# Scattering of Metal Colloids by a Circular Post under Electric Fields

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analysis of the Physical Problem

#### 2.1. Particle Repulsion with Its Image Dipole

#### 2.2. ICEO Repulsion from Insulating Walls

#### 2.3. Dielectrophoresis and Dipolophoresis

#### 2.4. Particle Trajectory and Comparisons between Mechanisms

## 3. Numerical Simulations of the Trajectories

- (A)
- Electric field parallel to the fluid flow. We imposed boundary conditions of zero normal current density ($\partial \varphi /\partial n=0$) at the cylinder surface and at upper and lower planes (see the geometry in Figure 1). Dirichlet boundary conditions were applied at the entrance and exit so that the applied electric field was equal to ${E}_{0}$.
- (B)
- Electric field perpendicular to the fluid flow. We imposed boundary conditions of zero normal current density ($\partial \varphi /\partial n=0$) at the cylinder surface and at the entrance and exit. Dirichlet boundary conditions were applied at upper and lower planes.

#### 3.1. Electric Field Parallel to the Fluid Flow

#### 3.2. Electric Field Perpendicular to the Fluid Flow

#### 3.3. Particle Deviations

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Dipole-Dipole Repulsion from a Cylinder

**Figure A1.**3D domain for computing the reflections by the cylinder of both the electric fields of the dipoles and the velocity field of the stresslets.

**Figure A2.**Nondimensional force on dipole versus distance to the cylinder surface. Comparison between numerical force and the theoretical approximation according to Equation (1).

