A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor
Abstract
:1. Introduction
2. Design and Modeling
3. Sensor Fabrication
4. Packaging and Testing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Temperature (°C) | −55 | 25 | 100 | 200 | 300 | 350 | |
---|---|---|---|---|---|---|---|
Pressure (kPa) | |||||||
0 | −0.17022 | −0.12524 | −0.10624 | −0.12367 | −0.10237 | −0.09993 | |
100 | −0.08267 | −0.05019 | −0.04604 | −0.05929 | −0.03393 | −0.04557 | |
300 | −0.00936 | −0.01661 | −0.01561 | −0.00728 | −0.02621 | −0.01098 | |
500 | 0.069758 | 0.050221 | 0.045523 | 0.052056 | 0.026293 | 0.067269 | |
700 | 0.118444 | 0.100343 | 0.088672 | 0.091612 | 0.07879 | 0.076475 | |
900 | 0.106272 | 0.083635 | 0.059906 | 0.071834 | 0.065666 | 0.062666 | |
1100 | 0.048458 | 0.050221 | 0.013161 | 0.032278 | 0.030667 | 0.048858 | |
1300 | −0.055 | −0.03331 | −0.03358 | −0.04683 | −0.04808 | −0.01098 | |
1500 | −0.18889 | −0.13356 | −0.13427 | −0.14572 | −0.12683 | −0.09383 |
Appendix B
Pressure (kPa) | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | |
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | |||||||||
−55 | −0.14 | 4.23 | 8.57 | 12.9 | 17.25 | 21.61 | 25.97 | 30.34 | |
25 | −0.63 | 3.34 | 7.27 | 11.2 | 15.15 | 19.1 | 23.05 | 27.02 | |
350 | −0.88 | 2.02 | 4.89 | 7.77 | 10.65 | 13.53 | 16.43 | 19.32 | |
25 | −0.62 | 3.35 | 7.29 | 11.23 | 15.18 | 19.14 | 23.09 | 27.06 | |
Pressure (kPa) | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | |
Temperature (°C) | |||||||||
−55 | 34.73 | 39.11 | 43.51 | 47.91 | 52.32 | 56.74 | 61.17 | 65.59 | |
25 | 30.98 | 34.96 | 38.94 | 42.92 | 46.91 | 50.91 | 54.91 | 58.92 | |
350 | 22.22 | 25.12 | 28.02 | 30.92 | 33.83 | 36.74 | 39.66 | 42.57 | |
25 | 31.04 | 35.02 | 39 | 43 | 47 | 50.99 | 55 | 59.01 |
References
- Smith, C.S. Piezoresistance Effect in Germanium and Silicon. Phys. Rev. 1954, 94, 42–49. [Google Scholar] [CrossRef]
- Li, X.; Lu, D. A micromachined piezoresistive angular rate sensor with a composite beam structure. Sens. Actuators A Phys. 1999, 72, 217–223. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. A high-performance dual-cantilever high-shock accelerometer single sided micromachined in (111) silicon wafers. J. Microelectromech. Syst. 2010, 19, 1515–1520. [Google Scholar] [CrossRef]
- Yang, H.; Lu, D. A pressure transducer with a single-sided multilevel structure by maskless etching technology. Mechatronics 1998, 8, 585–593. [Google Scholar] [CrossRef]
- Bock, W.J.; Eftimov, T.; Molinar, G.F.; Wisniewski, R. Free active element bulk-modulus high-pressure transducer based on fiber-optic displacement sensor. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 19–21 May 1997. [Google Scholar]
- Morten, B.; de Cicco, G.; Prudenziati, M. Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films. Sens. Actuators A Phys. 1992, 31, 153–158. [Google Scholar] [CrossRef]
- Mitrakos, V.; Macintyre, L.; Denison, F.; Hands, P.; Desmulliez, M. Design, manufacture and testing of capacitive pressure sensors for low-pressure measurement ranges. Micromachines 2017, 8, 41. [Google Scholar] [CrossRef]
- Eaton, W.; Smith, J. Micromachined pressure sensors: Review and recent developments. Smart Mater. Struct. 1997, 6, 530–539. [Google Scholar] [CrossRef]
