# Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Description of the Approach

#### 2.2. Microfluidic Device Fabrication

#### 2.3. The Tested Liquids

#### 2.4. Experimental Setup and Procedure

#### 2.5. Computational Fluid Dynamics (CFD)

#### 2.6. Secondary Flow Quantification

## 3. Results and Discussion

#### 3.1. Flow Patterns Analysis

#### 3.2. Determining Fluid Viscosity

#### 3.3. Methodology for Design of Microfluidic Viscometer

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Guillot, P.; Panizza, P.; Salmon, J.; Joanicot, M.; Colin, A.; Bruneau, C.; Colin, T. Viscosimeter on a Microfluidic Chip. Langmuir
**2006**, 22, 6438–6445. [Google Scholar] [CrossRef] [PubMed] - Chevalier, J.; Ayela, F. Microfluidic on chip viscometers. Rev. Sci. Instrum.
**2008**, 79, 076102. [Google Scholar] [CrossRef] [PubMed] - Bianco, M.; Zizzari, A.; Gazzera, L.; Metrangolo, P.; Gigli, G.; Viola, I.; Arima, V. Integrated microfluidic viscometer for edible oil analysis. Sens. Actuators B Chem.
**2018**, 265, 91–97. [Google Scholar] [CrossRef] - Srivastava, N.; Burns, M.A. Analysis of Non-Newtonian Liquids Using a Microfluidic Capillary Viscometer. Anal. Chem.
**2006**, 78, 1690–1696. [Google Scholar] [CrossRef] - Kim, S.; Kim, K.C.; Yeom, E. Microfluidic method for measuring viscosity using images from smartphone. Opt. Lasers Eng.
**2018**, 104, 237–243. [Google Scholar] [CrossRef] - Solomon, D.E.; Abdel-Raziq, A.; Vanapalli, S.A. A stress-controlled microfluidic shear viscometer based on smartphone imaging. Rheol. Acta
**2016**, 55, 727–738. [Google Scholar] [CrossRef] - Li, Y.; Ward, K.R.; Burns, M.A. Viscosity Measurements Using Microfluidic Droplet Length. Anal. Chem.
**2017**, 89, 3996–4006. [Google Scholar] [CrossRef] - Roumpea, E.; Chinaud, M.; Angeli, P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels. AIChE J.
**2017**, 63, 3599–3609. [Google Scholar] [CrossRef] - Roy, P.; Liu, S.; Dutcher, C.S. Droplet Interfacial Tensions and Phase Transitions Measured in Microfluidic Channels. Annu. Rev. Phys. Chem.
**2021**, 72, 73–97. [Google Scholar] [CrossRef] - Mustafa, A.; Eser, A.; Aksu, A.C.; Kiraz, A.; Tanyeri, M.; Erten, A.; Yalcin, O. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Anal. Chim. Acta
**2020**, 1135, 107–115. [Google Scholar] [CrossRef] - Lee, E.; Kim, B.; Choi, S. Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids. Sens. Actuators A Phys.
