# Travelling-Wave Electrophoresis, Electro-Hydrodynamics, Electro-Rotation, and Symmetry-Breaking of a Polarizable Dimer in Non-Uniform Fields

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Polarization

_{0}(s):

_{0}(s) must vanish both for $s\to 0$ and $s\to \infty $.

_{0}(normalized with respect to the dimensionless volume $\pi /3$ of the dimer [31]):

_{0}(0) defined in Equation (11) by substituting the exact solution given in Equation (9), which renders (see [53], 3.523.3 & 3.557.3):

## 3. Electro-Rotation

_{1}(s) in Equation (14) (symmetric with respect to $\upsilon $), can be found in a similar manner to Equation (6) by enforcing the Robin boundary condition $\partial {\varphi}_{1}/\partial \upsilon =-i\left({\mu}^{2}+{\upsilon}^{2}\right)\Omega {\varphi}_{1}$ on $\upsilon =1$, resulting in the following second-order inhomogeneous ODE for A

_{1}(s):

_{0}) acting in the x and y directions, such that the total field is given by:

## 4. Traveling-Wave Electrophoresis

_{0}is the modified Bessel function of the first kind and zero order. The forcing reference amplitude is denoted by E

_{0}, k represents its wave number, $\phi $ is an arbitrary phase angle, and $\omega $ is the forcing frequency. The particular form of Equation (25) is selected so that under the long-wave approximation $\left(k\to 0,\phi =\pi /2\right)$ one gets $\mathrm{Re}\{{\overline{{\rm X}}}_{TW}\left(z,r,0\right)\}={E}_{0}z$, representing a time-harmonic axisymmetric ambient uniform field.

^{n}can be also expressed in term of a Legendre polynomial ${P}_{n}\left(\tilde{\mathsf{\eta}}\right)$ as ${R}^{n}{P}_{n}\left(\tilde{\mathsf{\eta}}\right)$, where R

^{2}= r

^{2}+ z

^{2}and $\tilde{\mathsf{\eta}}=co{s}^{-1}\left(z/R\right)$. Note that on the z-axis (r = 0), R = z and $\tilde{\mathsf{\eta}}=0$. Thus, the polynomial z

^{n}can be considered as the limiting value of an axisymmetric harmonic function of (z, r) evaluated on r = 0. Hence, following Equations (1), (2), and (26), one gets for $\upsilon >0$ and $\mu \to 0$:

_{DEP,}which is exerted on the dimer by the travelling-wave ambient field given in Equations (25) and (26), can then be expressed following [5,54] in terms of the above multipoles as:

_{m,}are defined in Equation (26). Note that only the odd-order (2m + 1) multipoles of Equation (33) contribute to the DEP force in Equation (34).

## 5. Induced-Charge Electroosmosis

## 6. Electro-Hydrodynamics of a Particle Next to a Wall

## 7. Induced-Charge Electrophoresis of a Janus Dimer

_{d}represents the surface area of the dimer. Substituting the values of the metric coefficients ${h}_{\mu}=1/\left(1+{\mu}^{2}\right),{h}_{\varphi}=\mu /\left(1+{\mu}^{2}\right)$, and $\partial z/\partial \mu =-2\mu /\left(1+{\mu}^{2}\right)$ in Equation (63), yields for ${S}_{d}=2\pi $:

_{0}(s), as given by Equation (10) (see also Figure 2a), namely ${A}_{0}\left(s\right)tanh\left(s\right)/s=s\left(1-2s\right){e}^{-s}sinh\left(s\right)/4$, which leads to:

