A Parametric Study on a Paper-Based Bi-Material Cantilever Valve
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Bi-Material Cantilever
2.3. Environmental Chamber
3. Results and Discussion
3.1. Effect of Key Parameters on B-MaC’s Activation Time
3.1.1. Paper Direction
3.1.2. Cantilever Width
3.1.3. Sample Volume
3.1.4. Paper Type
3.1.5. Tape Type
3.2. Effect of Temperature and Humidity
3.2.1. Imbibition through Filter Paper Strips
3.2.2. Estimation of the Wetted Length of B-MaC
3.2.3. Imbibition through B-MaC
3.3. Effect of Temperature and Humidity of B-MaC Deflection
3.4. Application of the B-MaC in Microfluidics Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, W.; Irudayaraj, J. Paper-Based Test for Rapid On-Site Screening of SARS-CoV-2 in Clinical Samples. Biosensors 2021, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, Y.-J.; Ahn, Y.-J.; Kim, M.; Lee, G.-J. In Situ Detection of Hydrogen Sulfide in 3D-Cultured, Live Prostate Cancer Cells Using a Paper-Integrated Analytical Device. Chemosensors 2022, 10, 27. [Google Scholar] [CrossRef]
- Soum, V.; Park, S.; Brilian, A.I.; Kwon, O.-S.; Shin, K. Programmable Paper-Based Microfluidic Devices for Biomarker Detections. Micromachines 2019, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhao, D.; Li, W.; Li, X.; Chang, Y.; Zhang, Q.; Liu, M. An Origami Paper-Based Analytical Device for Rapid and Sensitive Analysis of Acrylamide in Foods. Micromachines 2021, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.Z.; Li, S.; Wang, S.; Lu, X. Detecting Chemical Hazards in Foods Using Microfluidic Paper-Based Analytical Devices (μPADs): The Real-World Application. Micromachines 2018, 9, 32. [Google Scholar] [CrossRef]
- Qi, J.; Fan, X.-X.; Deng, D.-M.; He, H.-B.; Luo, L.-Q. Progress in Rapid Detection Techniques Using Paper-Based Platforms for Food Safety. Chin. J. Anal. Chem. 2020, 48, 1616–1624. [Google Scholar] [CrossRef]
- Charbaji, A.; Smith, W.; Anagnostopoulos, C.; Faghri, M. Zinculose: A new fibrous material with embedded zinc particles. Eng. Sci. Technol. Int. J. 2021, 24, 571–578. [Google Scholar] [CrossRef]
- Heidari-Bafroui, H.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater. Sensors 2021, 21, 3125. [Google Scholar] [CrossRef]
- Heidari-Bafroui, H.; Ribeiro, B.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. Portable infrared lightbox for improving the detection limits of paper-based phosphate devices. Measurement 2020, 173, 108607. [Google Scholar] [CrossRef]
- Shriver-Lake, L.C.; Zabetakis, D.; Dressick, W.J.; Stenger, D.A.; Trammell, S.A. Paper-Based Electrochemical Detection of Chlorate. Sensors 2018, 18, 328. [Google Scholar] [CrossRef] [Green Version]
- Tenda, K.; Ota, R.; Yamada, K.; Henares, T.G.; Suzuki, K.; Citterio, D. High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis. Micromachines 2016, 7, 80. [Google Scholar] [CrossRef]
- Charbaji, A.; Heidari-Bafroui, H.; Anagnostopoulos, C.; Faghri, M. A New Paper-Based Microfluidic Device for Improved Detection of Nitrate in Water. Sensors 2020, 21, 102. [Google Scholar] [CrossRef] [PubMed]
- Altahan, M.F.; Esposito, M.; Achterberg, E.P. Improvement of On-Site Sensor for Simultaneous Determination of Phosphate, Silicic Acid, Nitrate plus Nitrite in Seawater. Sensors 2022, 22, 3479. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.D.; Coleman, D.E. Statistical Methods for Detection and Quantification of Environmental Contamination; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem. 2021, 336, 129681. [Google Scholar] [CrossRef]
- Henderson, C.A.; McLiesh, H.; Then, W.L.; Garnier, G. Activity and Longevity of Antibody in Paper-Based Blood Typing Diagnostics. Front. Chem. 2018, 6, 193. [Google Scholar] [CrossRef]