**2020**, 313, 112176. [Google Scholar] [CrossRef] - Liu, L.; Hu, D.; Lam, R. Microfluidic Viscometer Using a Suspending Micromembrane for Measurement of Biosamples. Micromachines
**2020**, 11, 934. [Google Scholar] [CrossRef] - Kang, Y.J.; Yoon, S.Y.; Lee, K.; Yang, S. A Highly Accurate and Consistent Microfluidic Viscometer for Continuous Blood Viscosity Measurement: Microfluidic Blood Viscometer. Artif. Organs
**2010**, 34, 944–949. [Google Scholar] [CrossRef] - Kang, D.; Song, J.M.; Yeom, E. Design of microfluidic viscometer based on pressure estimation. J. Vis.
**2019**, 22, 25–34. [Google Scholar] [CrossRef] - Goel, S.; Venkateswaran, P.; Prajesh, R.; Agarwal, A. Rapid and automated measurement of biofuel blending using a microfluidic viscometer. Fuel
**2015**, 139, 213–219. [Google Scholar] [CrossRef] - Yang, X.; Weldetsadik, N.T.; Hayat, Z.; Fu, T.; Jiang, S.; Zhu, C.; Ma, Y. Pressure drop of single phase flow in microchannels and its application in characterizing the apparent rheological property of fluids. Microfluid. Nanofluidics
**2019**, 23, 75. [Google Scholar] [CrossRef] - Hong, H.; Song, J.M.; Yeom, E. 3D printed microfluidic viscometer based on the co-flowing stream. Biomicrofluidics
**2019**, 13, 014104. [Google Scholar] [CrossRef] - Bahrami, M.; Michael Yovanovich, M.; Richard Culham, J. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section. Int. J. Heat Mass Transf.
**2007**, 50, 2492–2502. [Google Scholar] [CrossRef] - Carnicer, V.; Alcázar, C.; Orts, M.; Sánchez, E.; Moreno, R. Microfluidic rheology: A new approach to measure viscosity of ceramic suspensions at extremely high shear rates. Open Ceram.
**2021**, 5, 100052. [Google Scholar] [CrossRef] - Lee, T.; Liao, W.; Wu, Y.; Chen, Y.; Tung, Y. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures. Anal. Chem.
**2018**, 90, 2317–2325. [Google Scholar] [CrossRef] - Ober, T.J.; Haward, S.J.; Pipe, C.J.; Soulages, J.; McKinley, G.H. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta
**2013**, 52, 529–546. [Google Scholar] [CrossRef] - Del Giudice, F.; D’Avino, G.; Greco, F.; De Santo, I.; Netti, P.A.; Maffettone, P.L. Rheometry-on-a-chip: Measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab Chip
**2015**, 15, 783–792. [Google Scholar] [CrossRef] [PubMed] - Del Giudice, F. Simultaneous measurement of rheological properties in a microfluidic rheometer. Phys. Fluids
**2020**, 32, 052001. [Google Scholar] [CrossRef] - Tzeng, B.; Sun, Y. Design and Fabrication of a Microfluidic Viscometer Based on Electrofluidic Circuits. Micromachines
**2018**, 9, 375. [Google Scholar] [CrossRef] - Jang, I.; Berg, K.E.; Henry, C.S. Viscosity measurements utilizing a fast-flow microfluidic paper-based device. Sens. Actuators B Chem.
**2020**, 319, 128240. [Google Scholar] [CrossRef] - Del Giudice, F. A Review of Microfluidic Devices for Rheological Characterisation. Micromachines
**2022**, 13, 167. [Google Scholar] [CrossRef] - Singh, P.; Sharma, K.; Puchades, I.; Agarwal, P.B. A comprehensive review on MEMS-based viscometers. Sens. Actuators A Phys.
