Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices
Abstract
:1. Introduction
2. Long-Term Reliability Test Principles
3. Inorganic Materials
3.1. Al2O3
3.2. HfO2
3.3. SiO2
3.4. SiC
3.5. Diamond
4. Organic Materials
4.1. Polyimide
4.2. Parylene
4.3. Silicone Elastomer
4.4. LCP
4.5. SU-8
4.6. COC
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Hambrecht, F.T. Neural prostheses. Annu. Rev. Biophys. Bioeng. 1979, 8, 239–267. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.F.; Wyatt, J. Prospects for a visual prosthesis. Neuroscientist 1997, 3, 251–262. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Müller, G.R.; Pfurtscheller, J.; Gerner, H.J.; Rupp, R. “Thought”—Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci. Lett. 2003, 351, 33–36. [Google Scholar] [CrossRef]
- Shults, M.C.; Rhodes, R.K.; Updike, S.J.; Gilligan, B.J.; Reining, W.N. A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors. IEEE Trans. Biomed. Eng. 1994, 41, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Berrang, P.G.; Bluger, H.V.; Jarvin, S.D.; Lupin, A.J. Totally Implantable Cochlear Prosthesis. Patent U.S. 6,358,281, 19 March 2002. [Google Scholar]
- Bootin, M.L. Deep brain stimulation: Overview and update. J. Clin. Monit. Comput. 2006, 20, 341–346. [Google Scholar] [CrossRef]
- Peña, C.; Bowsher, K.; Costello, A.; De Luca, R.; Doll, S.; Li, K.; Schroeder, M.; Stevens, T. An overview of FDA medical device regulation as it relates to deep brain stimulation devices. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 421–424. [Google Scholar] [PubMed]
- Zhou, D.D.; Dorn, J.D.; Greenberg, R.J. The Argus® II retinal prosthesis system: An overview. In Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July 2013; pp. 1–6. [Google Scholar]
- Hierold, C.; Clasbrumme, B.; Behrend, D.; Scheiter, T.; Steger, M.; Oppermann, K.; Kapels, H.; Landgraf, E.; Wenzel, D.; Etuodt, D. Implantable low power integrated pressure sensor system for minimal invasive telemetric patient monitoring. In Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Heidelberg, Germany, 25–29 January 1998; pp. 568–573. [Google Scholar]
- Heller, A. Integrated medical feedback systems for drug delivery. AIChE J. 2005, 51, 1054–1066. [Google Scholar] [CrossRef]
- Jiang, G. Design challenges of implantable pressure monitoring system. Front. Neurosci. 2010, 4, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Guiraud, D.; Stieglitz, T.; Koch, K.P.; Divoux, J.L.; Rabischong, P. An implantable neuroprosthesis for standing and walking in paraplegia: 5-Year patient follow-up. J. Neural Eng. 2006, 3, 268–275. [Google Scholar] [CrossRef]
- Kotzar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J.M.; Melzak, J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 2002, 23, 2737–2750. [Google Scholar] [CrossRef]
- Onuki, Y.; Bhardwaj, U.; Papadimitrakopoulos, F.; Burgess, D.J. A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. J. Diabetes Sci. Technol. 2008, 2, 1003–1015. [Google Scholar] [CrossRef]
- Hassler, C.; Boretius, T.; Stieglitz, T. Polymers for neural implants. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 18–33. [Google Scholar] [CrossRef]
- Kim, B.J.; Meng, E. Review of polymer MEMS micromachining. J. Micromech. Microeng. 2015, 26, 13001. [Google Scholar] [CrossRef]
- Scholten, K.; Meng, E. Materials for microfabricated implantable devices: A review. Lab Chip 2015, 15, 4256–4272. [Google Scholar] [CrossRef]
