Design of Photonic Crystal Biosensors for Cancer Cell Detection
Abstract
1. Introduction
2. Sensor Performance Evaluation
3. Design and Performance Analysis of Biosensors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Udagawa, H.; Takahashi, S.; Hirao, M. Liposomal eribulin for advanced adenoid cystic carcinoma, gastric cancer, esophageal cancer, and small cell lung cancer. Cancer Med. 2023, 12, 1269–1278. [Google Scholar] [CrossRef]
- Nadig, V.; Herrmann, K.; Mottaghy, F.M. Hybrid total-body pet scanners—Current status and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 445–459. [Google Scholar] [CrossRef]
- Yan, S.M.; Nan, Y.; Li, X.T. The Association between the Differential Expression of lncRNA and Type 2 Diabetes Mellitus in People with Hypertriglyceridemia. Int. J. Mol. Sci. 2023, 24, 4279. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ren, G.H.; Feleppa, T. Self-calibrating programmable photonic integrated circuits. Nat. Photonics 2022, 16, 595–602. [Google Scholar] [CrossRef]
- Pang, Y.; Xu, Y.; Zhao, X. Stabilized narrow-linewidth Brillouin random fiber laser with a double-coupler fiber ring resonator. J. Light. Technol. 2022, 40, 2988–2995. [Google Scholar] [CrossRef]
- Yashaswini, P.R.; Gayathri, H.N.; Srikanth, P.C. Performance analysis of photonic crystal based biosensor for the detection of bio-molecules in urine and blood. Mater. Today Proc. 2023, 80, 2247–2254. [Google Scholar] [CrossRef]
- Malek, C.; Abdallah, S.A.O.; Awasthi, S.K. Biophotonic sensor for swift detection of malignant brain tissues by using nanocomposite YBa2Cu3O7/dielectric material as a 1D defective photonic crystal. Sci. Rep. 2023, 13, 8115. [Google Scholar] [CrossRef]
- Zouache, T.; Hocini, A.A. 2D photonic crystal indium arsenide based with dual micro-cavities coupled to a waveguide as a platform for a high sensitivity pressure sensor. Opt. Quantum Electron. 2023, 55, 238. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L. High-sensitivity spectroscopic gas sensor using optimized H1 photonic crystal microcavities. JOSA B 2020, 37, A277–A284. [Google Scholar] [CrossRef]
- Vijaya-Shanthi, K.; Robinson, S. Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 2014, 4, 248–253. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L. Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 2019, 95, 015502. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Cassan, E. Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt. Quantum Electron. 2020, 52, 260. [Google Scholar] [CrossRef]
- Ineda, M.F.; Chan, L.L.Y.; Kuhlenschmidt, T. Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors. IEEE Sens. J. 2009, 9, 470–477. [Google Scholar]
- Parandin, F.; Heidari, F.; Aslinezhad, M. Design of 2D photonic crystal biosensor to detect blood components. Opt. Quantum Electron. 2022, 54, 618. [Google Scholar] [CrossRef]
- Krishnamoorthi, B.; Elizabeth, C.B.; Michael, M. A novel rhombic shaped photonic crystal bio-sensor for identifying disorders in the blood samples. Opt. Quantum Electron. 2023, 55, 312. [Google Scholar] [CrossRef]
