Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hefner, A.R.; Singh, R.; Lai, J.S.; Berning, D.W.; Bouche, S.; Chapuy, C. SiC power diodes provide breakthrough performance for a wide range of applications. IEEE Trans. Power Electron. 2001, 16, 273–280. [Google Scholar] [CrossRef]
- Licciardo, G.D.; Bellone, S.; Benedetto, L.D. Analytical model of the forward operation of 4H-SiC vertical DMOSFET in the safe operating temperature range. IEEE Trans. Power Electron. 2015, 30, 5800–5809. [Google Scholar] [CrossRef]
- Wang, X.; Cooper, J.A. High-Voltage n-Channel IGBTs on Free-Standing 4H-SiC Epilayers. IEEE Trans. Electron Devices 2010, 57, 511–515. [Google Scholar] [CrossRef]
- Ren, N.; Wang, J.; Sheng, K. Design and Experimental Study of 4H-SiC trenched junction barrier Schottky diodes. ISO IEEE Trans. Electron Devices 2014, 61, 2459–2465. [Google Scholar]
- Min, S.J.; Shin, M.C.; Nguyen, N.T.; Oh, J.M.; Koo, S.M. High-performance temperature sensors based on dual 4H-SiC JBS and SBD devices. Materials 2020, 13, 445. [Google Scholar] [CrossRef]
- Raja, P.V.; Murty, N.V.L.N. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics. J. Semicond. 2019, 40, 022804. [Google Scholar] [CrossRef]
- Zhang, X.; Ha, S.; Benamara, M.; Skowronski, M.; O’Loughlin, M.J.; Sumakeris, J.J. Cross-sectional structure of carrot defects in 4H-SiC epilayers. Appl. Phys. Lett. 2004, 85, 5209–5211. [Google Scholar] [CrossRef]
- Konishi, K.; Yamamoto, S.; Nakata, S.; Yu, N.; Nakanishi, Y.; Tanaka, T.; Mitani, Y.; Tomita, N.; Toyoda, Y.; Yamakawa, S. Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress. J. Appl. Phys. 2013, 114, 014504. [Google Scholar] [CrossRef]
- Maximenko, S.I.; Freitas, J.A., Jr.; Myers-Ward, R.L.; Lew, K.K.; Vanmil, B.L.; Jr, C.R.E.; Gaskill, D.K.; Muzykov, P.G.; Sudarshan, T.S. Effect of threading screw and edge dislocations on transport properties of 4H-SiC homoepitaxial layers. J. Appl. Phys. 2010, 108, 013708. [Google Scholar] [CrossRef]
- Hayashi, S.; Yamashita, T.; Miyajima, M.; Senzaki, J.; Kato, T.; Yonezawa, Y.; Kojima, K.; Okumura, H.; Miyazato, M. Structural analysis of interfacial dislocations and expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes. Jpn. J. Appl. Phys. 2019, 58, 011005. [Google Scholar] [CrossRef]
- Yang, Z.M.; Lan, F.; Li, Y.; Gong, M.; Huang, M.M.; Gao, B.; Hu, J.K.; Ma, Y. The effect of the interfacial states by swift heavy ion induced atomic migration in 4H-SiC Schottky barrier diodes. Nucl. Instrum. Methods Phys. Res. 2018, 436, 244–248. [Google Scholar] [CrossRef]
- Lee, K.Y.; Huang, Y.H. An Investigation on barrier in homogeneities of 4H-SiC Schottky barrier diodes induced by surface morphology and traps. IEEE Trans. Electron Devices 2012, 5, 694–699. [Google Scholar] [CrossRef]
- Liu, L.Y.; Shen, T.L.; Liu, A.; Zhang, T.; Bai, S.; Xu, S.R.; Jin, P.; Hao, Y.; Ouyang, X.P. Performance degradation and defect characterization of Ni/4H-SiC Schottky diode neutron detector in high fluence rate neutron irradiation. Diam. Relat. Mater. 2018, 88, 256–261. [Google Scholar] [CrossRef]
- Huang, L.; Gu, X. Fermi level unpinning of metal/p-type 4H-SiC interface by combination of sacrificial oxidation and hydrogen plasma treatment. J. Appl. Phys. 2019, 125, 025301. [Google Scholar] [CrossRef]