**2022**, 338, 113456. [Google Scholar] [CrossRef] - Dean, W.R.; Hurst, J.M. Note on the motion of fluid in a curved pipe. Mathematika
**1959**, 6, 77–85. [Google Scholar] [CrossRef] - Li, Y.; Wang, X.; Yuan, S.; Tan, S.K. Flow development in curved rectangular ducts with continuously varying curvature. Exp. Therm. Fluid Sci.
**2016**, 75, 1–15. [Google Scholar] [CrossRef] - Zhao, Q.; Yuan, D.; Zhang, J.; Li, W. A Review of Secondary Flow in Inertial Microfluidics. Micromachines
**2020**, 11, 461. [Google Scholar] [CrossRef] - Yang, W.H.; Zhang, J.Z.; Cheng, H.E. The study of flow characteristics of curved microchannel. Appl. Therm. Eng.
**2005**, 25, 1894–1907. [Google Scholar] [CrossRef] - Suh, Y.K.; Kang, S. A Review on Mixing in Microfluidics. Micromachines
**2010**, 1, 82–111. [Google Scholar] [CrossRef] - Ha, B.H.; Lee, K.S.; Jung, J.H.; Sung, H.J. Three-dimensional hydrodynamic flow and particle focusing using four vortices Dean flow. Microfluid. Nanofluidics
**2014**, 17, 647–655. [Google Scholar] [CrossRef] - Martel, J.M.; Toner, M. Particle Focusing in Curved Microfluidic Channels. Sci. Rep.
**2013**, 3, 3340. [Google Scholar] [CrossRef] - Bayat, P.; Rezai, P. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels. Sci. Rep.
**2017**, 7, 13655. [Google Scholar] [CrossRef] - Howell, P.B., Jr.; Mott, D.R.; Golden, J.P.; Ligler, F.S. Design and evaluation of a Dean vortex-based micromixer. Lab Chip
**2004**, 4, 663. [Google Scholar] [CrossRef] - Jung, W.; Han, J.; Choi, J.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng.
**2015**, 132, 46–57. [Google Scholar] [CrossRef] - Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-care testing (POCT): Current techniques and future perspectives. TrAC Trends Anal. Chem.
**2011**, 30, 887–898. [Google Scholar] [CrossRef] - Behroodi, E.; Latifi, H.; Bagheri, Z.; Ermis, E.; Roshani, S.; Salehi Moghaddam, M. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: An application for tumor spheroid production. Sci. Rep.
**2020**, 10, 22171. [Google Scholar] [CrossRef] - Guckenberger, D.J.; de Groot, T.E.; Wan, A.M.D.; Beebe, D.J.; Young, E.W.K. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip
**2015**, 15, 2364–2378. [Google Scholar] [CrossRef][Green Version] - Denisov, I.; Lukyanenko, K.; Yakimov, A.; Kukhtevich, I.; Esimbekova, E.; Belobrov, P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. Luminescence
**2018**, 33, 1054–1061. [Google Scholar] [CrossRef] - Cheng, N. Formula for the Viscosity of a Glycerol-Water Mixture. Ind. Eng. Chem. Res.
**2008**, 47, 3285–3288. [Google Scholar] [CrossRef]

