Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT
Abstract
:1. Introduction
2. Device Structure and Simulation Model
3. Results and Discussion
3.1. Electrical Characteristics
3.2. Thermal Characteristics
3.2.1. Self-Heating Effect
3.2.2. HPM Effect
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef] [Green Version]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Trans. Microw. Theory Technol. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Mishra, U.K.; Likun, S.; Kazior, T.E.; Wu, Y.-F. GaN-Based RF Power Devices and Amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187–188, 66–77. [Google Scholar] [CrossRef]
- Shen, L.; Heikman, S.; Moran, B.; Coffie, R.; Zhang, N.-Q.; Buttari, D.; Smorchkova, I.P.; Keller, S.; Denbaars, S.; Mishra, U.K. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett. 2001, 22, 457–459. [Google Scholar] [CrossRef]
- Hazdra, P.; Popelka, S. Radiation resistance of wide-bandgap semiconductor power transistors. Phys. Status Solidi A 2016, 214, 1600447. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Chai, C.-C.; Wu, H.; Zhang, Y.-H.; Shi, C.-L.; Yang, Y.-T. Mechanism of AlGaAs/InGaAs pHEMT Nonlinear Response Under High-Power Microwave Radiation. IEEE J. Electron Devices Soc. 2020, 8, 731–737. [Google Scholar] [CrossRef]
- Liu, Y.; Chai, C.; Fan, Q.; Shi, C.; Xi, X.; Yu, X.; Yang, Y. Ku band damage characteristics of GaAs pHEMT induced by a front-door coupling microwave pulse. Microelectron. Reliab. 2016, 66, 32–37. [Google Scholar] [CrossRef]
- Fuxing, L.; Changchun, C.; Han, W.; Lei, W.; Qishuai, L.; Qi, A.; Yintang, Y. Study on high power microwave nonlinear effects and degradation characteristics of C-band low noise amplifier. Microelectron. Reliab. 2021, 128, 114427. [Google Scholar] [CrossRef]
- Trew, R.; Green, D.; Shealy, J. AlGaN/GaN HFET reliability. IEEE Microw. Mag. 2009, 10, 116–127. [Google Scholar] [CrossRef]
- Mansson, D.; Thottappillil, R.; Backstrom, M.; Lunden, O. Vulnerability of European Rail Traffic Management System to Radiated Intentional EMI. IEEE Trans. Electromagn. Compat. 2008, 50, 101–109. [Google Scholar] [CrossRef]
- Peikert, T.; Garbe, H.; Potthast, S. Fuzzy-Based Risk Analysis for IT-Systems and Their Infrastructure. IEEE Trans. Electromagn. Compat. 2017, 59, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Ni, G.; Gao, B.; Lu, J. Research on High Power Microwave Weapons. In Proceedings of the 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China, 4–7 December 2005; Volume 2, p. 4. [Google Scholar]
- Abrams, M. Dawn of the E-Bomb. IEEE Spectr. 2003, 40, 24–30. [Google Scholar] [CrossRef]
- Wang, X.-D.; Hu, W.-D.; Chen, X.-S.; Lu, W. The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs. IEEE Trans. Electron Devices 2012, 59, 1393–1401. [Google Scholar] [CrossRef]
- Chattopadhyay, M.K.; Tokekar, S. Thermal model for dc characteristics of algan/gan hemts including self-heating effect and non-linear polarization. Microelectron. J. 2008, 39, 1181–1188. [Google Scholar] [CrossRef]
- Jarndal, A.; Kompa, G. Large-Signal Model for AlGaN/GaN HEMTs Accurately Predicts Trapping- and Self-Heating-Induced Dispersion and Intermodulation Distortion. IEEE Trans. Electron Devices 2007, 54, 2830–2836. [Google Scholar] [CrossRef]
- Zhu, T.; Zheng, X.-F.; Cao, Y.-R.; Wang, C.; Mao, W.; Wang, Y.-Z.; Mi, M.-H.; Wu, M.; Mo, J.-H.; Ma, X.-H.; et al. Study on the effect of diamond layer on the performance of double-channel AlGaN/GaN HEMTs. Semicond. Sci. Technol. 2020, 35, 055006. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Zhu, H.; Zhang, J.; Deng, B. Two-dimensional transient simulations of the self-heating effects in GaN-based HEMTs. Microelectron. Reliab. 2013, 53, 694–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Zhu, H.; Zhang, G.; Deng, B.; Ma, L. Assessment of pulse conditions effects on reliability in GaN-based high electron mobility transistors by transient temperature measurements. J. Appl. Phys. 2013, 114, 094516. [Google Scholar] [CrossRef]
- Liang, Q.-S.; Chai, C.-C.; Wu, H.; Liu, Y.-Q.; Li, F.-X.; Yang, Y.-T. Mechanism Analysis and Thermal Damage Prediction of High-Power Microwave Radiated CMOS Circuits. IEEE Trans. Device Mater. Reliab. 2021, 21, 444–451. [Google Scholar] [CrossRef]
- Zhou, L.; San, Z.W.; Lin, L.; Zhao, Z.G.; Zhou, H.J.; Hua, Y.-J.; Zhang, S.; Yin, W.-Y. Investigation on Failure Mechanisms of GaN HEMT Caused by High-Power Microwave (HPM) Pulses. IEEE Trans. Electromagn. Compat. 2016, 59, 1–8. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Zhang, J.; Wei, K.; Liu, G.; Wang, X.; Zheng, Y.; Liu, H.; Jin, Z.; Zhao, C.; et al. High RF Performance Enhancement-Mode Al2O3/AlGaN/GaN MIS-HEMTs Fabricated With High-Temperature Gate-Recess Technique. IEEE Electron Device Lett. 2015, 36, 754–756. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, S.; Tang, X.; Li, B.; Chen, K.J. Influence of AlN Passivation on Dynamic ON-Resistance and Electric Field Distribution in High-Voltage AlGaN/GaN-on-Si HEMTs. IEEE Trans. Electron Devices 2014, 61, 2785–2792. [Google Scholar] [CrossRef]
- Green, B.; Chu, K.; Chumbes, E.; Smart, J.; Shealy, J.; Eastman, L. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–270. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Review of technology for normally-off HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 2018, 78, 96–106. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.A.; Shealy, J.R.; Weimann, N.; Chu, K.; Murphy, M.J.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef] [Green Version]
- Sentaurus Device User Guide; Version L-2016.03; Synopsys Inc.: Mountain View, CA, USA, 2016.
