Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SU-8/Pro-Jet Films
2.3. Optical Characterization of SU-8/Pro-Jet Films
2.4. Direct Laser Writing
2.5. Chemical Analysis
2.6. Structural Characterization
2.7. Electrical Characterization of Carbon Lines
2.8. Estimation of Electrical Conductivity and Errors
2.9. Experimental Optimization of Local Laser Pyrolysis
3. Results and Discussion
3.1. Optical Characterization of SU-8/Pro Jet Films
3.2. Direct Laser Writing
3.3. Chemical Analysis
3.4. Structural Characterization
3.5. Influence of Repetitive Laser Scans
3.6. Influence of Atmosphere
3.7. Influence of Absorber Concentration
3.8. Optimization of Laser Power and Scan Speed
3.9. Lines, Intersects, and Joints
3.10. Laser Writing Line Resolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amato, L. Pyrolysed Carbon Scaffolds for Bioelectrochemistry in Life Science. Ph.D. Thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2013. [Google Scholar]
- Hemanth, S.; Halder, A.; Caviglia, C.; Chi, Q.; Keller, S.S. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing. Biosensors 2018, 8, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Duarte, R. SU-8 Photolithography as a Toolbox for Carbon MEMS. Micromachines 2014, 5, 766–782. [Google Scholar] [CrossRef]
- Schlatter, S.; Rosset, S.; Shea, H. Inkjet printing of carbon black electrodes for dielectric elastomer actuators. In Proceedings of Electroactive Polymer Actuators and Devices (EAPAD) 2017, Portland, OR, USA, 26–29 March 2017; SPIE: Bellingham, WA, USA; p. 1016. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Hoang, P.T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531. [Google Scholar] [CrossRef]
- Rahimi, R.; Ochoa, M.; Yu, W.; Ziaie, B. Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463–4470. [Google Scholar] [CrossRef] [PubMed]
- Hemanth, S.; Caviglia, C.; Keller, S.S. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry. Carbon 2017, 121, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R.; Ochoa, M.; Tamayol, A.; Khalili, S.; Khademhosseini, A.; Ziaie, B. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon−Polyaniline Composite. ACS Appl. Mater. Interfaces 2017, 9, 9015–9023. [Google Scholar] [CrossRef]
- Hsia, B.; Kim, M.S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip micro-supercapacitors. Carbon 2013, 57, 395–400. [Google Scholar] [CrossRef]
- In, J.B.; Hsia, B.; Yoo, J.-H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C.P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015, 83, 144–151. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Kaner, R.B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475. [Google Scholar] [CrossRef]
- Cai, J.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, J.; Ye, R.; Samuel, E.L.G.; Tour, J.M. Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414–3419. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem. Soc. Rev. 2016, 45, 715–752. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, J. Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Adv. Mater. 2020, 32, 1805864. [Google Scholar] [CrossRef]
- Montenegro, M.I.; Quierós, M.A.; Daschbach, J.L. Microelectrodes: Theory and Applications; Springer Science+Business Media: Dordrecht, The Netherlands, 1991; ISBN 978-94-011-3210-7. [Google Scholar]
- Shin, S.R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y.S.; Akbari, M.; Jung, S.M.; Kim, D.; Comotto, M.; et al. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Adv. Mater. 2016, 28, 3280–3289. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.M.; Caviglia, C.; Hemanth, S.; MacKenzie, D.M.A.; Petersen, D.H.; Keller, S.S. Pyrolytic carbon microelectrodes for impedance based cell sensing. ECS Trans. 2016, 72, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Quang, L.N.; Halder, A.; Rezaei, B.; Larsen, P.E.; Sun, Y.; Boisen, A.; Keller, S.S. Electrochemical pyrolytic carbon resonators for mass sensing on electrodeposited polymers. Micro Nano Eng. 2019, 2, 64–69. [Google Scholar] [CrossRef]