**Figure 1.**A microfluidic chip from PMMA with U-shaped microchannel with a width w = 920 $\mathsf{\mu}$m, a height of 500 $\mathsf{\mu}$m, and a radius of curvature r = 10 mm was used for experimental investigation. The liquid with two different dyes was pumped into the medial and lateral inlets with the same flow rate. The angle $\theta $ was measured from the start of curvature.

**Figure 2.**Analysis of experimental image of flow pattern for water at Q = 5 mL/min by means of developed application. (

**a**) Automatic detection of curvature center and demonstration of selecting pixels set by the beam at fixed angle; (

**b**) hue distribution in the channel in 5 various cross-sections; (

**c**) dependence of switching index ($SI$, normalized standard deviation of selected pixels hue) on the angle $\theta $ with labeled extremes corresponding to various flow recirculation angles.

**Figure 3.**Results of computer simulation performed in application AnsysFluent illustrates appearance of secondary vortex in curved channel with water flow rate at 5 mL/min. Isosurface of the volumetric fraction of the liquid phase. The arrows show the velocity vector field. The flows at angle 50.5${}^{\circ}$ corresponding to the $S{I}_{90}$ are used for measuring viscosity.

**Figure 4.**Experimental (left pictures) and calculated (CFD) (center pictures) flow patterns for water at different $De$ numbers. On the right pictures are the distributions of $SI$ depending on the angle $\theta $ (the red line is the experiment, the blue line is the CFD). The inserts in the calculated flow patterns are the phase distribution contours in sections 0${}^{\circ}$, 90${}^{\circ}$, and 180${}^{\circ}$, which clearly display the secondary Dean flow in the U-microchannel. (

**a**) flow patterns for water at $De$ = 1.93; (

**b**) flow patterns for water at $De$ = 5.79; (

**c**) flow patterns for water at $De$ = 10.6; (

**d**) flow patterns for water at $De$ = 20.3.

**Figure 5.**Experimental flow patterns of the water and aqueous solutions of glycerol at Q = 6 mL/min.

**Figure 6.**The results of experimental study. (

**a**) Dependence of flow recirculation angle $S{I}_{90}$ on fluid flow rate; (

**b**) Dean number vs. flow recirculation angle; (

**c**) inverse Dean number vs. flow recirculation angle; (

**d**) viscosity vs. flow recirculation angle; (

**e**) relative deviation between the dynamic viscosity coefficient calculated according to (3) and the reference data [42] in the investigated range of the Dean number.

**Table 1.**Density and dynamic viscosity coefficient of the tested liquids at a temperature of 25 ${}^{\circ}$C.

Property | Water | 30 wt% | 50 wt% |
---|---|---|---|

Viscosity [mPa·s] | 0.94 ± 0.03 | 2.09 ± 0.03 | 5.11 ± 0.03 |

Density [kg·m${}^{-3}$] | 997 | 1068 | 1137 |

**Table 2.**Fitting coefficients (7), analyzed ranges of the $De$ numbers, and the minimum angle ${\theta}_{min}$.

$\mathit{SI}$ | $\mathit{a}\xb7{10}^{2}$ | $\mathit{b}\xb7{10}^{2}$ | ${\mathit{R}}^{2}$ | AAD | MAD | $\mathit{De}$ | ${\mathit{\theta}}_{\mathit{min}}$ |
---|---|---|---|---|---|---|---|

$S{I}_{90}$ | 6.787 | −1.604 | 0.999 | 0.56% | 1.25% | 5 ÷ 20 | 45${}^{\circ}$ |

$S{I}_{180}$ | 3.414 | −1.261 | 0.997 | 1.01% | 2.18% | 10 ÷ 30 | 80${}^{\circ}$ |

$S{I}_{270}$ | 2.843 | −2.283 | 0.992 | 1.35% | 3.18% | 15 ÷ 35 | 110${}^{\circ}$ |

$S{I}_{360}$ | 2.874 | −3.942 | 0.990 | 2.08% | 4.06% | 20 ÷ 45 | 125${}^{\circ}$ |

Mass | ${\mathit{\mu}}_{\mathit{exp}}$ | ${\mathit{\mu}}_{\mathit{rot}}$ | ${\mathit{\mu}}_{\mathit{ref}}$ [42] | ${\mathit{\epsilon}}_{\mathit{exp}}$ | ${\mathit{\epsilon}}_{\mathit{rot}}$ |
---|---|---|---|---|---|

Fraction | [mPa·s] | [mPa·s] | [mPa·s] | [%] | [%] |

0 | 0.8897 | 0.94 | 0.8927 | −0.34 | 5.3 |

0.3 | 2.081 | 2.09 | 2.124 | −2.0 | −1.1 |

0.5 | 4.864 | 5.11 | 5.004 | −2.8 | 1.9 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pryazhnikov, M.I.; Yakimov, A.S.; Denisov, I.A.; Pryazhnikov, A.I.; Minakov, A.V.; Belobrov, P.I.
Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel. *Micromachines* **2022**, *13*, 1452.
https://doi.org/10.3390/mi13091452

**AMA Style**

Pryazhnikov MI, Yakimov AS, Denisov IA, Pryazhnikov AI, Minakov AV, Belobrov PI.
Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel. *Micromachines*. 2022; 13(9):1452.
https://doi.org/10.3390/mi13091452

**Chicago/Turabian Style**

Pryazhnikov, Maxim I., Anton S. Yakimov, Ivan A. Denisov, Andrey I. Pryazhnikov, Andrey V. Minakov, and Peter I. Belobrov.
2022. "Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel" *Micromachines* 13, no. 9: 1452.
https://doi.org/10.3390/mi13091452