- Palma, A.; Godoy, A.; Jiménez-Tejada, J.A.; Carceller, J.E.; López-Villanueva, J.A. Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide–semiconductor structures. Phys. Rev. B 1997, 56, 9565–9574. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Molinos, F.; Gamiz, F.; Palma, A.; Cartujo, P.; Villanueva, J.A.L. Direct and trap-assisted elastic tunneling through ultrathin gate oxides. J. Appl. Phys. 2002, 91, 5116–5124. [Google Scholar] [CrossRef]
- Horio, K.; Yanai, H. Numerical modeling of heterojunctions including the thermionic emission mechanism at the heterojunction interface. IEEE Trans. Electron Devices 1990, 37, 1093–1098. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, J.; Choi, H.S.; Choi, H.; Lee, J.; Kim, K.Y.; Park, J.-B.; Lee, J.C.; Ha, J.; Oh, J.; et al. p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current. IEEE Electron Device Lett. 2013, 34, 202–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Singh, J. Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys. 1999, 85, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Turin, V.O.; Balandin, A.A. Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors. J. Appl. Phys. 2006, 100, 54501. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-H.; Chai, C.-C.; Liu, Y.; Yang, Y.-T.; Xi, X.-W. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor. Chin. Phys. B 2015, 24, 048502(1-5). [Google Scholar] [CrossRef]
- Larsson, A.; Johansson, B.; Nyholm, S.E. Radiated Electric Field Strength From High-Power Microwave Systems. IEEE Trans. Electromagn. Compat. 2008, 50, 758–761. [Google Scholar] [CrossRef]
- Kupczyk, B.J.; Garcia, A.A.S.; Xiang, X.; Liu, C.-H.; Scharer, J.E.; Booske, J.H. Observations of Memory Effects and Reduced Breakdown Delay via Penning Gas Mixtures in High-Power Microwave Dielectric Window Discharges. IEEE Trans. Plasma Sci. 2016, 44, 15–24. [Google Scholar] [CrossRef]
- Min, S.-H.; Jung, H.; Kwon, O.; Sattorov, M.; Kim, S.; Park, S.-H.; Hong, D.; Kim, S.; Park, C.; Hong, B.H.; et al. Analysis of Electromagnetic Pulse Effects Under High-Power Microwave Sources. IEEE Access 2021, 9, 136775–136791. [Google Scholar] [CrossRef]
- Korte, S.; Camp, M.; Garbe, H. Hardware and software simulation of transient pulse impact on integrated circuits. In Proceedings of the 2005 International Symposium on Electromagnetic Compatibility (EMC 2005), Chicago, IL, USA, 8–12 August 2005; Volume 2, pp. 489–494. [Google Scholar]
- Chai, C.; Yang, Y.; Zhang, B.; Leng, P.; Yang, Y.; Rao, W. The effect of injection damage on a silicon bipolar low-noise amplifier. Semicond. Sci. Technol. 2009, 24, 035003. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Wang, H.; Du, G. Burnout properties of microwave pulse injected on GaAs PHEMT. Microelectron. Reliab. 2015, 55, 508–513. [Google Scholar] [CrossRef]
Parameters | GaN | Al0.23GaN |
---|---|---|
Heat capacity cv | 3.0 (J/(K·cm3)) | 2.76 (J/(K·cm3)) |
Thermal conductivity κ | 1.3 (W/(K·cm)) | 1.66 (W/(K·cm)) |
Bandgap Eg0 | 3.51 (eV) | 4.14 (eV) |
Initial mobility µ0 | 1500 (cm2/(Vs)) | 1224 (cm2/(Vs)) |
Electron effective mass me | 0.22 | 0.24 |
Relative permittivity | 9.4 | 9.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Chai, C.; Li, F.; Liang, Q.; Wu, H.; Yang, Y. Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT. Micromachines 2022, 13, 106. https://doi.org/10.3390/mi13010106
Qin Y, Chai C, Li F, Liang Q, Wu H, Yang Y. Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT. Micromachines. 2022; 13(1):106. https://doi.org/10.3390/mi13010106
Chicago/Turabian StyleQin, Yingshuo, Changchun Chai, Fuxing Li, Qishuai Liang, Han Wu, and Yintang Yang. 2022. "Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT" Micromachines 13, no. 1: 106. https://doi.org/10.3390/mi13010106
APA StyleQin, Y., Chai, C., Li, F., Liang, Q., Wu, H., & Yang, Y. (2022). Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT. Micromachines, 13(1), 106. https://doi.org/10.3390/mi13010106