- Olyaee, S.; Selfouri, M.; Mohsenirad, H. Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor. J. Mod. Opt. 2016, 63, 1274–1279. [Google Scholar]
- Danie, M.; Kiani, B. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct.-Fundam. Appl. 2018, 31, 89–98. [Google Scholar] [CrossRef]
- Jindal, S.; Sobti, S.; Kumar, M. Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J. 2016, 16, 3705–3710. [Google Scholar] [CrossRef]
- Mohamadi, A.; Seifouri, M.; Karami, R. Proposal of a high-Q biosensor using a triangular photonic crystal filter. Opt. Quantum Electron. 2021, 53, 471. [Google Scholar] [CrossRef]
- Maache, M.; Fazea, Y.; Bilehassan, I. High-sensitivity capsule-shaped sensor based on 2D photonic crystals. Symmetry 2020, 12, 1480. [Google Scholar] [CrossRef]
- White, I.M.; Fan, X. On the performance quantification of resonant refractive index sensors. Opt. Express 2008, 16, 1020–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhao, Y.; Wu, D. Fiber Loop Ring-Down Refractive Index Sensor Based on High- Q Photonic Crystal Cavity. IEEE Sens. J. 2014, 14, 1878–1885. [Google Scholar] [CrossRef]
- Yang, D.; Tian, H.; Wu, N. Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity. Sens. Actuators A Phys. 2013, 199, 30–36. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Cassan, E. Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik 2015, 126, 3467–3471. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Colak, I. Design of a nano-sensor for cancer cell detection based on a ternary photonic crystal with high sensitivity and low detection limit. Chin. J. Phys. 2022, 77, 1168–1181. [Google Scholar] [CrossRef]
- Sajan, S.C.; Singh, A.; Sharma, P.K. Silicon Photonics Biosensors for Cancer Cells Detection-A Review. IEEE Sens. J. 2023, 23, 3366–3377. [Google Scholar] [CrossRef]
- Sani, M.H.; Ghanbari, A.; Saghaei, H. High-sensitivity biosensor for simultaneous detection of cancer and diabetes using photonic crystal microstructure. Opt. Quantum Electron. 2022, 54, 1–14. [Google Scholar] [CrossRef]
- Baratye, F.; Hamedi, S. Label-Free cancer cell biosensor based on photonic crystal ring resonator. Results Phys. 2023, 46, 106317. [Google Scholar] [CrossRef]
- Ali, L.; Mohammed, M.U.; Khan, M. High-quality optical ring resonator-based biosensor for cancer detection. IEEE Sens. J. 2019, 20, 1867–1875. [Google Scholar] [CrossRef]
- Asuvaran, A.; Elathrasan, G. Design of two-dimensional photonic crystal-based biosensor for abnormal tissue analysis. Silicon 2022, 14, 7203–7210. [Google Scholar] [CrossRef]
- Kumar, R.; Bharti, G.K.; Bindal, R.K. Modeling and simulation of an optical sensor for cancer cell detection. Int. J. Electr. Electron. Res. 2022, 10, 792–795. [Google Scholar] [CrossRef]
r1 (um) | r2 (um) | r3 (um) | r4 (um) | Resonant Wavelength (nm) | Q | Transmittance (%) |
---|---|---|---|---|---|---|
0.2 | 0.3 | 0.3 | 0.3 | 1502.07 | 639 | 71.2 |
0.25 | 0.3 | 0.3 | 0.3 | 1455.29 | 537 | 55.8 |
0.3 | 0.3 | 0.3 | 0.3 | 1470.81 | 647 | 97.6 |