- Patel, N.R.; Gohil, P.P. International Journal of Emerging Technology and Advanced Engineering A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 91–101. [Google Scholar]
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef]
- Hukins, D.W.L.; Mahomed, A.; Kukureka, S.N. Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 2008, 30, 1270–1274. [Google Scholar] [CrossRef]
- Hemmerich, K.J. General aging theory and simplified protocol for accelerated aging of medical devices. Med. Plast. Biomater. 1998, 5, 16–23. [Google Scholar]
- Lambert, B.J.; Tang, F.W. Rationale for practical medical device accelerated aging programs in AAMI TIR 17. Radiat. Phys. Chem. 2000, 57, 349–353. [Google Scholar] [CrossRef]
- Minnikanti, S.; Diao, G.; Pancrazio, J.J.; Xie, X.; Rieth, L.; Solzbacher, F.; Peixoto, N. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. Acta Biomater. 2014, 10, 960–967. [Google Scholar] [CrossRef]
- Chun, W.; Chou, N.; Cho, S.; Yang, S.; Kim, S. Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy. Prog. Org. Coat. 2014, 77, 537–547. [Google Scholar] [CrossRef]
- Jeong, J.; Bae, S.H.; Seo, J.-M.; Chung, H.; Kim, S.J. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis. J. Neural Eng. 2016, 13, 25004. [Google Scholar] [CrossRef]
- Caldwell, R.; Mandal, H.; Sharma, R.; Solzbacher, F.; Tathireddy, P.; Rieth, L. Analysis of Al2O3—Parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays. J. Neural Eng. 2017, 14, 46011. [Google Scholar] [CrossRef]
- Xie, X.; Rieth, L.; Williams, L.; Negi, S.; Bhandari, R.; Caldwell, R.; Sharma, R.; Tathireddy, P.; Solzbacher, F. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J. Neural Eng. 2014, 11, 26016. [Google Scholar] [CrossRef]
- Xie, X.; Rieth, L.; Caldwell, R.; Negi, S.; Bhandari, R.; Sharma, R.; Tathireddy, P.; Solzbacher, F. Effect of bias voltage and temperature on lifetime of wireless neural interfaces with Al2O3 and parylene bilayer encapsulation. Biomed. Microdevices 2015, 17, 1. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, J.; Ritasalo, R.; Pudas, M.; Laiwalla, F.; Leung, V.; Larson, L.; Nurmikko, A. Conformal Hermetic Sealing of Wireless Microelectronic Implantable Chiplets by Multilayered Atomic Layer Deposition (ALD). Adv. Funct. Mater. 2018, 29, 1806440. [Google Scholar] [CrossRef]
- Xie, X.; Rieth, L.; Caldwell, R.; Diwekar, M.; Tathireddy, P.; Sharma, R.; Solzbacher, F. Long-term bilayer encapsulation performance of atomic layer deposited Al2O3 and parylene c for biomedical implantable devices. IEEE Trans. Biomed. Eng. 2013, 60, 2943–2951. [Google Scholar]
- Escobar, L.A.; Meeker, W.Q. A Review of Accelerated Test Models. Stat. Sci. 2006, 21, 552–577. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Rieth, L.; Merugu, S.; Tathireddy, P.; Solzbacher, F. Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics. Appl. Phys. Lett. 2012, 101, 093702. [Google Scholar] [CrossRef]
- De Beeck Op, M.; Verplancke, R.; Schaubroeck, D.; Cuypers, D.; Cauwe, M. Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nerves. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Schaubroeck, D.; Verplancke, R.; Cauwe, M.; Cuypers, D.; Baumans, K.; De Beeck Op, M. POLYIMIDE-ALD-POLYIMIDE LAYERS AS HERMETIC ENCAPSULANT FOR IMPLANTS. In Proceedings of the XXXI International Conference on Surface Modification Technologies (SMT31), Mons, Belgium, 5–7 July 2017. [Google Scholar]
- Fang, H.; Zhao, J.; Yu, K.J.; Song, E.; Farimani, A.B.; Chiang, C.-H.; Jin, X.; Xue, Y.; Xu, D.; Du, W.; et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682–11687. [Google Scholar] [CrossRef] [Green Version]