- Mandal, K.C.; Chaudhuri, S.K.; Nguyen, K.V.; Mannan, M.A. Correlation of deep levels with detector performance in 4H-SiC epitaxial Schottky barrier alpha detectors. IEEE Trans. Nucl. Sci. 2014, 61, 2338–2344. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Harada, S.; Seki, K.; Horio, A.; Mitsuhashi, T.; Koike, D.; Tagawa, M.; Ujihara, T. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method. Appl. Phys. Express 2014, 7, 065501. [Google Scholar] [CrossRef]
- Yamashita, T.; Matsuhata, H.; Naijo, T.; Momose, K.; Osawa, H. Structural analysis of the 3C/4H boundaries formed on prismatic planes in 4H-SiC epitaxial films. J. Cryst. Growth 2016, 455, 172–180. [Google Scholar] [CrossRef]
- Camarda, M.; Magna, A.L.; Via, F.L. Monte Carlo study of the early growth stages of 3C-SiC on misoriented <11-20> and <1-100> 6H-SiC substrates. Mater. Sci. Forum 2014, 778, 238–242. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Yu, L.; Wang, Y.; Zhou, P.; Niu, Y.X.; Li, Z.H.; Chen, Y.F.; Han, P. Reduction of morphological defects in 4H-SiC epitaxial layers. J. Cryst. Growth 2019, 506, 108–113. [Google Scholar] [CrossRef]
- Pintilie, I.; Pintilie, L.; Irmscher, K.; Thomas, B. Formation of the Z1/2 deep-level defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation. Appl. Phys. Lett. 2002, 81, 4841–4843. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Raghothamachar, B.; Kim, T.; Dudley, M.; Kim, J. Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial. J. Cryst. Growth 2017, 480, 119–125. [Google Scholar] [CrossRef]
- Lebedev, A.A. Deep level centers in silicon carbide: A review. Semiconductors 1999, 33, 107–130. [Google Scholar] [CrossRef]
- Hu, J.; Xin, X.; Zhao, J.H.; Yan, F.; Kjornrattanawanich, B. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area. Opt. Lett. 2006, 31, 1591–1593. [Google Scholar] [CrossRef]
- Lioliou, G.; Mazzillo, M.C.; Sciuto, A.; Barnett, A.M. Electrical and ultraviolet characterization of 4H-SiC Schottky photodiodes. Opt. Express 2015, 23, 21657. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.G.; Liu, X.F.; Shen, Z.W.; Wen, Z.X.; Chen, J.; Zhao, W.S.; Wang, L.; Zhang, F.; Zhang, X.H.; Li, X.G.; et al. Improvement of fast homoepitaxial growth and defect reduction techniques of thick 4H-SiC epilayers. J. Cryst. Growth 2019, 505, 1–4. [Google Scholar] [CrossRef]
- Lilja, L.; Hassan, J.U.; Booker, I.D.; Bergman, J.P.; Janzén, E. Influence of growth temperature on carrier lifetime in 4H-SiC epilayers. J. Cryst. Growth 2013, 740–742, 637–640. [Google Scholar] [CrossRef]
- Storasta, L.; Tsuchida, H.; Miyazawa, T.; Ohshima, T. Enhanced annealing of the Z1/2 defect in 4H-SiC epilayers. J. Appl. Phys. 2008, 103, 013705. [Google Scholar] [CrossRef]
- Daigo, Y.; Ishii, S.; Kobayashi, T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD. Jpn. J. Appl. Phys. 2019, 58, SBBK06. [Google Scholar] [CrossRef]
- Watanabe, Y.; Katsuno, T.; Ishikawa, T. Relationship between characteristics of SiC-SBD and surface defect. Hyomen Kagaku 2014, 35, 84–89. [Google Scholar] [CrossRef][Green Version]
