Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Electronic Interaction Verification
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shafiee, A.; Ghadiri, E.; Ramesh, H.; Kengla, C.; Kassis, J.; Calvert, P.; Williams, D.; Khademhosseini, A.; Narayan, R.; Forgacs, G.; et al. Physics of bioprinting. Appl. Phys. Rev. 2019, 6, 021315. [Google Scholar] [CrossRef]
- Shafiee, A.; Ghadiri, E.; Williams, D.; Atala, A. Physics of cellular self-assembly—A microscopic model and mathematical framework for faster maturation of bioprinted tissues. Bioprinting 2019, 14, e00047. [Google Scholar] [CrossRef]
- Shafiee, A.; Norotte, C.; Ghadiri, E. Cellular bioink surface tension: A tunable biophysical parameter for faster maturation of bioprinted tissue. Bioprinting 2017, 8, 13–21. [Google Scholar] [CrossRef]
- Kang, H.W.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Raya-Rivera, A.; Esquiliano, D.R.; Yoo, J.J.; López-Bayghen, E.; Soker, S.; Atala, A. Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet 2011, 377, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- Norotte, C.; Marga, F.S.; Niklason, L.E.; Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30, 5910–5917. [Google Scholar] [CrossRef] [Green Version]
- McCune, M.; Shafiee, A.; Forgacs, G.; Kosztin, I. Predictive modeling of post bioprinting structure formation. Soft Matter 2014, 10, 1790–1800. [Google Scholar] [CrossRef]
- Owens, C.; Marga, F.; Forgacs, G. Bioprinting of Nerve. In Essentials of 3D Biofabrication and Translation; Atala, A., Yoo, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 379–394. [Google Scholar]
- Shafiee, A.; McCune, M.; Forgacs, G.; Kosztin, I. Post-deposition bioink self-assembly: A quantitative study. Biofabrication 2015, 7, 045005. [Google Scholar] [CrossRef]
- Raya-Rivera, A.M.; Esquiliano, D.; Fierro-Pastrana, R.; López-Bayghen, E.; Valencia, P.; Ordorica-Flores, R.; Soker, S.; Yoo, J.J.; Atala, A. Tissue-engineered autologous vaginal organs in patients: A pilot cohort study. Lancet 2014, 384, 329–336. [Google Scholar] [CrossRef]
- Atala, A.; Bauer, S.B.; Soker, S.; Yoo, J.J.; Retik, A.B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006, 367, 1241–1246. [Google Scholar] [CrossRef]
- Shafiee, A.; Ghadiri, E.; Kassis, J.; Pourhabibi Zarandi, N.; Atala, A. Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. Curr. Stem. Cell Rep. 2018, 4, 105–115. [Google Scholar] [CrossRef]
- Shafiee, A.; Ghadiri, E.; Kassis, J.; Atala, A. Nanosensors for therapeutic drug monitoring: Implications for transplantation. Nanomedicine 2019, 14, 2735–2745. [Google Scholar] [CrossRef] [PubMed]
- Tasciotti, E.; Cabrera, F.J.; Evangelopoulos, M.; Martinez, J.O.; Thekkedath, U.R.; Kloc, M.; Ghobrial, R.M.; Li, X.C.; Grattoni, A.; Ferrari, M. The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation 2016, 100, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Kaplan, D.L.; Bao, G.; Bettinger, C.; Forgacs, G.; Dong, C.; Khademhosseini, A.; Ke, Y.; Leong, K.; Sambanis, A.; et al. Advanced Cell and Tissue Biomanufacturing. ACS Biomater. Sci. Eng. 2018, 4, 2292–2307. [Google Scholar] [CrossRef]
- Boero, C.; Casulli, M.A.; Olivo, J.; Foglia, L.; Orso, E.; Mazza, M.; Carrara, S.; De Micheli, G. Design, development, and validation of an in-situ biosensor array for metabolite monitoring of cell cultures. Biosens. Bioelectron. 2014, 61, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samad, W.Z.; Salleh, M.M.; Shafiee, A.; Yarmo, M.A. Preparation Nanostructure Thin Films of Fluorine Doped Tin Oxide by Inkjet Printing Technique. In Proceedings of the AIP Conference, 3rd Nanoscience and Nanotechnology Symposium 2010, Bandung, Indonesia, 16 June 2010; Volume 1284, pp. 83–86. [Google Scholar]
- Samad, W.Z.; Salleh, M.M.; Shafiee, A.; Yarmo, M.A. Transparent conducting thin films of fluoro doped tin oxide (FTO) deposited using inkjet printing technique. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE 2010), Melaka, Malaysia, 28–30 June 2010; pp. 52–55. [Google Scholar]
- Samad, W.Z.; Salleh, M.M.; Shafiee, A.; Yarmo, M.A. Transparent Conductive Electrode of Fluorine Doped Tin Oxide Prepared by Inkjet Printing Technique. Mater. Sci. Forum 2010, 663–665, 694–697. [Google Scholar] [CrossRef]
- Grubb, P.M.; Subbaraman, H.; Park, S.; Akinwande, D.; Chen, R.T. Inkjet printing of high performance transistors with micron order chemically Set Gaps. Sci. Rep. 2017, 7, 1202. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, A.; Salleh, M.M.; Yahaya, M. Fabrication of organic solar cells based on a blend of donor-acceptor molecules by inkjet printing technique. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE), Johor Bahru, Malaysia, 25–27 November 2008; pp. 319–322. [Google Scholar]
