Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane
Abstract
1. Introduction
2. Materials and Methods
2.1. Structure and Material Design
2.2. Fabrication Process
2.3. Characterization
3. Results and Discussion
3.1. Optical and Electrical Properties of ITO/SU-8 Layer
3.2. Configuration of Flexible Vibration Sensors
3.3. Vibration Response of the Fabricated Sensor
3.4. Application of Fabricated Sensor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, L.; Zhou, L.; Jiang, X.; Pang, Q.; Ye, D. Vibration in a multistage centrifugal pump under varied conditions. Shock. Vib. 2019, 2019, 2057031. [Google Scholar] [CrossRef]
- Glowacz, A.; Glowacz, W. Vibration-based fault diagnosis of commutator motor. Shock. Vib. 2018, 2018, 7460419. [Google Scholar] [CrossRef]
- Potočnik, P.; Govekar, E. Semi-supervised vibration-based classification and condition monitoring of compressors. Mech. Syst. Signal Process. 2017, 93, 51–65. [Google Scholar] [CrossRef][Green Version]
- Du, X.; Allwood, G.; Webberley, K.M.; Osseiran, A.; Marshall, B.J. Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device. Sensors 2018, 18, 4240. [Google Scholar] [CrossRef] [PubMed]
- Bonde, A.; Pan, S.; Jia, Z.; Zhang, Y.; Noh, H.Y.; Zhang, P. VVRRM: Vehicular vibration-based heart RR-interval monitoring system. In Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications, Tempe, AZ, USA, 12–13 February 2018; pp. 37–42. [Google Scholar]
- Lee, S.; Kim, J.; Yun, I.; Bae, G.Y.; Kim, D.; Park, S.; Yi, I.M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468. [Google Scholar] [CrossRef] [PubMed]
- Souissi, H.; Hamaoui, A. Effect of Human Exposure to Whole-Body Vibration in Transport. In Neuroergonomics; Elsevier: Amsterdam, The Netherlands, 2018; p. 229. [Google Scholar]
- Lindsell, C.J.; Griffin, M.J. Normative data for vascular and neurological tests of the hand-arm vibration syndrome. Int. Arch. Occup. Environ. Health 2002, 75, 43–54. [Google Scholar] [CrossRef]
- Heaver, C.; Goonetilleke, K.; Ferguson, H.; Shiralkar, S. Hand–arm vibration syndrome: A common occupational hazard in industrialized countries. J. Hand Surg. (Eur. Vol.) 2011, 36, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.-D.; Lim, H.; Kim, S.Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697. [Google Scholar] [CrossRef]
- Kang, D.; Pikhitsa, P.V.; Choi, Y.W.; Lee, C.; Shin, S.S.; Piao, L.; Park, B.; Suh, K.-Y.; Kim, T.-I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Dinh Le, T.-S.; An, J.; Huang, Y.; Vo, Q.; Boonruangkan, J.; Tran, T.; Kim, S.-W.; Sun, G.; Kim, Y.-J. Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 2019, 13, 13293–13303. [Google Scholar] [CrossRef]
- Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D.-S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Su, Y.; Jing, Q.; Li, Z.; Yi, F.; Wen, X.; Wang, Z.; Wang, Z.L. Eardrum-Inspired Active Sensors for Self-Powered Cardiovascular System Characterization and Throat-Attached Anti-Interference Voice Recognition. Adv. Mater. 2015, 27, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Bae, G.Y.; Pak, S.W.; Kim, D.; Lee, G.; Kim, D.H.; Chung, Y.; Cho, K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 2016, 28, 5300–5306. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Jung, H.; Kim, Y.-H.; Kim, M.; Yoo, E.; Choi, Y.J.; Yoon, T.-S.; Lee, H.H. Characterization of ITO etching by spontaneously evaporated fume of hydrogen chloride. Microelectron. Eng. 2013, 103, 173–176. [Google Scholar] [CrossRef]
- Ali, A.H.; Hassan, Z.; Shuhaimi, A. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si. Appl. Surf. Sci. 2018, 443, 544–547. [Google Scholar] [CrossRef]