## 8. Discussion and Summary

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

A_{n} | Complex function forming the integrand solution of the general time-dependent potential, see Equation (2) |

a | Radius of the sphere |

C | Constant (Section 7) |

D | Diffusivity of the symmetric monovalent electrolyte |

${\overrightarrow{d}}_{eff}$ | Effective dipole |

E_{0} | Forcing amplitude of the excitation |

E(t) | Forcing electric field |

E^{4} | Biharmonic operator |

$\hat{\mathrm{e}}$ | Unit vector |

h | Metric coefficient |

I_{0} | Modified Bessel function of the first kind |

J_{0} | Bessel function of the first kind |

k | Wave number |

n | Normal unit vector |

P_{n} | Legendre polynomial |

R | Spherical radius |

r | Polar radius in the x–y plane, see Figure 3 |

S_{d} | Surface area of the dimer |

s | Integration variable, e.g., Equation (2) |

t | Time |

U | Velocity component |

$\overrightarrow{v}$ | Velocity vector |

x | Axial coordinate, see Figure 1 |

y | Lateral coordinate |

z | The dimer axisymmetric coordinate, see Figure 1 |

$\epsilon $ | Electric permittivity |

$\zeta $ | Euler–Riemann zeta function |

$\tilde{\mathsf{\eta}}$ | Spherical angle |

$\eta $ | Dynamic viscosity |

$\Theta \xb0$ | Angular velocity |

${\lambda}_{0}$ | Nano-metric EDL thickness |

$\left(\begin{array}{c}\mu \\ \upsilon \\ \phi \end{array}\right)$ | Orthogonal tangent-sphere coordinate system |

$\xi $ | Induced potential |

$\overrightarrow{\tau}$ | Electrostatic torque |

$\varphi $ | Total electric potential |

${X}_{TW}$ | Ambient axisymmetric electric forcing of a non-homogenous travelling-wave (TW) excitation (Section 4) |

$\mathsf{\chi}$ | Harmonic function, a component of the total electric potential in the far- field |