- Fujiwara, H.; Danno, K.; Kimoto, T.; Tojo, T.; Matsunami, H. Effects of C/Si ratio in fast epitaxial growth of 4H-SIC(0001) by vertical hot-wall chemical vapor deposition. J. Appl. Phys. 2005, 281, 370–376. [Google Scholar] [CrossRef]
- Miyazawa, T.; Tsuchida, A.H. Growth of 4H-SiC epilayers and Z1/2 center elimination. Mater. Sci. Forum 2012, 717–720, 81–86. [Google Scholar] [CrossRef]
- Yazdanfar, M.; Stenberg, P.; Booker, I.D.; Ivanov, I.G.; Kordina, O.; Pedersen, H.; Janzen, E. Process stability and morphology optimization of very thick 4H-SiC epitaxial layers grown by chloride-based CVD. J. Cryst. Growth 2013, 113, 125–130. [Google Scholar] [CrossRef]
- Shrivastava, A.; Muzykov, P.; Caldwell, J.D.; Sudarshan, T.S. Study of triangular defects and inverted pyramids in 4H-SiC 4° off-cut (0001) Si face epilayers. J. Cryst. Growth 2008, 310, 4443. [Google Scholar] [CrossRef]
- Feng, G.; Suda, J.; Kimoto, T. Characterization of major in-grown stacking faults in 4H-SiC epilayers. Phys. Lett. 2009, 94, 091910. [Google Scholar] [CrossRef]
- Niwa, H.; Feng, G.; Suda, J.; Kimoto, T. Breakdown characteristics of 15-kV-class 4H-SiC PiN diodes with various junction termination structures. IEEE Trans. Electron Devices 2012, 59, 2748–2752. [Google Scholar] [CrossRef]
- Xin, B.; Jia, R.X.; Hu, J.C.; Tsai, C.Y.; Lin, H.H.; Zhang, Y.M. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD. Appl. Surf. Sci. 2015, 357, 985–993. [Google Scholar] [CrossRef]
- Chen, W.; Lee, K.; Capano, M. Growth and characterization of nitrogen-doped C-face 4H-SiC epilayers. J. Cryst. Growth 2006, 297, 265–271. [Google Scholar] [CrossRef]
- Kojima, K.; Okumura, H.; Kuroda, S.; Arai, K. Homoepitaxial growth of 4H-SiC on -axis (0001(_)) C-face substrates by chemical vapor depositon. J. Cryst. Growth 2004, 269, 367–376. [Google Scholar] [CrossRef]
- Leone, S.; Beyer, F.C.; Pedersen, H.; Kordina, O.; Henry, A.; Janzen, E. Growth of smooth 4H-SiC epilayers on 4° off-axis substrates with chloride-based CVD at very high growth rate. Mater. Res. Bull. 2011, 46, 1272–1275. [Google Scholar] [CrossRef]
- Pristavu, G.; Brezeanu, G.; Badila, M.; Pascu, R.; Danila, M.; Godignon, P. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures. Appl. Phys. Lett. 2015, 106, 261605. [Google Scholar] [CrossRef]
- Kyoung, S.; Jung, E.S.; Kang, T.Y.; Sung, M.Y. Optimized designing to improve electrical characteristics of 4H-SiC wide trench junction barrier Schottky diode. Sci. Adv. Mater. 2018, 10, 416–421. [Google Scholar] [CrossRef]
- Okino, H.; Kameshiro, N.; Konishi, K.; Shima, A.; Yamada, R. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes. J. Appl. Phys. 2017, 122, 235704. [Google Scholar] [CrossRef]
- Benamara, M.; Anani, M.; Akkal, B.; Benamara, Z. Ni/SiC-6H Schottky barrier diode interfacial states characterization related to temperature. J. Alloys Compd. 2014, 603, 197–201. [Google Scholar] [CrossRef]
- Kzlovski, V.V.; Lebedev, A.A.; Levinshtein, M.E.; Rumyantsev, S.L.; Palmour, J.W. Impact of high energy electron irradiation on high voltage Ni/4H-SiC Schottky diodes. Appl. Phys. Lett. 2017, 110, 133501. [Google Scholar] [CrossRef]
