Simultaneously Quantifying Both Young’s Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Aspiration System for Simultaneously Quantifying Cells’ Specific Membrane Capacitance (SMC) and Young’s Modulus
2.2. The Aspiration Procedures for Quantifying Physical Properties of Cells
2.3. Characterization of Single Cell Young’s Modulus
2.4. Characterization of Single Cell SMC Value
2.5. Cell Preparation
2.6. Data Acquisition and Analysis
3. Results and Discussion
3.1. Young’s Modulus and SMC Value of Single Bladder Cancer Cells are Linearly Correlated with the Cancer Grades
3.2. Combination of Young’s Modulus and SMC Value Could Be A Potential Tumor Grading Marker to Identify Cancer Cells With Different Metastatic Potential
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA: A Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Kamat, A.M.; Hahn, N.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef]
- Brausi, M.; Witjes, J.A.; Lamm, D.; Persad, R.; Palou, J.; Colombel, M.; Buckley, R.; Soloway, M.; Akaza, H.; Bhle, A. A Review of Current Guidelines and Best Practice Recommendations for the Management of Nonmuscle Invasive Bladder Cancer by the International Bladder Cancer Group. J. Urol. 2011, 186, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, C.; Costa, D.S.J.; King, M.T.; Smith, D.P.; Patel, M.I. A conceptual framework for patient-reported outcomes in non-muscle invasive bladder cancer. Supportive Care Cancer 2017, 25, 3095–3102. [Google Scholar] [CrossRef] [PubMed]
- Mostofi, F.; Davis, C.; Sesterhenn, I. Histological Typing of Urinary Bladder Tumours; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Bosschieter, J.; Hentschel, A.; Savci-Heijink, C.D.; van der Voorn, J.P.; Rozendaal, L.; Vis, A.N.; van Rhijn, B.W.G.; Lissenberg-Witte, B.I.; van de Putte, E.E.F.; van Moorselaar, R.J.A.; et al. Reproducibility and Prognostic Performance of the 1973 and 2004 World Health Organization Classifications for Grade in Non–muscle-invasive Bladder Cancer: A Multicenter Study in 328 Bladder Tumors. Clin. Genitourin. Cancer 2018, 16, e985–e992. [Google Scholar] [CrossRef] [PubMed]
- Subra, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3, 413–438. [Google Scholar]
- Chuang, C.-H.; Huang, Y.-W.; Wu, Y.-T. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells. Sensors 2011, 11, 11021–11035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Du, P.; Xiao, X.; Liu, Y.; Peng, Y.; Yang, C.; Yue, T. Microfluidic-Based Mechanical Phenotyping of Androgen-Sensitive and Non-sensitive Prostate Cancer Cells Lines. Micromachines 2019, 10, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, T.; Jia, X.; Petrosino, J.; Sun, L.; Fan, Z.; Fine, J.; Davis, R.; Galster, S.; Kuret, J.; Scharre, D.W.; et al. Computational integration of nanoscale physical biomarkers and cognitive assessments for Alzheimer’s disease diagnosis and prognosis. Sci. Adv. 2017, 3, e1700669. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.; Park, K.H.; Reese, B.E.; Zhu, H.; Lyon, S.; Ma, J.; Mohler, P.J.; Zhang, M. Quantifying drug-induced nanomechanics and mechanical effects to single cardiomyocytes for optimal drug administration to minimize cardiotoxicity. Langmuir 2016, 32, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xue, Y.; Peng, Y.; Pang, X.; Zhang, Y.; Ruiz-Ortega, L.I.; Tian, Y.; Ngan, A.H.W.; Tang, B. Elastic modulus and migration capability of drug treated leukemia cells K562. Biochem. Biophys. Res. Commun. 2019, 516, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhang, Y.; Chen, D.; Tan, H.; Zheng, Y.; Wang, J.; Chen, J. Characterization of Single-Nucleus Electrical Properties by Microfluidic Constriction Channel. Micromachines 2019, 10, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Xiao, X.; Peng, Y.; Yang, C.; Wu, S.; Liu, Y.; Yue, T.; Pu, H.; Liu, N.; Jiang, H. The comparison between force volume and peakforce quantitative nanomechanical mode of atomic force microscope in detecting cell’s mechanical properties. Microsc. Res. Tech. 2019, 82, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Lin, Y.; Peng, Y.; Xin, L.; Yue, T.; Liu, Y.; Ru, C.; Xie, S.; Dong, L.; Pu, H.; et al. Automated Parallel Electrical Characterization of Cells Using Optically-Induced Dielectrophoresis. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1–9. [Google Scholar] [CrossRef]
- Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.Y.; Lim, C.T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 2007, 25, 111–118. [Google Scholar] [CrossRef]
- Wirtz, D.; Konstantopoulos, K.; Searson, P.C. The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 2011, 11, 512. [Google Scholar] [CrossRef] [Green Version]
- Kihara, T.; Haghparast, S.M.A.; Shimizu, Y.; Yuba, S.; Miyake, J. Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap. Biochem. Biophys. Res. Commun. 2011, 409, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Zhao, Y.; Liu, L.; Wang, Y.; Li, W.J.; Lee, G.-B. Determination of cell membrane capacitance and conductance via optically induced electrokinetics. Biophys. J. 2017, 113, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.; Aebi, U.; Bentires-Alj, M.; Lim, R.Y. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 2012, 7, 757. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, X.; Chen, D.; Luo, Y.; Jiang, M.; Wei, C.; Long, R.; Yue, W.; Wang, J.; Chen, J. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens. Bioelectron. 2014, 57, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 2008, 374, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Canetta, E.; Riches, A.; Borger, E.; Herrington, S.; Dholakia, K.; Adya, A.K. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: Combined application of atomic force microscopy and modulated Raman spectroscopy. Acta Biomater. 2014, 10, 2043–2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 1999, 28, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, M.F.; Bielenberg, D.R.; Lenormand, G.; Marinkovic, M.; Waghorne, C.G.; Zetter, B.R.; Fredberg, J.J. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin. Exp. Metastasis 2013, 30, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tan, Q.; Geddie, W.R.; Jewett, M.A.; Phillips, N.; Ke, D.; Simmons, C.A.; Sun, Y. Biophysical characterization of bladder cancer cells with different metastatic potential. Cell Biochem. Biophys. 2014, 68, 241–246. [Google Scholar] [CrossRef]
- Abidine, Y.; Laurent, V.M.; Michel, R.; Duperray, A.; Verdier, C. Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential. Eur. Phys. J. Plus 2015, 130, 202. [Google Scholar] [CrossRef] [Green Version]
- Pu, H.; Liu, N.; Yu, J.; Yang, Y.; Sun, Y.; Peng, Y.; Xie, S.; Luo, J.; Dong, L.; Chen, H. Micropipette aspiration of single cells for both mechanical and electrical characterization. IEEE Trans. Biomed. Eng. 2019, 66, 3185–3191. [Google Scholar] [CrossRef]
- Sato, M.; Theret, D.; Wheeler, L.; Ohshima, N.; Nerem, R. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 1990. [Google Scholar] [CrossRef]
- Shojaei-Baghini, E.; Zheng, Y.; Sun, Y. Automated micropipette aspiration of single cells. Ann. Biomed. Eng. 2013, 41, 1208–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Leng, M.; Yue, T.; Dong, L.; Liu, Y.; Peng, Y.; Pu, H.; Xie, S.; Luo, J. Simultaneously Quantifying Both Young’s Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential. Micromachines 2020, 11, 249. https://doi.org/10.3390/mi11030249
Liu N, Leng M, Yue T, Dong L, Liu Y, Peng Y, Pu H, Xie S, Luo J. Simultaneously Quantifying Both Young’s Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential. Micromachines. 2020; 11(3):249. https://doi.org/10.3390/mi11030249
Chicago/Turabian StyleLiu, Na, Mengying Leng, Tao Yue, Liang Dong, Yuanyuan Liu, Yan Peng, Huayan Pu, Shaorong Xie, and Jun Luo. 2020. "Simultaneously Quantifying Both Young’s Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential" Micromachines 11, no. 3: 249. https://doi.org/10.3390/mi11030249
APA StyleLiu, N., Leng, M., Yue, T., Dong, L., Liu, Y., Peng, Y., Pu, H., Xie, S., & Luo, J. (2020). Simultaneously Quantifying Both Young’s Modulus and Specific Membrane Capacitance of Bladder Cancer Cells with Different Metastatic Potential. Micromachines, 11(3), 249. https://doi.org/10.3390/mi11030249