Deposition of Very-Low-Hydrogen-Containing Silicon at a Low Temperature Using Very-High-Frequency (162 MHz) SiH4 Plasma
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.; Jeong, D.Y.; Lee, S.; Jang, J. A High-Gain inverter with low-temperature poly-Si oxide thin-film transistors. IEEE Electron Device Lett. 2019, 40, 411–414. [Google Scholar] [CrossRef]
- Yogoro, Y.; Masuda, A.; Matsumura, H. Crystallization by excimer laser annealing for a-Si: H films with low hydrogen content prepared by Cat-CVD. Thin Solid Films 2003, 430, 296–299. [Google Scholar] [CrossRef]
- Brotherton, S.D. Polycrystalline silicon thin film transistors. Semicond. Sci. Technol. 1995, 10, 721. [Google Scholar] [CrossRef]
- Liu, G.; Fonash, S.J. Selective area crystallization of amorphous silicon films by low-temperature rapid thermal annealing. Appl. Phys. Lett. 1989, 55, 660–662. [Google Scholar] [CrossRef]
- Nast, O.; Wenham, S.R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 2000, 88, 124–132. [Google Scholar] [CrossRef]
- Sun, K.; Hakim, M.M.A.; Gunn, R.; Ashburn, P. Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous silicon. ECS J. Solid State Sci. Technol. 2013, 2, P42–P45. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Yang, M.Z.; Yeh, C.C.; Cheng, L.J.; Huang, T.Y.; Cheng, H.C.; Lin, H.C.; Chao, T.S.; Chang, C.Y. Effects of plasma treatments, substrate types, and crystallization methods on performance and reliability of low temperature polysilicon TFTs. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 5–8 December 1999. [Google Scholar]
- Nakashima, R.; Shin, R.; Hanafusa, H.; Higashi, S. Generation of ultra high-power thermal plasma jet and its application to crystallization of amorphous silicon films. Jpn. J. Appl. Phys. 2017, 56, 06HE05. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.H.; Kim, H.J.; Kim, B.K.; Jin, W.B.; Kim, Y.; Chung, H.; Park, S. Scanning multishot irradiations on a large-area glass substrate for Xe-Arc flash lamp crystallization of amorphous silicon thin-film. Int. J. Therm. Sci. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Pécz, B.; Dobos, L.; Panknin, D.; Skorupa, W.; Lioutas, C.; Vouroutzis, N. Crystallization of amorphous-Si films by flash lamp annealing. Appl. Surf. Sci. 2005, 242, 185–191. [Google Scholar] [CrossRef]
- Shim, M.S.; Kim, C.H.; Yi, J. UV crystallization of poly-si using a CeO2 seed layer on plastic substrate for microelectronics applications. Thin Solid Films 2004, 453, 100–105. [Google Scholar]
- Khakifirooz, A.; Haji, S.; Mohajerzadeh, S.S. UV-assisted nickel-induced crystallization of amorphous silicon. Thin Solid Films 2001, 383, 241–243. [Google Scholar] [CrossRef]
- Park, K.C.; Lee, J.H.; Song, I.H.; Jung, S.H.; Han, M.K. Poly-Si thin film transistors fabricated by combining excimer laser annealing and metal induced lateral crystallization. J. Non-Cryst. Solids 2002, 299, 1330–1334. [Google Scholar] [CrossRef]
- Moschou, D.C.; Exarchos, M.A.; Kouvatsos, D.N.; Papaioannou, G.J.; Voutsas, A.T. Performance and reliability of SLS ELA polysilicon TFTs fabricated with novel crystallization techniques. Microelectron. Reliab. 2007, 47, 1378–1383. [Google Scholar] [CrossRef]