## Appendix B. ICEO Interaction with a Cylinder

**Figure A3.**Particle drift velocity due to ICEO flow reflected on a cylinder versus the distance to the cylinder wall.

## References

- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; Research Studies Press Ltd.: Baldock, UK, 2003. [Google Scholar]
- Beech, J.P.; Jönsson, P.; Tegenfeldt, J.O. Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip
**2009**, 9, 2698–2706. [Google Scholar] [CrossRef] [PubMed] - Calero, V.; Garcia-Sanchez, P.; Honrado, C.; Ramos, A.; Morgan, H. AC electrokinetic biased deterministic lateral displacement for tunable particle separation. Lab Chip
**2019**, 19, 1386–1396. [Google Scholar] [CrossRef] [PubMed] - Ho, B.D.; Beech, J.P.; Tegenfeldt, J.O. Charge-Based Separation of Micro-and Nanoparticles. Micromachines
**2020**, 11, 1014. [Google Scholar] [CrossRef] [PubMed] - Calero, V.; Garcia-Sanchez, P.; Ramos, A.; Morgan, H. Combining DC and AC electric fields with deterministic lateral displacement for micro-and nano-particle separation. Biomicrofluidics
**2019**, 13, 054110. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Frechette, J.; Drazer, G. Directional locking and deterministic separation in periodic arrays. J. Fluid Mech.
**2009**, 627, 379–401. [Google Scholar] [CrossRef] [Green Version] - van de Ven, T.G.; Warszynski, P.; Wu, X.; Dabros, T. Colloidal particle scattering: A new method to measure surface forces. Langmuir
**1994**, 10, 3046–3056. [Google Scholar] [CrossRef] - Wu, X.; Van de Ven, T. Characterization of hairy latex particles with colloidal particle scattering. Langmuir
**1996**, 12, 3859–3865. [Google Scholar] [CrossRef] - Whittle, M.; Murray, B.S.; Dickinson, E. Simulation of colloidal particle scattering: Sensitivity to attractive forces. J. Colloid Interface Sci.
**2000**, 225, 367–377. [Google Scholar] [CrossRef] - Lapizco-Encinas, B.H.; Simmons, B.A.; Cummings, E.B.; Fintschenko, Y. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis
**2004**, 25, 1695–1704. [Google Scholar] [CrossRef] - Lapizco-Encinas, B.H.; Ozuna-Chacón, S.; Rito-Palomares, M. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J. Chromatogr. A
**2008**, 1206, 45–51. [Google Scholar] [CrossRef] - Lapizco-Encinas, B.H. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis
**2019**, 40, 358–375. [Google Scholar] [CrossRef] [PubMed] - Pesch, G.R.; Du, F.; Schwientek, U.; Gehrmeyer, C.; Maurer, A.; Thöming, J.; Baune, M. Recovery of submicron particles using high-throughput dielectrophoretically switchable filtration. Sep. Purif. Technol.
**2014**, 132, 728–735. [Google Scholar] [CrossRef] - Lorenz, M.; Malangré, D.; Du, F.; Baune, M.; Thöming, J.; Pesch, G.R. High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials. Anal. Bioanal. Chem.
**2020**, 412, 3903–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Beech, J.P.; Keim, K.; Ho, B.D.; Guiducci, C.; Tegenfeldt, J.O. Active posts in deterministic lateral displacement devices. Adv. Mater. Technol.
**2019**, 4, 1900339. [Google Scholar] [CrossRef] [Green Version] - Fernández-Mateo, R.; Calero, V.; Morgan, H.; García-Sánchez, P.; Ramos, A. Wall Repulsion of Charged Colloidal Particles during Electrophoresis in Microfluidic Channels. Phys. Rev. Lett.
**2022**, 128, 074501. [Google Scholar] [CrossRef] - Rose, K.A.; Hoffman, B.; Saintillan, D.; Shaqfeh, E.S.; Santiago, J.G. Hydrodynamic interactions in metal rodlike-particle suspensions due to induced charge electroosmosis. Phys. Rev. E
**2009**, 79, 011402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Katzmeier, F.; Altaner, B.; List, J.; Gerland, U.; Simmel, F.C. Emergence of Colloidal Patterns in ac Electric Fields. Phys. Rev. Lett.
**2022**, 128, 058002. [Google Scholar] [CrossRef] - Cummings, E.B.; Singh, A.K. Dielectrophoresis in microchips containing arrays of insulating posts: Theoretical and experimental results. Anal. Chem.
**2003**, 75, 4724–4731. [Google Scholar] [CrossRef] - Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- García-Sánchez, P.; Ren, Y.; Arcenegui, J.J.; Morgan, H.; Ramos, A. Alternating Current Electrokinetic Properties of Gold-Coated Microspheres. Langmuir
**2012**, 28, 13861–13870. [Google Scholar] [CrossRef] - Ramos, A.; García-Sánchez, P.; Morgan, H. AC electrokinetics of conducting microparticles: A review. Curr. Opin. Colloid Interface Sci.
**2016**, 24, 79–90. [Google Scholar] [CrossRef] - Bazant, M.Z.; Squires, T.M. Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett.
**2004**, 92, 066101. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gamayunov, N.I.; Murtsovkin, V.A.; Dukhin, A.S. Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles. Colloid J. USSR (Engl. Transl.)
**1986**, 48, 197–203. [Google Scholar] - Oren, S.; Frankel, I. Induced-charge electrophoresis of ideally polarizable particle pairs. Phys. Rev. Fluids
**2020**, 5, 094201. [Google Scholar] [CrossRef] - Saintillan, D. Nonlinear interactions in electrophoresis of ideally polarizable particles. Phys. Fluids
**2008**, 20, 067104. [Google Scholar] [CrossRef] - Saintillan, D.; Darvel, E.; Shaqfeh, E. Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersionss. J. Fluid Mech.
**2006**, 563, 223–259. [Google Scholar] [CrossRef] - García-Sánchez, P.; Arcenegui, J.J.; Morgan, H.; Ramos, A. Self-assembly of metal nanowires induced by alternating current electric fields. Appl. Phys. Lett.
**2015**, 106, 023110. [Google Scholar] [CrossRef] [Green Version] - Yariv, E. Boundary-induced electrophoresis of uncharged conducting particles: Remote wall approximations. Proc. R. Soc. Math. Phys. Eng. Sci.
**2009**, 465, 709–723. [Google Scholar] [CrossRef] - Smart, J.R.; Leighton, D.T., Jr. Measurement of the drift of a droplet due to the presence of a plane. Phys. Fluids Fluid Dyn.
**1991**, 3, 21–28. [Google Scholar] [CrossRef] - Blake, J. A note on the image system for a stokeslet in a no-slip boundary. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1971; Volume 70, pp. 303–310. [Google Scholar]
- Shilov, V.; Simonova, T. Polarization of electric double-layer of disperse particles and dipolophoresis in a steady (DC) field. Colloid J. USSR
**1981**, 43, 90–96. [Google Scholar] - Miloh, T. A unified theory of dipolophoresis for nanoparticles. Phys. Fluids
**2008**, 20, 107105. [Google Scholar] [CrossRef] - Miloh, T. Dipolophoresis of nanoparticles. Phys. Fluids
**2008**, 20, 063303. [Google Scholar] [CrossRef] - Flores-Mena, J.E.; García-Sánchez, P.; Ramos, A. Dipolophoresis and Travelling-Wave Dipolophoresis of Metal Microparticles. Micromachines
**2020**, 11, 259. [Google Scholar] [CrossRef] [PubMed] - Huang, L.R.; Cox, E.C.; Austin, R.H.; Sturm, J.C. Continuous particle separation through deterministic lateral displacement. Science
**2004**, 304, 987–990. [Google Scholar] [CrossRef] - Kim, S.C.; Wunsch, B.H.; Hu, H.; Smith, J.T.; Austin, R.H.; Stolovitzky, G. Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays. Proc. Natl. Acad. Sci. USA
**2017**, 114, E5034–E5041. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lyklema, J. Fundamentals of Interface and Colloid Science; Academic Press Limited: Cambridge, MA, USA, 1995. [Google Scholar]
- Calero, V.; Fernández-Mateo, R.; Morgan, H.; García-Sánchez, P.; Ramos, A. Stationary Electro-osmotic Flow Driven by ac Fields around Insulators. Phys. Rev. Appl.
**2021**, 15, 014047. [Google Scholar] [CrossRef] - Calero, V.; Garcia-Sanchez, P.; Ramos, A.; Morgan, H. Electrokinetic biased Deterministic Lateral Displacement: Scaling Analysis and Simulations. J. Chromatogr. A
**2020**, 1623, 461151. [Google Scholar] [CrossRef]