- Seong, S.; Jung, Y.C.; Lee, T.; Park, I.-S.; Ahn, J. Enhanced uniformity in electrical and optical properties of ITO thin films using a wide thermal annealing system. Mater. Sci. Semicond. Process. 2018, 79, 14–19. [Google Scholar] [CrossRef]
- Khachatryan, H.; Kim, D.-J.; Kim, M.; Kim, H.-K. Roll-to-Roll fabrication of ITO thin film for flexible optoelectronics applications: The role of post-annealing. Mater. Sci. Semicond. Process. 2018, 88, 51–56. [Google Scholar] [CrossRef]
- Gunde, M.K.; Hauptman, N.; Maček, M.; Kunaver, M. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor. Appl. Phys. A 2009, 95, 673–680. [Google Scholar]
- Pokaipisit, A.; Horprathum, M.; Limsuwan, P. Vacuum and air annealing effects on properties of indium tin oxide films prepared by ion-assisted electron beam evaporation. Jpn. J. Appl. Phys. 2008, 47, 4692. [Google Scholar] [CrossRef]
- Chan, S.-H.; Li, M.-C.; Wei, H.-S.; Chen, S.-H.; Kuo, C.-C. The Effect of annealing on nanothick indium tin oxide transparent conductive films for touch sensors. J. Nanomater. 2015, 2015, 815–819. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Thomas Joseph Prakash, J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 2016, 4, 124–132. [Google Scholar] [CrossRef]
- González, G.B.; Cohen, J.B.; Hwang, J.-H.; Mason, T.O.; Hodges, J.P.; Jorgensen, J.D. Neutron diffraction study on the defect structure of indium–tin–oxide. J. Appl. Phys. 2001, 89, 2550–2555. [Google Scholar] [CrossRef]
- Bao, M.; Yang, H. Squeeze film air damping in MEMS. Sens. Actuator A Phys. 2007, 136, 3–27. [Google Scholar] [CrossRef]
- Versaci, M.; Jannelli, A.; Morabito, F.C.; Angiulli, G. A Semi-Linear Elliptic Model for a Circular Membrane MEMS Device Considering the Effect of the Fringing Field. Sensors 2021, 21, 5237. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Hierold, C. Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams. J. Appl. Phys. 2008, 104, 093516. [Google Scholar] [CrossRef]
- Miniature Single Axis Accelerometers of PCB Piezotronics. Available online: https://www.pcb.com/sensors-for-test-measurement/accelerometers/miniature-piezoelectric/single-axis (accessed on 28 September 2021).
- McGeoch, K.L.; Lawson, I.J.; Burke, F.; Proud, G.; Miles, J. Diagnostic criteria and staging of hand-arm vibration syndrome in the United Kingdom. Ind. Health 2005, 43, 527–534. [Google Scholar] [CrossRef]
- Health and Safety Executive. Hand–Arm Vibration—The Control of Vibration at Work Regulations 2005. Available online: www.hse.gov.uk/vibration/hav/regulations.htm (accessed on 29 September 2021).
Temperature (°C) | 2θ (°) 1 | β | D (nm) |
---|---|---|---|
200 | 30.78 | 0.0044 | 34.42 |
250 | 30.66 | 0.0019 | 78.21 |
300 | 30.64 | 0.0021 | 71.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, E.K.; Lee, E.; Bae, G.Y. Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane. Micromachines 2021, 12, 1246. https://doi.org/10.3390/mi12101246
Lee S, Lee EK, Lee E, Bae GY. Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane. Micromachines. 2021; 12(10):1246. https://doi.org/10.3390/mi12101246
Chicago/Turabian StyleLee, Siyoung, Eun Kwang Lee, Eunho Lee, and Geun Yeol Bae. 2021. "Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane" Micromachines 12, no. 10: 1246. https://doi.org/10.3390/mi12101246
APA StyleLee, S., Lee, E. K., Lee, E., & Bae, G. Y. (2021). Transparent and Flexible Vibration Sensor Based on a Wheel-Shaped Hybrid Thin Membrane. Micromachines, 12(10), 1246. https://doi.org/10.3390/mi12101246