- Exarchos, M.A.; Moschou, D.C.; Papaioannou, G.J.; Kouvatsos, D.N.; Arapoyanni, A.; Voutsas, A.T. On the study of p-channel thin-film transistors fabricated by SLS ELA crystallization techniques. Thin Solid Films 2009, 517, 6375–6378. [Google Scholar] [CrossRef]
- Lengsfeld, P.; Nickel, N.H.; Fuhs, W. Step-by-step excimer laser induced crystallization of a-Si:H. Appl. Phys. Lett. 2000, 76, 1680–1682. [Google Scholar] [CrossRef]
- Ji, Y.J.; Kim, K.S.; Kim, K.H.; Ellingboe, A.R.; Yeom, G.Y. Nitriding process for next-generation semiconductor devices by VHF (162 MHz) multi-tile push-pull plasma source. Appl. Surf. Sci. 2020, 506, 144904. [Google Scholar] [CrossRef]
- Kim, K.S.; Sirse, N.; Kim, K.H.; Ellingboe, A.R.; Kim, K.N.; Yeom, G.Y. Characteristics of silicon nitride deposited by VHF (162 MHz)-plasma enhanced chemical vapor deposition using a multi-tile push–pull plasma source. J. Phys. D Appl. Phys. 2016, 49, 395201. [Google Scholar] [CrossRef]
- Byun, J.Y.; Ji, Y.J.; Kim, K.H.; Kim, K.S.; Tak, H.W.; Ellingboe, A.R.; Yeom, G.Y. Characteristics of silicon nitride deposited by very high frequency (162 MHz)-plasma enhanced atomic layer deposition using bis (diethylamino) silane. Nanotechnology 2020, 32, 075706. [Google Scholar] [CrossRef]
- Lieberman, M.A.; Booth, J.P.; Chabert, P.; Rax, J.M.; Turner, M.M. Standing wave and skin effects in large-area, high-frequency capacitive discharges. Plasma Sources Sci. Technol. 2002, 11, 283. [Google Scholar] [CrossRef]
- Sansonnens, L.; Schmidt, H.; Howling, A.A.; Hollenstein, C.; Ellert, C.; Buechel, A. Application of the shaped electrode technique to a large area rectangular capacitively coupled plasma reactor to suppress standing wave nonuniformity. J. Vac. Sci. Technol. A 2006, 24, 1425–1430. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, K.H.; Ji, Y.J.; Park, J.W.; Shin, J.H.; Ellingboe, A.R.; Yeom, G.Y. Silicon nitride deposition for flexible organic electronic devices by VHF (162 MHz)-PECVD using a multi-tile push-pull plasma source. Sci. Rep. 2017, 7, 13585. [Google Scholar] [CrossRef] [Green Version]
- Sirse, N.; Harvey, C.; Gaman, C.; Ellingboe, A.R. Investigation of plasma uniformity, rotational and vibrational temperature in a 162 MHz multi-electrode capacitive discharge. J. Phys. D Appl. Phys. 2020, 53, 335203. [Google Scholar] [CrossRef]
- Harvey, C.; Sirse, N.; Gaman, C.; Ellingboe, A.R. Mode transition in an oxygen low-pressure, very high frequency (162 MHz), multi-tile electrode capacitively coupled plasma. Phys. Plasma 2020, 27, 110701. [Google Scholar] [CrossRef]
- Harvey, C.; Sirse, N.; Gaman, C.; Ellingboe, A.R. Experimental study of a high-VHF multi-electrode capacitively coupled plasma for thin layer surface processing. In Proceedings of the 44th EPS Conference on Plasma Physics, Belfast, Northern Ireland, 26 June 2017. [Google Scholar]
- Popov, O.A. High Density Plasma Sources: Design, Physics and Performance; Elsevier: Woburn, MA, USA, 1996. [Google Scholar]
- Rüther, R.; Livingstone, J. Hydrogenated amorphous silicon: Hydrogen content, bonding configurations and morphology in sputter-deposited, in-chamber annealed thin films. Thin Solid Films 1994, 251, 30–35. [Google Scholar] [CrossRef]
- Goh, B.T.; Wah, C.K.; Aspanut, Z.; Rahman, S.A. Structural and optical properties of nc-Si: H thin films deposited by layer-by-layer technique. J. Mater. Sci. Mater. Electron. 2014, 25, 286–296. [Google Scholar] [CrossRef]