- Shafiee, A.; Mat Salleh, M.; Yahaya, M. Fabrication of organic solar cells based on a blend of poly (3-octylthiophene-2, 5-diyl) and fullerene derivative using inkjet printing technique. In Proceedings of the SPIE, 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China, 8–11 July 2009; Volume 7493, p. 74932D. [Google Scholar]
- Moreira, F.T.C.; Dutra, R.A.F.; Noronha, J.P.; Sales, M.G.F. Novel sensory surface for creatine kinase electrochemical detection. Biosens. Bioelectron. 2014, 56, 217–222. [Google Scholar] [CrossRef]
- Irimia-Vladu, M. “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 2014, 43, 588–610. [Google Scholar] [CrossRef] [Green Version]
- Feron, K.; Lim, R.; Sherwood, C.; Keynes, A.; Brichta, A.; Dastoor, P. Organic Bioelectronics: Materials and Biocompatibility. IJMS 2018, 19, 2382. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, G.; Idzko, A.L.; Götz, S.; Thalhammer, S. Biocompatibility Studies of Functionalized Regioregular Poly(3-hexylthiophene) Layers for Sensing Applications. Macromol. Biosci. 2010, 10, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Sui, L.; Song, X.J.; Ren, J.; Cai, W.J.; Ju, L.H.; Wang, Y.; Wang, L.Y.; Chen, M. In vitroand in vivoevaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery. J. Biomed. Mater. Res. 2014, 102, 1681–1696. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35, 10009–10014. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Ghadiri, E.; Salleh, M.M.; Yahaya, M.; Atala, A. Controlling the Surface Properties of an Inkjet—Printed Reactive Oxygen Species Scavenger for Flexible Bioelectronics Applications in Neural Resilience. IEEE J. Electron. Devices Soc. 2019, 7, 784–791. [Google Scholar] [CrossRef]
- Shafiee, A.; Salleh, M.M.; Yahaya, M. Determination of HOMO and LUMO of [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester and Poly (3-octyl-thiophene-2, 5-diyl) through Voltametry Characterization. Sains Malays. 2011, 40, 173–176. [Google Scholar]
- Lai, J.Y. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J. Mater. Sci. Mater. Med. 2010, 21, 1899–1911. [Google Scholar] [CrossRef]
- Cortivo, R.; Brun, P.; Rastrelli, A.; Abatangelo, G. In vitro studies on biocompatibilitg of hyaluronic acid esters. Biomaterials 1991, 12, 727–730. [Google Scholar] [CrossRef]
- Zhang, H.; Grinstaff, M.W. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications. Macromol. Rapid Commun. 2014, 35, 1906–1924. [Google Scholar] [CrossRef]
- Ghadiri, E.; Taghavinia, N.; Aghabozorg, H.R.; Iraji zad, A. TiO2 nanotubular fibers sensitized with CdS nanoparticles. Eur. Phys. J. Appl. Phys. 2010, 50, 20601. [Google Scholar] [CrossRef]
- Bauer, C.; Teuscher, J.; Brauer, J.C.; Punzi, A.; Marchioro, A.; Ghadiri, E.; De Jonghe, J.; Wielopolski, M.; Banerji, N.; Moser, J.E. Dynamics and Mechanisms of Interfacial Photoinduced Electron Transfer Processes of Third Generation Photovoltaics and Photocatalysis. CHIMIA 2011, 65, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Kabongo, G.L.; Mbule, P.S.; Mhlongo, G.H.; Mothudi, B.M.; Hillie, K.T.; Dhlamini, M.S. Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho. Nanoscale Res. Lett. 2016, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadiri, E.; Liu, B.; Moser, J.E.; Grätzel, M.; Etgar, L. Investigation of Interfacial Charge Separation at PbS QDs/(001) TiO2 Nanosheets Heterojunction Solar Cell. Part. Part. Syst. Charact. 2015, 32, 483–488. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiee, A.; Ghadiri, E.; Kassis, J.; Williams, D.; Atala, A. Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices. Micromachines 2020, 11, 105. https://doi.org/10.3390/mi11010105
Shafiee A, Ghadiri E, Kassis J, Williams D, Atala A. Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices. Micromachines. 2020; 11(1):105. https://doi.org/10.3390/mi11010105
Chicago/Turabian StyleShafiee, Ashkan, Elham Ghadiri, Jareer Kassis, David Williams, and Anthony Atala. 2020. "Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices" Micromachines 11, no. 1: 105. https://doi.org/10.3390/mi11010105
APA StyleShafiee, A., Ghadiri, E., Kassis, J., Williams, D., & Atala, A. (2020). Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices. Micromachines, 11(1), 105. https://doi.org/10.3390/mi11010105