- Fleming, W. Overview of automotive sensors. IEEE Sens. J. 2001, 1, 296–308. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, J.; Ji, M.; Zhou, Y.; Wang, D. An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance. Micromachines 2022, 13, 2250. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Eriksen, H.; Childress, K.; Fink, A.; Hoffman, M. High Temperature Smart-Cut SOI Pressure Sensor. Sens. Actuators A Phys. 2009, 154, 255–260. [Google Scholar] [CrossRef]
- Li, S.; Liang, T.; Wang, W.; Hong, Y.; Zheng, T.; Xiong, J. A Novel SOI Pressure Sensor for High Temperature Application. J. Semicond. 2015, 36, 014014. [Google Scholar] [CrossRef]
- Meng, Q.; Lu, Y.; Wang, J.; Chen, D.; Chen, J. A piezoresistive pressure sensor with optimized positions and thickness of piezoresistors. Micromachines 2021, 12, 1095. [Google Scholar] [CrossRef]
- Chung, G. Novel pressure sensors with multilayer SOI structures. Electron. Lett. 1990, 26, 775–777. [Google Scholar] [CrossRef]
- Chung, G.; Suzaki, T. High-performance pressure sensors using double siliconon-insulator structures. Rev. Sci. Instrum. 1991, 62, 1341–1346. [Google Scholar] [CrossRef]
- Chung, G. Thin SOI structures for sensing and integrated circuit applications. Sens. Actuators A Phys. 1993, 39, 241–251. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology. J. Micromech. Microeng. 2013, 23, 045027. [Google Scholar] [CrossRef]
- Anthony, D.; Alan, H. Ultra high temperature, miniature, SOI sensors for extreme environments. In Proceedings of the IMAPS International HiTEC 2004 Conference, Santa Fe, NM, USA, 17–20 May 2004. [Google Scholar]
- Chiang, H.; Chiang, K. Investigation of the hysteresis phenomenon of a silicon-based piezoresistive pressure sensor. In Proceedings of the 2007 International Microsystems, Packaging, Assembly and Circuits Technology, Taipei, Taiwan, 1–3 October 2007; pp. 165–168. [Google Scholar]
- Bao, M. Analysis and Design Principles of MEMS Devices, 1st ed.; Elsevier Science: Shanghai, China, 2005; pp. 265–274. [Google Scholar]
- Wang, J.C.; Xia, X.Y.; Li, X.X. Monolithic integration of pressure plus acceleration composite TPMS sensor with a single-Sided micromachining technology. IEEE/ASME J. Microelectromech. Syst. 2012, 21, 284–292. [Google Scholar] [CrossRef]
- Yao, Z. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit. Sensors 2016, 16, 913. [Google Scholar] [CrossRef]
- Yao, Z. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor. Sensors 2016, 16, 1142. [Google Scholar] [CrossRef]
- Li, C.; Cordovilla, F.; Jagdheesh, R.; Ocaña, J.L. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy. Sensors 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Li, W.; Chen, C.; Wu, S.; Pan, P.; Sun, K.; Liu, M.; Wang, J.; Li, X. A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor. Micromachines 2023, 14, 981. https://doi.org/10.3390/mi14050981
Li P, Li W, Chen C, Wu S, Pan P, Sun K, Liu M, Wang J, Li X. A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor. Micromachines. 2023; 14(5):981. https://doi.org/10.3390/mi14050981
Chicago/Turabian StyleLi, Peng, Wei Li, Changnan Chen, Sheng Wu, Pichao Pan, Ke Sun, Min Liu, Jiachou Wang, and Xinxin Li. 2023. "A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor" Micromachines 14, no. 5: 981. https://doi.org/10.3390/mi14050981
APA StyleLi, P., Li, W., Chen, C., Wu, S., Pan, P., Sun, K., Liu, M., Wang, J., & Li, X. (2023). A Single-Side Micromachined MPa-Scale High-Temperature Pressure Sensor. Micromachines, 14(5), 981. https://doi.org/10.3390/mi14050981