$\mathsf{\psi}$ | Stream function |

$\mathsf{\Omega}$ | RC dimensionless frequency |

$\omega $ | Frequency |

AC | Alternating current |

EDL | Electric double layer |

DC | Direct current |

DEP | Dielectrophoresis |

EHD | Electro-hydrodynamic |

HS | Helmholtz–Smoluchowski |

ICEO | Induced-charge electroosmosis |

ICEP | Induced-charge electrophoresis |

PNP | Poisson–Nernst–Planck |

RC | Resistance–capacitance circuit |

ROT | Electro-rotation |

TW | Travelling wave |

TWDEP | Travelling-wave dielectrophoresis |

## References

- Murtsovkin, V. Nonlinear flow near polarized disperse particle. Colloid J.
**1996**, 58, 341. [Google Scholar] - Squires, T.M.; Bazant, M.Z. Induced-charge electro-osmosis. J. Fluid Mech.
**2004**, 509, 217–252. [Google Scholar] [CrossRef] [Green Version] - Squires, T.M.; Bazant, M.Z. Breaking symmetries in induced-charge electroosmosis and electrophoresis. J. Fluid Mech.
**2006**, 560, 65–101. [Google Scholar] [CrossRef] [Green Version] - Goldstein-Weis B Miloh, T. 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles. Phys. Fluids
**2017**, 29, 052008. [Google Scholar] [CrossRef] - Miloh, T. Dipolophoresis of nanoparticles. Phys. Fluids
**2008**, 20, 063303. [Google Scholar] [CrossRef] - Garcia-Sanchez, P. Ramos A, Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length. Phys. Rev. E.
**2015**, 92, 052313. [Google Scholar] [CrossRef] - Yariv, E.; Miloh, T. Electro-convection about conducting particles. J. Fluid Mech.
**2008**, 595, 163–172. [Google Scholar] [CrossRef] - Miloh, T. Induced-charge electroosmosis, polarization, electrorotation and travelling-wave electrophoresis of horn toroidal particles. J. Eng. Math.
**2022**, 133, 72022. [Google Scholar] [CrossRef] - Moon, F.; Spencer, D.E. Field Theory Handbook; Springer: Berlin/Heidelberg, Germany, 1961. [Google Scholar]
- Smith, G.S.; Barakat, R. Electrostatic of two conducting spheres in contact. App. Sci. Res.
**1975**, 30, 418–432. [Google Scholar] [CrossRef] - Jones, T.B.; Miller, R.D. Multipolar interactions of dielectric spheres. J. Electrost.
**1989**, 22, 231–244. [Google Scholar] [CrossRef] - O’Meara, D.J.; Saville, D.A. The electrical force on two touching spheres in uniform field. Q. J. Mech. Math.
**1991**, 34, 9. [Google Scholar] [CrossRef] - Stoy, R.D. Interactive dipole-model for two-sphere system. J. Electrost.
**1994**, 33, 385–392. [Google Scholar] [CrossRef] - Salonea, E.; Terama, F.; Vattulainen, I.; Karttunen, M. Enhanced dielectrophoresis of nano colloids by dimer formation. Europhys. Lett.
**2007**, 78, 48004. [Google Scholar] [CrossRef] [Green Version] - Liemert, A. Explicit solution for the electrostatic potential of the conducting double sphere. J. App. Phys.
**2014**, 115, 164907. [Google Scholar] [CrossRef] - Ma, F.; Wang, S.; Zhao, H.; Wu, D.T.; Wu, N. Colloidal structures of asymmetrical dimers via orientation-dependent interactions. Soft Matt.
**2014**, 10, 8349. [Google Scholar] [CrossRef] - Ma, F.; Yang, X.; Zhao, H.; Wu, N. inducing propulsion of colloid dimer by breaking the symmetry in electrohydrodynamic flow. Phys. Rev. Lett.
**2015**, 115, 208307. [Google Scholar] [CrossRef] [Green Version] - Yang, X.; Wu, N. Change the collective behavior of colloidal motors by tuning electrohydrodynamic flow at the sub-particle level. Langmuir
**2018**, 34, 952–960. [Google Scholar] [CrossRef] - Dang, F.; Liu, M.; Grebe, V.; Ward, M.D.; Weck, M. Assembly of shape tunable colloidal dimers in dielectrophoretic field. Chem. Math.
**2020**, 32, 6898–6905. [Google Scholar] [CrossRef] - Zhu, X.; Gao, Y.; Mhana, R.; Yang, T.; Hanson, B.L.; Yang, X.; Gong, J. Synthesis and propulsion of magnetic dimers under orthogonality applied electric and magnetic fields. Langmuir
**2021**, 37, 9151–9161. [Google Scholar] [CrossRef] - Hung, C.L.; Kao, Y.C.; Juang, J.Y. Dielectrophoretic cross-over frequency and individual pearl chains formed by bonded colloidal spheres. Sens. Actuators
**2021**, 327, 128888. [Google Scholar] [CrossRef] - Xiao, J.J.; Huang, J.P.; Yu, R.W. Optical response of strongly coupled metal nanoparticles in dimer array. Phys. Rev. B
**2005**, 71, 045404. [Google Scholar] [CrossRef] [Green Version] - Altman, L.E.; Quddos, R.; Cheong, F.; Grieg, D.G. Holographic characterization and tracking of colloidal dimers in the effective sphere approximation. Soft Matt.
**2021**, 17, 2695–2703. [Google Scholar] [CrossRef] [PubMed] - Mohammadi, L.; Tittl, A.; Tsakmakidis, K.L.; Raziman, T.U.; Curto, A.G. Dual nano-resonators for ultrasensitive chiral detection. ACS Potonics
**2021**, 8, 1754–1762. [Google Scholar] [CrossRef] [PubMed] - Song, J.H.; Raja, S.; Groep, J.V.D.; Kang, J.H.; Li, Q.; Kirk, P.G.; Brongersma, M.I. Nanoelectromechanical modulation of a strongly coupled plasmonic dimer. Nat. Comm.