- Chen, C.Z.; Qiu, S.H.; Liu, C.Q.; Wu, Y.D.; Li, P.; Yu, C.Y.; Lin, X.Y. Low temperature fast growth of nanocrystalline silicon films by rf-PECVD from SiH4/H2 gases: Microstructural characterization. J. Phys. D Appl. Phys. 2008, 41, 195413. [Google Scholar] [CrossRef]
- Xuan-Ying, L.; Chuang-Jun, H.; Kui-Xun, L.; Yun-Peng, Y.; Chu-Ying, Y.; Ling-Fei, C. Low-temperature growth of polycrystalline silicon films by SiCl4/H2 rf plasma enhanced chemical vapour deposition. Chin. Phys. Lett. 2003, 20, 1879. [Google Scholar] [CrossRef]
- Andújar, J.L.; Bertran, E.; Canillas, A.; Roch, C.; Morenza, J.L. Influence of pressure and radio frequency power on deposition rate and structural properties of hydrogenated amorphous silicon thin films prepared by plasma deposition. J. Vac. Sci. Technol. A 1991, 9, 2216–2221. [Google Scholar] [CrossRef] [Green Version]
- Aida, M.S.; Mahdjoubi, L.; Sahli, S. The effect of RF power on the hydrogen content of sputtered amorphous silicon. Mater. Chem. Phys. 1992, 32, 349–351. [Google Scholar] [CrossRef]
- Hsiao, W.C.; Liu, C.P.; Wang, Y.L. Influence of RF bias on hydrogenated amorphous silicon by high-density plasma chemical vapor deposition. J. Electrochem. Soc. 2007, 154, G122. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1992; 261p. [Google Scholar]
- Monaghan, E.; Yeom, G.Y.; Ellingboe, A.R. Measurement of nc-Si: H film uniformity and diagnosis of plasma spatial structure produced by a very high frequency, differentially powered, multi-tile plasma source. Vacuum 2015, 119, 34–46. [Google Scholar] [CrossRef]
- Wei, D.Y.; Xiao, S.Q.; Huang, S.Y.; Chan, C.S.; Zhou, H.P.; Xu, L.X.; Guo, Y.N.; Chai, J.W.; Wang, S.J.; Xu, S. Low-temperature deposition of µc-Si: H thin films by a low-frequency inductively coupled plasma for photovoltaic applications. J. Phys. D Appl. Phys. 2013, 46, 215501. [Google Scholar] [CrossRef]
- Tong, G.B.; Rahman, S.A. Effects of RF power on the hydrogen bonding and structural order in Si: H thin films deposited from hydrogen diluted silane. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2010; Volume 1217, pp. 159–165. [Google Scholar]
- Mukhopadhyay, S.; Chowdhury, A.; Ray, S. Substrate temperature dependence of microcrystalline silicon growth by PECVD technique. J. Non-Cryst. Solids 2006, 352, 1045–1048. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.S.; Ji, Y.-J.; Kim, K.-H.; Kang, J.-E.; Ellingboe, A.R.; Yeom, G.Y. Deposition of Very-Low-Hydrogen-Containing Silicon at a Low Temperature Using Very-High-Frequency (162 MHz) SiH4 Plasma. Micromachines 2022, 13, 173. https://doi.org/10.3390/mi13020173
Kim KS, Ji Y-J, Kim K-H, Kang J-E, Ellingboe AR, Yeom GY. Deposition of Very-Low-Hydrogen-Containing Silicon at a Low Temperature Using Very-High-Frequency (162 MHz) SiH4 Plasma. Micromachines. 2022; 13(2):173. https://doi.org/10.3390/mi13020173
Chicago/Turabian StyleKim, Ki Seok, You-Jin Ji, Ki-Hyun Kim, Ji-Eun Kang, Albert Rogers Ellingboe, and Geun Young Yeom. 2022. "Deposition of Very-Low-Hydrogen-Containing Silicon at a Low Temperature Using Very-High-Frequency (162 MHz) SiH4 Plasma" Micromachines 13, no. 2: 173. https://doi.org/10.3390/mi13020173