Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge
Abstract
1. Introduction
2. Experimental Section
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Moraveji, M.K. Droplet microfluidics: Fundamentals and its advanced applications. RSC Adv. 2020, 10, 27560–27574. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Wu, Y.; Lin, S.; Zhao, F.; Tan, S. Visual experimental study of droplet impinging on liquid film and analysis of droplet evolution characteristics. Exp. Comput. Multiph. Flow 2022, 4, 212–220. [Google Scholar] [CrossRef]
- Atencia, J.; Beebe, D.J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655. [Google Scholar] [CrossRef]
- Capretto, L.; Cheng, W.; Hill, M.; Zhang, X. Micromixing within microfluidic devices. In Microfluidics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–68. [Google Scholar]
- Simon, M.G.; Lee, A.P. Microfluidic droplet manipulations and their applications. In Microdroplet Technology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 23–50. [Google Scholar]
- Vitorino, R.; Guedes, S.; da Costa, J.P.; Kašička, V. Microfluidics for peptidomics, proteomics, and cell analysis. Nanomaterials 2021, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
- Franke, T.; Abate, A.R.; Weitz, D.A.; Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 2009, 9, 2625–2627. [Google Scholar] [CrossRef]
- Basu, A.S.; Gianchandani, Y.B. A programmable array for contact-free manipulation of floating droplets on featureless substrates by the modulation of surface tension. J. Microelectromech. Syst. 2009, 18, 1163–1172. [Google Scholar] [CrossRef]
- Shi, L.T.; Jiang, C.G.; Ma, G.J.; Wu, C.W. Electric field assisted manipulation of microdroplets on a superhydrophobic surface. Biomicrofluidics 2010, 4, 041101. [Google Scholar] [CrossRef]
- Taniguchi, T.; Torii, T.; Higuchi, T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2002, 2, 19–23. [Google Scholar] [CrossRef]
- Lehmann, U.; Hadjidj, S.; Parashar, V.K.; Vandevyver, C.; Rida, A.; Gijs, M.A.M. Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens. Actuators B Chem. 2006, 117, 457–463. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, S.; Amirfazli, A.; Siddiqui, A.R.; Li, W. Magnetically Responsive Superhydrophobic Surfaces for Microdroplet Manipulation. Adv. Mater. Interfaces 2022, 9, 2102010. [Google Scholar] [CrossRef]
- Yap, Y.-F.; Tan, S.-H.; Nguyen, N.-T.; Murshed, S.M.S.; Wong, T.-N.; Yobas, L. Thermally mediated control of liquid microdroplets at a bifurcation. J. Phys. D Appl. Phys. 2009, 42, 065503. [Google Scholar] [CrossRef]
- Fan, B.; Li, F.; Chen, L.; Shi, L.; Yan, W.; Zhang, Y.; Li, S.; Wang, X.; Wang, X.; Chen, H. Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3 Substrate. Phys. Rev. Appl. 2017, 7, 064010. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, S. Electrostatic charging and control of droplets in microfluidic devices. Lab Chip 2013, 13, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Im, D.J. Effect of Deformation on Droplet Contact Charge Electrophoresis. Langmuir 2020, 36, 10379–10386. [Google Scholar] [CrossRef] [PubMed]
- Bishop, K.J.M.; Drews, A.M.; Cartier, C.A.; Pandey, S.; Dou, Y. Contact Charge Electrophoresis: Fundamentals and Microfluidic Applications. Langmuir 2018, 34, 6315–6327. [Google Scholar] [CrossRef]
- Xu, L.; Peng, J.; Yan, M.; Zhang, D.; Shen, A.Q. Droplet synthesis of silver nanoparticles by a microfluidic device. Chem. Eng. Process. Process Intensif. 2016, 102, 186–193. [Google Scholar] [CrossRef]
- Hase, M.; Watanabe, S.N.; Yoshikawa, K. Rhythmic motion of a droplet under a dc electric field. Phys. Rev. E 2006, 74, 046301. [Google Scholar] [CrossRef]
- Drews, A.M.; Lee, H.-Y.; Bishop, K.J.M. Ratcheted electrophoresis for rapid particle transport. Lab Chip 2013, 13, 4295–4298. [Google Scholar] [CrossRef]
- Dou, Y.; Cartier, C.A.; Fei, W.; Pandey, S.; Razavi, S.; Kretzschmar, I.; Bishop, K.J.M. Directed motion of metallodielectric particles by contact charge electrophoresis. Langmuir 2016, 32, 13167–13173. [Google Scholar] [CrossRef]
- Drews, A.M.; Cartier, C.A.; Bishop, K.J.M. Contact Charge Electrophoresis: Experiment and Theory. Langmuir 2015, 31, 3808–3814. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Im, D.J.; Jung, Y.M.; Kang, I.S. Deformation and motion of a charged conducting drop in a dielectric liquid under a nonuniform electric field. J. Colloid Interface Sci. 2007, 310, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Li, Z.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.; Du, J.; Chen, S.; et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, R.; Inoue, K.; Chang, J.S. Schlieren optical visualization for transient EHD induced flow in a stratified dielectric liquid under gas-phase ac corona discharges. J. Phys. D Appl. Phys. 2007, 40, 573. [Google Scholar] [CrossRef]
- Li, Y.; Jin, H.; Nie, S.; Zhang, P.; Gao, N. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface. Appl. Phys. Lett. 2017, 110, 201602. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Zhang, Z.; Zhang, J.-H.; Tang, F.; Wang, C.; Cui, X. Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge. Micromachines 2022, 13, 2229. https://doi.org/10.3390/mi13122229
Tang Q, Zhang Z, Zhang J-H, Tang F, Wang C, Cui X. Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge. Micromachines. 2022; 13(12):2229. https://doi.org/10.3390/mi13122229
Chicago/Turabian StyleTang, Qiang, Zongtang Zhang, Jia-Han Zhang, Feiran Tang, Chengjun Wang, and Xiaxia Cui. 2022. "Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge" Micromachines 13, no. 12: 2229. https://doi.org/10.3390/mi13122229
APA StyleTang, Q., Zhang, Z., Zhang, J.-H., Tang, F., Wang, C., & Cui, X. (2022). Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge. Micromachines, 13(12), 2229. https://doi.org/10.3390/mi13122229