- Shabunina, E.I.; Levinshtein, M.E.; Shmidt, N.M.; Ivanov, P.A.; Palmour, J.W. 1/f noise in forward biased high voltage 4H-SiC Schottky diodes. Solid State Electron. 2014, 96, 44–49. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zhang, E.X.; Fleetwood, D.M.; Schrimpf, R.D.; Dhar, S.; Ryu, S.H.; Shen, X.; Pantelides, S.T. Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs. IEEE Electron Device Lett. 2013, 34, 117–119. [Google Scholar] [CrossRef]
- Alexander, S.; David, Z.Y.; Ting, C.J.; Hill, M.L.; Jean, N.; Sam, A.; Keo, J.M.; Mumolo and Sarath, D.G. Gain and noise of high-performance long wavelength superlattice infrared detectors. Appl. Phys. Lett. 2010, 96, 1–3. [Google Scholar]
- Kalinina, E.V.; Violina, G.N.; Nikitina, I.P.; Yagovkina, M.A.; Zabrodski, V.V. Proton irradiation of 4H-SiC photodetectors with Schottky barriers. Semiconductors 2019, 53, 844–849. [Google Scholar] [CrossRef]
- Litton, C.W.; Johnstone, D.; Akarca-Biyikli, S.; Ramaiah, K.S.; Bhat, I.; Chow, T.P.; Kim, J.K.; Schubert, E.F. Effect of C/Si ratio on deep levels in epitaxial 4H-SiC. Appl. Phys. Lett. 2006, 88, 121914. [Google Scholar] [CrossRef]
- Eberlein, T.A.G.; Jones, R.; Briddon, P.R. Z1/Z2 defects in 4H-SiC. Phys. Rev. Lett. 2003, 90, 225502. [Google Scholar] [CrossRef]
- Trinh, X.T.; Szasz, K.; Homos, T.; Kawahara, K.; Suda, J.; Kimoto, T.; Gali, A.; Janzén, E.; Son, N.T. Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site. Phys. Rev. Lett. 2013, 88, 235209. [Google Scholar] [CrossRef]
- Lilja, L.; Booker, I.D.; Hassan, J.U.; Janzen, E.; Bergman, J.P. The influence of growth conditions on carrier lifetime in 4H-SiC epilayers. J. Cryst. Growth 2013, 381, 43–50. [Google Scholar] [CrossRef]
Samples # | #1 | #2 | #3 | #4 | #5 | #6 | #7 |
---|---|---|---|---|---|---|---|
C/Si | 0.9 | 1 | 1.1 | 0.8 | 0.8 | 0.8 | 0.8 |
Growth rate (μm/h) | 60 | 60 | 60 | 60 | 60 | 60 | 30 |
Doping density (1015 cm−3) | 1 | 1 | 1 | 4 | 7.5 | 10 | 7.5 |
Samples # | #1 | #2 | #3 |
---|---|---|---|
n | 1.008 | 1.004 | 1.010 |
ΦB (eV) | 1.629 | 1.631 | 1.629 |
Neff (1015 cm−3) | 1.25 | 1.17 | 1.15 |
Samples # | ΔE (eV) | σ (cm2) | Nt (cm−3) |
---|---|---|---|
#1 | Ec-0.627 | 1.18 × 10−15 | 2.28 × 1013 |
#2 | Ec-0.626 | 8.01 × 10−16 | 3.79 × 1013 |
#3 | Ec-0.624 | 5.06 × 10−16 | 2.22 × 1013 |
#4 | Ec-0.648 | 2.42 × 10−16 | 7.62 × 1012 |
#5 | Ec-0.644 | 2.44 × 10−15 | 6.78 × 1012 |
#6 | Ec-0.687 | 8.33 × 10−15 | 1.24 × 1013 |
#7 | Ec-0.610 | 5.96 × 10−16 | 1.41 × 1013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Meng, C.; Yu, L.; Li, Y.; Yan, F.; Han, P.; Ji, X. Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines 2020, 11, 609. https://doi.org/10.3390/mi11060609
Li J, Meng C, Yu L, Li Y, Yan F, Han P, Ji X. Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines. 2020; 11(6):609. https://doi.org/10.3390/mi11060609
Chicago/Turabian StyleLi, Jinlan, Chenxu Meng, Le Yu, Yun Li, Feng Yan, Ping Han, and Xiaoli Ji. 2020. "Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions" Micromachines 11, no. 6: 609. https://doi.org/10.3390/mi11060609
APA StyleLi, J., Meng, C., Yu, L., Li, Y., Yan, F., Han, P., & Ji, X. (2020). Effect of Various Defects on 4H-SiC Schottky Diode Performance and Its Relation to Epitaxial Growth Conditions. Micromachines, 11(6), 609. https://doi.org/10.3390/mi11060609