- Asif, A.; García-López, S.; Heiskanen, A.; Martínez-Serrano, A.; Keller, S.S.; Pereira, M.P.; Emnéus, J. Pyrolytic Carbon Nanograss Enhances Neurogenesis and Dopaminergic Differentiation of Human Midbrain Neural Stem Cells. Adv. Healthc. Mater. 2020, 9, 2001108. [Google Scholar] [CrossRef] [PubMed]
- De Volder, M.F.L.; Vansweevelt, R.; Wagner, P.; Reynaerts, D.; Van Hoof, C.; Hart, A.J. Hierarchical Carbon Nanowire Microarchitectures Made by Plasma-Assisted Pyrolysis of Photoresist. ACS Nano 2011, 5, 6593–6600. [Google Scholar] [CrossRef]
- Heikkinen, J.J.; Peltola, E.; Wester, N.; Koskinen, J.; Laurila, T.; Franssila, S.; Jokinen, V. Fabrication of Micro- and Nanopillars from Pyrolytic Carbon and Tetrahedral Amorphous Carbon. Micromachines 2019, 10, 510. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, S.; McCreery, R.; Majji, S.M.; Madou, M. Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications. J. Electrochem. Soc. 2000, 147, 277. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Y.M.; Caviglia, C.; Hemanth, S.; Mackenzie, D.M.A.; Alstrøm, T.S.; Petersen, D.H.; Keller, S.S. High temperature SU-8 pyrolysis for fabrication of carbon electrodes. J. Anal. Appl. Pyrolysis 2017, 125, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Pramanick, B.; Vazquez-Pinon, M.; Torres-Castro, A.; Martinez-Chapaa, S.O.; Madou, M. Effect of pyrolysis process parameters on electrical, physical, chemical and electro-chemical properties of SU-8-derived carbon structures fabricated using the C-MEMS process. Mater. Today Proc. 2018, 5, 9669–9682. [Google Scholar] [CrossRef]
- Fenzl, C.; Nayak, P.; Hirsch, T.; Wolfbeis, O.S.; Alshareef, H.N.; Baeumner, A.J. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sens. 2017, 2, 616–620. [Google Scholar] [CrossRef]
- Mamleyev, E.R.; Heissler, S.; Nefedov, A.; Weidler, P.G.; Nordin, N.; Kudryashov, V.V.; Länge, K.; MacKinnon, N.; Sharma, S. Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 2019, 3, 2. [Google Scholar] [CrossRef]
- Chen, T.-C.; Bruce, R. Fundamentals of Laser Ablation of the Materials Used in Microfluiducs. Micromach. Tech. Fabr. Micro Nano Struct. 2012. [Google Scholar] [CrossRef] [Green Version]
- Davenas, J. Influence of the temperature on the ion beam induced conductivity of polyimide. Appl. Surf. Sci. 1989, 43, 218–223. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Kim, M.S.; Hsia, B.; Carraro, C.; Maboudian, R. Flexible micro-supercapacitors from photoresist-derived carbon electrodes on flexible substrates. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 389–392. [Google Scholar] [CrossRef]
- Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene Formation on Wood. Adv. Mater. 2017, 29, 1–7. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.; Zhang, J.; Tour, J.M.; Arnusch, C.J. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano 2018, 12, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Kostecki, R.; Song, X.; Kinoshita, K. Fabrication of Interdigitated Carbon Structures by Laser Pyrolysis of Photoresist. Electrochem. Solid-State Lett. 2002, 5, E29–E31. [Google Scholar] [CrossRef]
- Microchem SU-8 2000 Permanent Epoxy Negative Photoresist. Available online: https://kayakuam.com/wp-content/uploads/2019/09/SU-82000DataSheet2025thru2075Ver4.pdf (accessed on 26 February 2021).
- Thamdrup, L.H.; Larsen, N.B.; Kristensen, A. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels. Nano Lett. 2010, 10, 826–832. [Google Scholar] [CrossRef]
- Pro-Jet 800NP; Fujifilm Imaging Colorants Safety Data Sheet: New Castle, DE, USA, 2015.
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 1999, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Natu, R.; Islam, M.; Gilmore, J.; Martinez-Duarte, R. Shrinkage of SU-8 microstructures during carbonization. J. Anal. Appl. Pyrolysis 2018, 131, 17–27. [Google Scholar] [CrossRef]
- Ouyang, M.; Hiraoka, H. Deposition of diamond-like carbon films via excimer laser ablation of polybutadiene. Mater. Sci. Eng. B 1996, 39, 228–231. [Google Scholar] [CrossRef]
- Srinivasan, R.; Hall, R.R.; Wilson, W.D.; Loehle, W.D.; Allbee, D.C. Formation of a Porous, Patternable, Electrically Conducting Carbon Network by the Ultraviolet Laser Irradiation of the Polyimide PMDA-ODA (Kapton). Chem. Mater. 1994, 6, 888–889. [Google Scholar] [CrossRef]