- Charbaji, A.; Heidari-Bafroui, H.; Anagnostopoulos, C.; Faghri, M. A Practical System for the Quantitative Determination of Nitrate and Nitrite in the Field. In Proceedings of the 6th International Microfluidics Conference, Las Vegas, NV, USA, 26 March 2021. [Google Scholar]
- Wang, H.; Xu, K.; Xu, H.; Huang, A.; Fang, Z.; Zhang, Y.; Wang, Z.; Lu, K.; Wan, F.; Bai, Z.; et al. A One-Dollar, Disposable, Paper-Based Microfluidic Chip for Real-Time Monitoring of Sweat Rate. Micromachines 2022, 13, 414. [Google Scholar] [CrossRef]
- Tran, B.T.; Rijiravanich, P.; Puttaraksa, N.; Surareungchai, W. Wax gates in laminated microfluidic paper-based immunosensors. Microchem. J. 2022, 178, 107343. [Google Scholar] [CrossRef]
- Fu, E.; Downs, C. Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 2017, 17, 614–628. [Google Scholar] [CrossRef]
- Vaquer, A.; Barón, E.; de la Rica, R. Dissolvable Polymer Valves for Sweat Chrono-Sampling in Wearable Paper-Based Analytical Devices. ACS Sens. 2022, 7, 488–494. [Google Scholar] [CrossRef]
- Kim, T.H.; Hahn, Y.K.; Kim, M.S. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines 2020, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Papatheodorou, S.A.; Tsironi, T.; Giannakourou, M.; Halvatsiotis, P.; Houhoula, D. Application of microfluidic paper-based analytical devices ( μPADs ) for food microbial detection. J. Sci. Food Agric. 2022, 102, 5577–6174. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Iwasaki, W.; Morita, N.; Motomura, T.; Takemura, K.; Nagano, M.; Nakanishi, Y.; Nakashima, Y. Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices. Micromachines 2022, 13, 690. [Google Scholar] [CrossRef] [PubMed]
- Fratzl, M.; Chang, B.S.; Oyola-Reynoso, S.; Blaire, G.; Delshadi, S.; Devillers, T.; Ward, I.T.; Dempsey, N.M.; Bloch, J.-F.; Thuo, M.M. Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices. ACS Omega 2018, 3, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-T.; Tsai, C.-H.; Hsu, J.-C.; Lu, Y.-W. Microfluidic Time-Delay Valve Mechanism on Paper-Based Devices for Automated Competitive ELISA. Micromachines 2019, 10, 837. [Google Scholar] [CrossRef]
- Catalan-Carrio, R.; Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Predicting Dimensions in Microfluidic Paper Based Analytical Devices. Sensors 2020, 21, 101. [Google Scholar] [CrossRef]
- Jang, I.; Berg, K.E.; Henry, C.S. Viscosity measurements utilizing a fast-flow microfluidic paper-based device. Sens. Actuators B Chem. 2020, 319, 128240. [Google Scholar] [CrossRef]
- Chen, H.; Cogswell, J.; Anagnostopoulos, C.; Faghri, M. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 2012, 12, 2909–2913. [Google Scholar] [CrossRef]
- Kumar, A.; Heidari-Bafroui, H.; Charbaji, A.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. Numerical and Experimental Modeling of Paper-Based Actuators. In Proceedings of the 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, Online, 1–15 July 2021; p. 15. [Google Scholar]
- Charbaji, A.; Heidari-Bafroui, H.; Kumar, A.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. Characterization and Modeling of Paper-based Bi-Material Actuator Cantilever; Application in Phosphate Detection. In Proceedings of the Innovations in Microfluidics, Boston, MA, USA, 18–19 March 2021. [Google Scholar]
- Smith, W.; Rahmani, N.; Charbaji, A.; Lemos, N.; Anagnostopoulos, C.; Faghri, M.; Hong, C. A Fluidically Controlled Bi-Material Actuator For Automation of Paper-based Assay. In Proceedings of the International Symposium on Thermal Effects in Gas flows in Microscale, Ettlingen, Germany, 24–25 October 2019. [Google Scholar]