0.35 | 0.3 | 0.3 | 0.3 | 1493.28 | 496 | 88.26 |
0.4 | 0.3 | 0.3 | 0.3 | 1508.44 | 603 | 69.5 |
0.3 | 0.2 | 0.3 | 0.3 | 1524.16 | 554 | 47.8 |
0.3 | 0.25 | 0.3 | 0.3 | 1459.22 | 583 | 87.8 |
0.3 | 0.35 | 0.3 | 0.3 | 1493.55 | 551 | 99.96 |
0.3 | 0.4 | 0.3 | 0.3 | 1516.45 | 417 | 61 |
0.3 | 0.3 | 0.2 | 0.3 | 1491.76 | 438 | 93 |
0.3 | 0.3 | 0.25 | 0.3 | 1478.74 | 573 | 97 |
0.3 | 0.3 | 0.35 | 0.3 | 1488.78 | 633 | 98.74 |
0.3 | 0.3 | 0.4 | 0.3 | 1470.65 | 570 | 89.2 |
0.3 | 0.3 | 0.3 | 0.2 | 1490.15 | 545.84 | 88 |
0.3 | 0.3 | 0.3 | 0.25 | 1478.47 | 555.81 | 95.36 |
0.3 | 0.3 | 0.3 | 0.35 | 1503.24 | 538 | 55 |
0.3 | 0.3 | 0.3 | 0.4 | 1469.58 | 980 | 99.62 |
Detection Source | Refractive Index | Resonant Wavelength (nm) | Q | Wavelength Shift (nm) | S (nm/RIU) | DL (RIU) |
---|---|---|---|---|---|---|
S1 as the detection source. | 1.35 | 1481 | 510 | - | - | - |
1.39 | 1517.63 | 702 | 36.63 | 915.75 | 0.000236 | |
1.395 | 1518.95 | 534.84 | 37.95 | 843.3 | 0.000336 | |
1.399 | 1519.84 | 512 | 38.84 | 792 | 0.0003748 | |
1.401 | 1520.89 | 531 | 39.89 | 782.15 | 0.000366 | |
S2 as the detection source. | 1.35 | 1519.84 | 853 | - | - | - |
1.39 | 1547.45 | 650.2 | 27.61 | 690.25 | 0.000344 | |
1.395 | 1548.09 | 586 | 28.25 | 627.8 | 0.000421 | |
1.399 | 1548.61 | 543 | 28.77 | 587.14 | 0.000485 | |
1.401 | 1549.3 | 564 | 29.46 | 577.64 | 0.000475 | |
S3 as the detection source. | 1.35 | 1457.65 | 681 | - | - | - |
1.39 | 1469.87 | 639 | 12.22 | 305.5 | 0.000792 | |
1.395 | 1472.49 | 779 | 14.84 | 329.77 | 0.000573 | |
1.399 | 1474.49 | 708 | 16.84 | 343.63 | 0.00061 | |
1.401 | 1475.29 | 602 | 17.64 | 345.88 | 0.000708 | |
S4 as the detection source. | 1.35 | 1469.37 | 489 | - | - | - |
1.39 | 1493.73 | 682 | 24.36 | 609 | 0.00036 | |
1.395 | 1495.03 | 695 | 25.66 | 570.22 | 0.00038 | |
1.399 | 1495.73 | 688 | 26.36 | 537.95 | 0.000404 | |
1.401 | 1496.05 | 715 | 26.68 | 523.13 | 0.0004 |
References | Sample Detection | Q | S (nm/RIU) | Transmission Power (%) | DL |
---|---|---|---|---|---|
Baratye et al. [31] | Cancer cell | 3803.55 | 308.5 | 98.78 | - |
Khan et al. [32] | Cancer cell | 1200 | 227 | - | - |
Asuvarana et al. [33] | Cancer cell | 573 | 4615 | 95 | 0.0013 |
Bindal et al. [34] | Cancer cell | 650 | 850 | 70 | - |
This work | Cancer cell | 980 | 915.75 | 99.62 | 0.000236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xiang, Y.; Qi, X. Design of Photonic Crystal Biosensors for Cancer Cell Detection. Micromachines 2023, 14, 1478. https://doi.org/10.3390/mi14071478
Yang Y, Xiang Y, Qi X. Design of Photonic Crystal Biosensors for Cancer Cell Detection. Micromachines. 2023; 14(7):1478. https://doi.org/10.3390/mi14071478
Chicago/Turabian StyleYang, Yang, Yang Xiang, and Xubin Qi. 2023. "Design of Photonic Crystal Biosensors for Cancer Cell Detection" Micromachines 14, no. 7: 1478. https://doi.org/10.3390/mi14071478
APA StyleYang, Y., Xiang, Y., & Qi, X. (2023). Design of Photonic Crystal Biosensors for Cancer Cell Detection. Micromachines, 14(7), 1478. https://doi.org/10.3390/mi14071478