- Sharma, S.; Kamath, R.; Madou, M. Porous glassy carbon formed by rapid pyrolysis of phenol-formaldehyde resins and its performance as electrode material for electrochemical double layer capacitors. J. Anal. Appl. Pyrolysis 2014, 108, 12–18. [Google Scholar] [CrossRef]
- Rezaei, B.; Pan, J.Y.; Gundlach, C.; Keller, S.S. Highly structured 3D pyrolytic carbon electrodes derived from additive manufacturing technology. Mater. Des. 2020, 193, 108834. [Google Scholar] [CrossRef]
- Strong, V.; Dubin, S.; El-Kady, M.F.; Lech, A.; Wang, Y.; Weiller, B.H.; Kaner, R.B. Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices. ACS Nano 2012, 6, 1395–1403. [Google Scholar] [CrossRef]
- Dorin, B.; Parkinson, P.; Scully, P. Direct laser write process for 3D conductive carbon circuits in polyimide. J. Mater. Chem. C 2017, 5, 4923–4930. [Google Scholar] [CrossRef] [Green Version]
- Phillips, H.M.; Wahl, S.; Sauerbrey, R. Submicron electrically conducting wires produced in polyimide by ultraviolet laser irradiation. Appl. Phys. Lett. 1993, 62, 2572–2574. [Google Scholar] [CrossRef]
- Morita, N.; Shimotsuma, Y.; Nishi, M.; Sakakura, M.; Miura, K.; Hirao, K. Direct micro-carbonization inside polymer using focused femtosecond laser pulses. Appl. Phys. Lett. 2014, 105, 201104. [Google Scholar] [CrossRef] [Green Version]
- Schumann, M.; Sauerbrey, R.; Smayling, M.C. Permanent increase of the electrical conductivity of polymers induced by ultraviolet laser radiation. Appl. Phys. Lett. 1991, 58, 428–430. [Google Scholar] [CrossRef]
- Feurer, T.; Sauerbrey, R.; Smayling, M.C.; Story, B.J. Ultraviolet-laser-induced permanent electrical conductivity in polyimide. Appl. Phys. A 1993, 56, 275–281. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state. J. Appl. Phys. 2004, 96, 1914–1918. [Google Scholar] [CrossRef]
Year | Precursor Material | Laser | Conductivity [S/cm] | Smallest Reported Conductive Line Width [µm] | Smallest Reported Conductive Film Thickness [µm] | Reference |
---|---|---|---|---|---|---|
1991 | Polyimide | KrF laser | 10 | NA | NA | [49] |
1993 | Polyimide | KrF laser | 10 | NA | NA | [50] |
1993 | Polyimide | KrF laser | 2 | 0.5 | NA | [47] |
1994 | Polyimide | Ar ion | 25 | 15 | NA | [42] |
2002 | OiR 897-101 positive photoresist | HeNe and Ar-ion lasers | NA | 20 | NA | [34] |
2004 | π-conjugated polyaniline emeraldine base | C2+, F2+, and Cl2+ ions (5SDH-2 tandem Van de Graff accelerator) | 60 | NA | 6.2 | [51] |
2012 | Graphite oxide films | LightScribe DVD burner | 16.5 | 500 | NA | [45] |
2013 | Graphite oxide films | LightScribe DVD burner | 23.5 | 20 | 7.6 | [11] |
2014 | Polyester | Ti:Sapphire laser | 0.3 | 2 | NA | [48] |
2014 | polyimide | CO2 laser | 25 | NA | 23.4 | [38] |
2015 | Polyimide | Pulsed, femtosecond fiber laser | 6 | 40 | 18 | [10] |
2016 | Polyimide | CO2 laser | 11 | 110 | 30 | [5] |
2017 | Polyimide | CO2 laser | 15.4 | 200 | 31 | [8] |
2017 | Polyimide | CO2 laser | 0.2 | 15 | 50 | [46] |
2019 | Polyimide | CO2 laser | 25 | 25 | 25 | [27] |
2020 | SU-8 | CW semiconductor diode laser (80 mW, 0.5 mm/s, 2 scans, N2 atmosphere) | 14.2 ± 3.3 | 28.3 ± 2.9 | 6.0 ± 1.0 | This work |
2020 | SU-8 | CW semiconductor diode laser (20 mW, 0.5 mm/s, 2 scans, N2 atmosphere) | 1.3 ± 0.2 | 13.5 ± 0.4 | 4.9 ± 0.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludvigsen, E.; Pedersen, N.R.; Zhu, X.; Marie, R.; Mackenzie, D.M.A.; Emnéus, J.; Petersen, D.H.; Kristensen, A.; Keller, S.S. Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8. Micromachines 2021, 12, 564. https://doi.org/10.3390/mi12050564
Ludvigsen E, Pedersen NR, Zhu X, Marie R, Mackenzie DMA, Emnéus J, Petersen DH, Kristensen A, Keller SS. Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8. Micromachines. 2021; 12(5):564. https://doi.org/10.3390/mi12050564
Chicago/Turabian StyleLudvigsen, Emil, Nina Ritter Pedersen, Xiaolong Zhu, Rodolphe Marie, David M. A. Mackenzie, Jenny Emnéus, Dirch Hjorth Petersen, Anders Kristensen, and Stephan Sylvest Keller. 2021. "Selective Direct Laser Writing of Pyrolytic Carbon Microelectrodes in Absorber-Modified SU-8" Micromachines 12, no. 5: 564. https://doi.org/10.3390/mi12050564