- Ma, J.; Zhang, C.; Xi, F.; Chen, W.; Jiao, K.; Du, Q.; Bai, F.; Liu, Z. Experimental Study on the Influence of Environment Conditions on the Performance of Paper-Based Microfluidic Fuel Cell. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, J.; Zhao, Y.; Qu, Z.; Xu, F. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl. Therm. Eng. 2015, 88, 280–287. [Google Scholar] [CrossRef]
- Noh, H.; Phillips, S.T. Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Anal. Chem. 2010, 82, 4181–4187. [Google Scholar] [CrossRef]
- Songok, J.; Tuominen, M.; Teisala, H.; Haapanen, J.; Mäkelä, J.; Kuusipalo, J.; Toivakka, M. Paper-Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Appl. Mater. Interfaces 2014, 6, 20060–20066. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.-L.; Zhang, G.-R.; Venter, T.; Biesalski, M.; Etzold, B.J. Towards best practices for improving paper-based microfluidic fuel cells. Electrochim. Acta 2019, 298, 389–399. [Google Scholar] [CrossRef]
- Garg, M.; Apostolopoulou-Kalkavoura, V.; Linares, M.; Kaldéus, T.; Malmström, E.; Bergström, L.; Zozoulenko, I. Moisture uptake in nanocellulose: The effects of relative humidity, temperature and degree of crystallinity. Cellulose 2021, 28, 9007–9021. [Google Scholar] [CrossRef]
- Walji, N.; Macdonald, B.D. Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices. Micromachines 2016, 7, 73. [Google Scholar] [CrossRef]
- Kasetsirikul, S.; Clack, K.; Shiddiky, M.J.A.; Nguyen, N.-T. Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm® Hot Pressing. Micromachines 2021, 13, 48. [Google Scholar] [CrossRef]
- Castro, C.; Rosillo, C.; Tsutsui, H. Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluid. Nanofluid. 2017, 21, 21. [Google Scholar] [CrossRef]
- Bajpai, P. Biermann’s Handbook of Pulp and Paper; Elsevier: Oxford, UK, 2018. [Google Scholar]
- Cassidy, H.G. Investigation of Paper Chromatography. Anal. Chem. 1952, 24, 1415–1421. [Google Scholar] [CrossRef]
- Elizalde, E.; Urteaga, R.; Berli, C.L.A. Precise capillary flow for paper-based viscometry. Microfluid. Nanofluid. 2016, 20, 135. [Google Scholar] [CrossRef]
- Xu, Y.; Enomae, T. Paper substrate modification for rapid capillary flow in microfluidic paper-based analytical devices. RSC Adv. 2014, 4, 12867–12872. [Google Scholar] [CrossRef]
- Betancur, V.; Sun, J.; Wu, N.; Liu, Y. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing. Micromachines 2017, 8, 367. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Jafry, A.T.; Lee, J. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Molecules 2019, 24, 2869. [Google Scholar] [CrossRef] [PubMed]
- Gerbers, R.; Foellscher, W.; Chen, H.; Anagnostopoulos, C.; Faghri, M. A new paper-based platform technology for point-of-care diagnostics. Lab Chip 2014, 14, 4042–4049. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Gabriel, E.F.M.; Coltro, W.; Garcia, C.D. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 2014, 139, 2127–2132. [Google Scholar] [CrossRef] [PubMed]
- Toley, B.J.; McKenzie, B.; Liang, T.; Buser, J.R.; Yager, P.; Fu, E. Tunable-Delay Shunts for Paper Microfluidic Devices. Anal. Chem. 2013, 85, 11545–11552. [Google Scholar] [CrossRef]
- Song, K.; Huang, R.; Hu, X. Imbibition of Newtonian Fluids in Paper-like Materials with the Infinitesimal Control Volume Method. Micromachines 2021, 12, 1391. [Google Scholar] [CrossRef]
- Fernandes, S.C.; Walz, J.A.; Wilson, D.; Brooks, J.; Mace, C.R. Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Anal. Chem. 2017, 89, 5654–5664. [Google Scholar] [CrossRef] [Green Version]