**2021**, 12, 48. [Google Scholar] [CrossRef] [PubMed] - Morrison, F.A.; Stukel, J.J. Electrophoresis of an insulating sphere normal to a conducting wall. JCIS
**1970**, 33, 88. [Google Scholar] - Moussiaux, A.; Ronveaux, A. Electrical capacity of two equal adhering spheres. J. Phys. A Math. Gen.
**1979**, 12, 423–428. [Google Scholar] [CrossRef] - Jeffrey, D.J.; Onishi, Y. Electrostatic of two unequal spheres. J. Phys. A Math. Gen.
**1980**, 13, 2947. [Google Scholar] [CrossRef] - Golomentsev, Y.; Bohmer, M.; Andersen, J.L. Particle clustering and particle formation during electrophoretic deposition; A hydrodynamical model. Langmuir
**1997**, 13, 6058–6068. [Google Scholar] [CrossRef] - Ristenpart, W.D.; Aksay, I.A.; Saville, D.A. Electrohydrodynamics flow around a colloidal particle near an electrode with an oscillating potential. J. Fluid Mech.
**2007**, 575, 83–109. [Google Scholar] [CrossRef] [Green Version] - Pitkonen, M. Polarizability of a pair of touching dielectric spheres. J. Appl. Phys.
**2010**, 103, 104910. [Google Scholar] [CrossRef] - Yariv, E. Electrohydrodynamic particle levitation on electrode. J. Fluid Mech.
**2010**, 645, 187–210. [Google Scholar] [CrossRef] - Prieve, D.C.; Sides, P.J.; Wirth, C.L. 2-D. assembly of colloidal particles on a planar electrode. Curr. Opin. Colloid. Sci.
**2010**, 15, 160–174. [Google Scholar] [CrossRef] - Yariv, E.; Schnitzer, O. Electrokinetic particle-electrode interactions in high frequencies. Phys. Rev. E
**2013**, 87, 012310. [Google Scholar] [CrossRef] [PubMed] - Fernandez-Mateo, R.; Calero, V.; Morgan, H.; Garcia-Sanchez, P.; Ramos, A. Wall repulsion of charge colloidal particles during electrophoresis in microfluidic channel. Phys. Rev. Lett.
**2022**, 128, 074501. [Google Scholar] [CrossRef] [PubMed] - Jeffrey, D.; Van Dyke, M. The temperature field or electric potential around two almost touching spheres. J. Inst. Math. Applics.
**1978**, 22, 337–351. [Google Scholar] [CrossRef] - Poddar, A.; Bandopadhyay, A.; Chakraborty, S. Steering a thermally activated micromotor with a nearby isothermal wall. J. Fluid Mech.
**2020**, 915, A22. [Google Scholar] [CrossRef] - Lanzoni, L.; Radi, E.; Sevostianov, I. Effect of spherical pores coalescence on the overall conductivity of a material. Mech. Math.
**2021**, 148, 103463. [Google Scholar] [CrossRef] - Latta, G.E.; Hess, G.B. Potential flow past a sphere tangent to a plane. Phys. Fluids
**1973**, 16, 974. [Google Scholar] [CrossRef] - Morrison, F.A. Irrotational potential flow about two touching spheres. J. Appl. Mech.
**1976**, 365, 365–366. [Google Scholar] [CrossRef] - Davis, A.M.J. High frequency limiting virtual-mass coefficient of heavy half immersed sphere. J. Fluid Mech.
**1977**, 80, 305–319. [Google Scholar] [CrossRef] - Felderhof, B.U.; Palaniappan, D. Longitudinal and transeverse polarizability of the conducting double sphere. J. App. Phys.
**2000**, 88, 4947. [Google Scholar] [CrossRef] - Cox, S.J.; Cooker, M.J. Potential flow past a sphere touching a tangent plane. J. Eng. Math.
**2000**, 38, 355–370. [Google Scholar] [CrossRef] - Cooley, M.D.A.; O’Neill, M.E. On the slow motion of two spheres in contact along their line of centers through a viscous fluid. Proc. Camb. Phil. Soc.
**1969**, 66, 467. [Google Scholar] [CrossRef] - Wakiya, S. Slow motion in shear flow of doublet of two spheres in contact. J. Phys. Soc. Jpn.
**1971**, 31, 1225–1227. [Google Scholar] [CrossRef] - Nir, A.; Acrivos, A. On the creeping flow motion of two arbitrary-sized touching spheres in linear shear fields. J. Fluid Mech.
**1973**, 59, 209–223. [Google Scholar] [CrossRef] - Read, L.D.; Morrison, F.A. The slow motion of two touching fluid spheres. Along their line of centers. Int. J. Multiph.
**1974**, 1, 571–584. [Google Scholar] [CrossRef] - Takaji, H. Slow rotation of two touching spheres in viscous fluid. J. Phys. Soc. Jpn.
**1974**, 36, 875–877. [Google Scholar] [CrossRef] - Zabarankin, M. Asymmetric three-dimensional Stokes flows about two fused equal spheres. Proc. Roy. Soc. A
**2007**, 463, 3329–3349. [Google Scholar] [CrossRef] - Dandekar, R.; Ardekari, A.M. Nearly touching spheres in a viscoelastic fluid. Phys. Fluids
**2021**, 33, 083112. [Google Scholar] [CrossRef] - Miloh, T. A unified theory for the dipolophoresis of nanoparticles. Phys. Fluids
**2008**, 20, 107105. [Google Scholar] [CrossRef] - Ramos, A.; Garcia-Sanchez, P.; Morgan, H. AC electrokinetics of conducting microparticles: A review. Curr. Opin. Coll. Inter. Sci.
**2016**, 24, 79–90. [Google Scholar] [CrossRef] [Green Version] - Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products; Academic Press Inc.: San Diego, CA, USA, 1980. [Google Scholar]
- Jones, T.B. Electro. Mechanics of Particles; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Bender, C.M.; Orszag, S.A. Advanced Mathematical Methods for Scientists and Engineers; McGraw Hill INC.: New York, NY, USA, 1987. [Google Scholar]