**Figure 1.**Schematics of the problem. Particles enter the channel from the left side driven by the fluid flow with velocity ${\mathit{u}}_{\mathbf{0}}$. There is an ac electric field applied in the system. The particle trajectories are affected by the presence of an insulating post. The particle-post interaction arises from different mechanisms of electrical origin.

**Figure 2.**Particle trajectories for an applied electric field parallel to flow direction: (

**a**) Low frequency and $\mathsf{\Lambda}=1$. (

**b**) Low frequency and $\mathsf{\Lambda}=0.5$. (

**c**) High frequency. The colors represent the magnitude of the particle velocity in units of ${v}_{0}$.

**Figure 3.**Particle trajectories for an applied electric field perpendicular to flow direction: (

**a**) low frequency and $\mathsf{\Lambda}=1$; (

**b**) low frequency and $\mathsf{\Lambda}=0.5$; (

**c**) high frequency. The colors represent the magnitude of the particle velocity in units of ${v}_{0}$.

**Figure 4.**Zoom of particle trajectories for an applied electric field perpendicular to flow direction in the case of low frequency and $\mathsf{\Lambda}=1$. The colors represent the magnitude of the particle velocity in units of ${v}_{0}$.

**Figure 5.**Deviation ${y}_{f}-{y}_{i}$ versus ${y}_{i}$ at $N=50$ for two cases: (

**A**) low frequency and $\mathsf{\Lambda}=1$; (

**B**) low frequency and $\mathsf{\Lambda}=0.5$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Flores-Mena, J.E.; García-Sánchez, P.; Ramos, A.
Scattering of Metal Colloids by a Circular Post under Electric Fields. *Micromachines* **2023**, *14*, 23.
https://doi.org/10.3390/mi14010023

**AMA Style**

Flores-Mena JE, García-Sánchez P, Ramos A.
Scattering of Metal Colloids by a Circular Post under Electric Fields. *Micromachines*. 2023; 14(1):23.
https://doi.org/10.3390/mi14010023

**Chicago/Turabian Style**

Flores-Mena, José Eladio, Pablo García-Sánchez, and Antonio Ramos.
2023. "Scattering of Metal Colloids by a Circular Post under Electric Fields" *Micromachines* 14, no. 1: 23.
https://doi.org/10.3390/mi14010023