BAW and SAW Devices: A Review" Micromachines 15, no. 12: 1471. https://doi.org/10.3390/mi15121471
APA StyleLuo, B., Velvaluri, P., Liu, Y., & Sun, N.-X. (2024). Magnetoelectric BAW and SAW Devices: A Review. Micromachines, 15(12), 1471. https://doi.org/10.3390/mi15121471