**Figure 1.**Schematic description of the problem of a dimer that is composed of two geometrically identical spheres in free space as in Section 2, Section 3, Section 4 and Section 5 and Section 7. The dimer is subjected to: a uniform AC electric field acting in the z direction (Section 2, Section 3, Section 4 and Section 5 and Section 7), a uniform AC electric field acting in the x direction (Section 3), and a non-homogeneous axisymmetric travelling wave propagating along the z direction (Section 4). The two spheres are identically conductive in Section 2, Section 3, Section 4 and Section 5, and in Section 7 the lower sphere is coated by a thin dielectric layer.

**Figure 2.**The solution of Equation (8) of Section 2 for (

**a**) $\Omega =0$, (

**b**) $\Omega =0.5$, (

**c**) $\Omega =1$, and (

**d**) $\Omega =10$, and where the exact solution of $\Omega =0$ is given by Equation (9). The asymptotic solution is of Equation (10).

**Figure 3.**Schematic description of the problem in Section 6 of a spherical particle next to a wall (z = 0), which is subjected to a uniform DC electric field acting in the z direction.

**Figure 4.**The (

**a**) contours of the Stokes stream function and (

**b**) velocity vectors around the spherical particle placed next to a wall at z = 0 of Section 6, and which is subjected to a uniform DC electric field acting in the z direction. The velocity-vector field modulus was adjusted for better viewing.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Miloh, T.; Avital, E.J.
Travelling-Wave Electrophoresis, Electro-Hydrodynamics, Electro-Rotation, and Symmetry-Breaking of a Polarizable Dimer in Non-Uniform Fields. *Micromachines* **2022**, *13*, 1173.
https://doi.org/10.3390/mi13081173

**AMA Style**

Miloh T, Avital EJ.
Travelling-Wave Electrophoresis, Electro-Hydrodynamics, Electro-Rotation, and Symmetry-Breaking of a Polarizable Dimer in Non-Uniform Fields. *Micromachines*. 2022; 13(8):1173.
https://doi.org/10.3390/mi13081173

**Chicago/Turabian Style**

Miloh, Touvia, and Eldad J. Avital.
2022. "Travelling-Wave Electrophoresis, Electro-Hydrodynamics, Electro-Rotation, and Symmetry-Breaking of a Polarizable Dimer in Non-Uniform Fields" *Micromachines* 13, no. 8: 1173.
https://doi.org/10.3390/mi13081173