Thickness Optimization of Thin-Film Tandem Organic Solar Cell
Abstract
1. Introduction
2. Device Modeling and Working
3. Results and Discussion
3.1. Investigation on Top Subcell
3.2. Investigation on Middle Subcell
3.3. Investigation on Bottom Subcell
3.4. High-Temperature Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Farooq, W.; Khan, A.D.; Khan, A.D.; Noman, M. Enhancing the power conversion efficiency of organic solar cells. Optik 2020, 208, 164093. [Google Scholar] [CrossRef]
- Li, W.; Furlan, A.; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 2013, 135, 5529–5532. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 2012, 6, 180–185. [Google Scholar] [CrossRef]
- Guter, W.; Schöne, J.; Philipps, S.P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A.W.; Dimroth, F. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 2009, 94, 223504. [Google Scholar] [CrossRef]
- Mathews, I.; O’Mahony, D.; Corbett, B.; Morrison, A.P. Theoretical performance of multi-junction solar cells combining III-V and Si materials. Opt. Express 2012, 20, A754–A764. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, M.; Sabnis, V.; Yuen, H. 43.5% efficient lattice matched solar cells. In High and Low Concentrator Systems for Solar Electric Applications VI; SPIE: Bellingham, WA, USA, 19 September 2011. [Google Scholar] [CrossRef]
- Zhou, E.; Cong, J.; Hashimoto, K.; Tajima, K. Introduction of a conjugated side chain as an effective approach to improving donor–acceptor photovoltaic polymers. Energy Environ. Sci. 2012, 5, 9756–9759. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells—Towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Peumans, P.; Yakimov, A.; Forrest, S.R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693–3723. [Google Scholar] [CrossRef]
- Hadipour, A.; de Boer, B.; Blom, P.W. Organic tandem and multi-junction solar cells. Adv. Funct. Mater. 2008, 18, 169–181. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, S.; Li, W.; Vlasko-Vlasov, V.; Welp, U.; Kwok, W.-K.; Xu, T. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: Synthesis and optical and electrical properties. Acs Appl. Mater. Interfaces 2011, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, L.; Chen, Y. Universal and versatile MoO3-based hole transport layers for efficient and stable polymer solar cells. J. Phys. Chem. C 2014, 118, 9930–9938. [Google Scholar] [CrossRef]
- Greiner, M.T.; Helander, M.G.; Tang, W.-M.; Wang, Z.-B.; Qiu, J.; Lu, Z.-H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2012, 11, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Ananthanarayanan, K.; Luther, J.; Balaya, P. Origin of hole selectivity and the role of defects in low-temperature solution-processed molybdenum oxide interfacial layer for organic solar cells. J. Phys. Chem. C 2012, 116, 16346–16351. [Google Scholar] [CrossRef]
- Arnab, S.M.; Kabir, M. An analytical model for analyzing the current-voltage characteristics of bulk heterojunction organic solar cells. J. Appl. Phys. 2014, 115, 034504. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Stelling, C.; Singh, C.R.; Karg, M.; König, T.A.; Thelakkat, M.; Retsch, M. Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells. Sci. Rep. 2017, 7, 42530. [Google Scholar] [CrossRef] [PubMed]
- Gilot, J.; Wienk, M.M.; Janssen, R.A. Optimizing polymer tandem solar cells. Adv. Mater. 2010, 22, E67–E71. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Baran, D.; Forberich, K.; Turbiez, M.; Ameri, T.; Krebs, F.C.; Brabec, C.J. An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cells. Adv. Energy Mater. 2013, 3, 1597–1605. [Google Scholar] [CrossRef]
- Khan, A.D.; Khan, A.D. Optimization of highly efficient GaAs–silicon hybrid solar cell. Appl. Phys. A 2018, 124, 851. [Google Scholar] [CrossRef]
Electrodes Combination | Jsc (mA/cm2) | FF% | η% |
---|---|---|---|
FTO/Ag | 16.87 | 84.97 | 14.33 |
FTO/Al | 15.64 | 81.02 | 14.01 |
FTO/Au | 15.55 | 79.23 | 13.88 |
ITO/Al | 14.84 | 78.90 | 13.31 |
ITO/Ag | 14.61 | 77.02 | 13.03 |
ITO/Au | 14.57 | 76.95 | 12.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangash, K.A.; Kazmi, S.A.A.; Farooq, W.; Ayub, S.; Musarat, M.A.; Alaloul, W.S.; Javed, M.F.; Mosavi, A. Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines 2021, 12, 518. https://doi.org/10.3390/mi12050518
Bangash KA, Kazmi SAA, Farooq W, Ayub S, Musarat MA, Alaloul WS, Javed MF, Mosavi A. Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines. 2021; 12(5):518. https://doi.org/10.3390/mi12050518
Chicago/Turabian StyleBangash, Kamran Ali, Syed Asfandyar Ali Kazmi, Waqas Farooq, Saba Ayub, Muhammad Ali Musarat, Wesam Salah Alaloul, Muhammad Faisal Javed, and Amir Mosavi. 2021. "Thickness Optimization of Thin-Film Tandem Organic Solar Cell" Micromachines 12, no. 5: 518. https://doi.org/10.3390/mi12050518
APA StyleBangash, K. A., Kazmi, S. A. A., Farooq, W., Ayub, S., Musarat, M. A., Alaloul, W. S., Javed, M. F., & Mosavi, A. (2021). Thickness Optimization of Thin-Film Tandem Organic Solar Cell. Micromachines, 12(5), 518. https://doi.org/10.3390/mi12050518