- Kamins, T.; Lorach, H.; Lei, X.; Cogan, S.; Kane, S.; Galambos, L.; Palanker, D.; Huie, P.; Harris, J.; Mathieson, K. SiC protective coating for photovoltaic retinal prosthesis. J. Neural Eng. 2016, 13, 046016. [Google Scholar]
- Cogan, S.F.; Edell, D.J.; Guzelian, A.A.; Liu, Y.P.; Edell, R. Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J. Biomed. Mater. Res. Part A 2003, 67, 856–867. [Google Scholar] [CrossRef]
- Hsu, J.M.; Tathireddy, P.; Rieth, L.; Normann, A.R.; Solzbacher, F. Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Film 2007, 516, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Abdulagatov, A.I.; Yan, Y.; Cooper, J.R.; Zhang, Y.; Gibbs, Z.M.; Cavanagh, A.S.; Yang, R.G.; Lee, Y.C.; George, S.M. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interfaces 2011, 3, 4593–4601. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Senzaki, Y.; Park, S.; Chatham, H.; Bartholomew, L.; Nieveen, W. Atomic layer deposition of hafnium oxide and hafnium silicate thin films using liquid precursors and ozone. J. Vac. Sci. Technol. A Vac. Surfaces Film. 2004, 22, 1175–1181. [Google Scholar] [CrossRef]
- Choi, J.H.; Mao, Y.; Chang, J.P. Development of hafnium based high-k materials—A review. Mater. Sci. Eng. R Rep. 2011, 72, 97–136. [Google Scholar] [CrossRef]
- Ma, Z.W.; Liu, L.X.; Xie, Y.Z.; Su, Y.R.; Zhao, H.T.; Wang, B.Y.; Cao, X.Z.; Qin, X.B.; Li, J.; Yang, Y.H.; et al. Spectroscopic ellipsometry and positron annihilation investigation of sputtered HfO2 films. Thin Solid Film. 2011, 519, 6349–6353. [Google Scholar] [CrossRef]
- Sugawara, T.; Sreenivasan, R.; McIntyre, P.C. Mechanism of germanium plasma nitridation. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2006, 24, 2442–2448. [Google Scholar] [CrossRef]
- Khairnar, A.G.; Mahajan, A.M. Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 2013, 15, 24–28. [Google Scholar] [CrossRef]
- Vargas, M.; Murphy, N.R.; Ramana, C.V. Tailoring the index of refraction of nanocrystalline hafnium oxide thin films. Appl. Phys. Lett. 2014, 104, 101907. [Google Scholar] [CrossRef]
- Souriau, J.-C.; Morales, J.M.H.; Castagné, L.; Simon, G.; Amara, K.; Boutaud, B. Miniaturization and Biocompatible Encapsulation for Implantable Biomedical Silicon Devices. ECS J. Solid State Sci. Technol. 2015, 4, P445–P450. [Google Scholar] [CrossRef]
- Morales, J. Evaluating Biocompatible Barrier Films as Encapsulants of Medical Micro Devices Evaluation de Couches Barrières Biocompatibles Pour l’ Encapsulation de Dispositifs Médicaux Microélectroniques. Ph.D. Thesis, Grenoble Alpes, Grenoble, France, 2015. [Google Scholar]
- Collins, J.L.; Moncada Hernandez, H.; Habibi, S.; Kendrick, C.E.; Wang, Z.; Bihari, N.; Bergstrom, P.L.; Minerick, A.R. Electrical and chemical characterizations of hafnium (IV) oxide films for biological lab-on-a-chip devices. Thin Solid Film 2018, 662, 60–69. [Google Scholar] [CrossRef]
- Donoghue, M.; Basandi, P.; Adarsh, H.; Madhushankari, G.; Selvamani, M.; Nayak, P. Habit-associated salivary pH changes in oral submucous fibrosis-A controlled cross-sectional study. J. Oral Maxillofac. Pathol. 2015, 19, 175–181. [Google Scholar] [CrossRef]
- Dorvel, B.R.; Reddy, B.; Go, J.; Duarte Guevara, C.; Salm, E.; Alam, M.A.; Bashir, R. Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 2012, 6, 6150–6164. [Google Scholar] [CrossRef]