Paper Type | Thickness (μm) | Average Pore Size (μm) | Basis Weight (g/m2) | Parameter |
---|---|---|---|---|
Whatman grade 1 chromatography | 180 | 11 | 87 | 130 mm/30 min flow rate |
Whatman filter papers grade 1 | 180 | 11 | 87 | 0.25 psi wet burst 150 s/100 mL speed (Herzberg) |
Whatman filter papers grade 4 | 210 | 20–25 | 92 | 0.22 psi wet burst 37 s/100 mL speed (Herzberg) |
Whatman filter papers grade 41 | 220 | 20–25 | 85 | 0.22 psi wet burst 54 s/100 mL speed (Herzberg) |
Tape Type | Thickness (μm) | Tensile Strength (N/cm) | Adhesive |
---|---|---|---|
Scotch® Tape 600 | 58 | 49 | Pressure sensitive acrylic |
Scotch® Heavy Duty Shipping Packaging | 78 | 82 | Thermosetable Rubber Resin |
Duck Brand HD Clear High-Performance Packaging Tape | 66 | 54 | Pressure sensitive acrylic |
Experiment | Fixed Conditions | Variable Conditions | Method |
---|---|---|---|
Experiment 1 | Temperature and Humidity | Paper machine direction, paper width, sample volume, paper type, and tape type | one-factor-at-a-time |
Experiment 2 | Paper machine direction, paper width, sample volume, paper type, and tape type | Temperature and Humidity | two-factor factorial design |
Independent Variable (Paper Direction) | Dependent Variable (Activation Time) | Fixed Variables | T-Test Result |
---|---|---|---|
Machine Direction | Mean = 10.42 s. SD = 2.15 s. | Cantilever Width = 4 mm Sample Volume = 16 μL Paper Type = Whatman Grade 41 Tape Type = Scotch Tape | t(8) = 4.445, p-value = 0.002 |
Cross-machine Direction | Mean = 5.48 s. SD = 1.25 s. |
Parameter | Levels | Values | Results |
---|---|---|---|
Paper direction | 2 | Machine and Cross Machine | Significant difference- cross machine direction had the lowest activation time. |
Cantilever width | 4 | 2, 3, 4, and 5 (mm) | Significant difference- 4 and 5 mm had the lowest activation time- 4 mm was selected. |
Sample volume | 4 | 8, 12, 16, and 20 (μL) | No difference- 12 μL was selected. |
Paper type | 4 | CHR 1, WH G1, WH G4, and WH G41 | Significant difference- WH G41 had the lowest activation time- WH G41 was selected. |
Tape type | 3 | Scotch, HD Scotch, and Duck HD | Significant difference- Scotch tape had the lowest activation time- Scotch tape was selected. |
Ref. | Paper Direction | Paper Width | Temperature | Humidity | Interaction between Temperature and Humidity |
---|---|---|---|---|---|
[39] | Significant | Significant | Significant | Not Significant | N/A |
[41] | Not significant | Significant | N/A | Significant | N/A |
This work | Significant | Significant | Significant | Not Significant | Significant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidari-Bafroui, H.; Kumar, A.; Charbaji, A.; Smith, W.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. A Parametric Study on a Paper-Based Bi-Material Cantilever Valve. Micromachines 2022, 13, 1502. https://doi.org/10.3390/mi13091502
Heidari-Bafroui H, Kumar A, Charbaji A, Smith W, Rahmani N, Anagnostopoulos C, Faghri M. A Parametric Study on a Paper-Based Bi-Material Cantilever Valve. Micromachines. 2022; 13(9):1502. https://doi.org/10.3390/mi13091502
Chicago/Turabian StyleHeidari-Bafroui, Hojat, Ashutosh Kumar, Amer Charbaji, Winfield Smith, Nassim Rahmani, Constantine Anagnostopoulos, and Mohammad Faghri. 2022. "A Parametric Study on a Paper-Based Bi-Material Cantilever Valve" Micromachines 13, no. 9: 1502. https://doi.org/10.3390/mi13091502
APA StyleHeidari-Bafroui, H., Kumar, A., Charbaji, A., Smith, W., Rahmani, N., Anagnostopoulos, C., & Faghri, M. (2022). A Parametric Study on a Paper-Based Bi-Material Cantilever Valve. Micromachines, 13(9), 1502. https://doi.org/10.3390/mi13091502