- Shim, J.; Rivera, J.A.; Bashir, R. Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. Nanoscale 2013, 5, 10887–10893. [Google Scholar] [CrossRef]
- Whitehurst, T.K.; Schulman, J.H.; Jaax, K.N.; Carbunaru, R. The Bion® microstimulator and its clinical applications. In Implantable Neural Prostheses 1; Springer: Berlin, Germany, 2009; pp. 253–273. [Google Scholar]
- Loeb, G.E.; Peck, R.A.; Moore, W.H.; Hood, K. BIONTM system for distributed neural prosthetic interfaces. Med. Eng. Phys. 2001, 23, 9–18. [Google Scholar] [CrossRef]
- Park, J.M.; Song, E.; Zhao, J.; Du, H.; Yu, K.J.; Alam, M.A.; Huang, Y.; Fang, G.; Jiang, C.; Zhong, Y.; et al. Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Adv. Electron. Mater. 2017, 3, 1700077. [Google Scholar]
- Nagarkar, K.; Hou, X.; Stoffel, N.; Davis, E.; Ashe, J.; Borton, D. Micro-Hermetic Packaging Technology for Active Implantable Neural Interfaces. In Proceedings of the 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 218–223. [Google Scholar]
- Lundén, H.; Peltonen, A.; Määttänen, A. Wafer-level packaging for ultra-thin glasses using hermetic room temperature welding technology. Addit. Papers Present. DPC 2016, 2016, 2203–2221. [Google Scholar] [CrossRef]
- Oliveros, A.; Guiseppi-Elie, A.; Saddow, S.E. Silicon carbide: A versatile material for biosensor applications. Biomed. Microdevices 2013, 15, 353–368. [Google Scholar] [CrossRef]
- Zhao, F.; Islam, M.M.; Huang, C.F. Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Mater. Lett. 2011, 65, 409–412. [Google Scholar] [CrossRef]
- Frewin, C.L.; Locke, C.; Saddow, S.E.; Weeber, E.J. Single-crystal cubic silicon carbide: An in vivo biocompatible semiconductor for brain machine interface devices. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 2957–2960. [Google Scholar]
- Saddow, S.E.; Frewin, C.L.; Coletti, C.; Schettini, N.; Weeber, E.; Oliveros, A.; Jarosezski, M. Single-Crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications. Mater. Sci. Forum 2011, 679–680, 824–830. [Google Scholar] [CrossRef]
- Santavirta, S.; Takagi, M.; Nordsletten, L.; Anttila, A.; Lappalainen, R.; Konttinen, Y.T. Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material. Arch. Orthop. Trauma Surg. 1998, 118, 89–91. [Google Scholar] [CrossRef]
- Diaz-Botia, C.A.; Luna, L.E.; Chamanzar, M.; Carraro, C.; Sabes, P.N.; Maboudian, R.; Maharbiz, M.M. Fabrication of all-silicon carbide neural interfaces. In Proceedings of the 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 25–28 May 2017; pp. 170–173. [Google Scholar]
- Ordonez, J.S.; Boehler, C.; Schuettler, M.; Stieglitz, T. Improved polyimide thin-film electrodes for neural implants. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5134–5137. [Google Scholar]
- Bernardin, E.K.; Frewin, C.L.; Everly, R.; Ul Hassan, J.; Saddow, S.E. Demonstration of a robust all-silicon-carbide intracortical neural interface. Micromachines 2018, 9, 412. [Google Scholar] [CrossRef]
- Deku, F.; Frewin, C.L.; Stiller, A.; Cohen, Y.; Aqeel, S.; Joshi-Imre, A.; Black, B.; Gardner, T.J.; Pancrazio, J.J.; Cogan, S.F. Amorphous silicon carbide platform for next generation penetrating neural interface designs. Micromachines 2018, 9, 480. [Google Scholar] [CrossRef]
- Kandzari, D.E. PK Papyrus covered stent: Device description and early experience for the treatment of coronary artery perforations. Catheter. Cardiovasc. Interv. 2019. [Google Scholar] [CrossRef]
- Dion, I.; Baquey, C.; Monties, J.R. Diamond: The biomaterial of the 21st century? Int. J. Artif. Organs 1993, 16, 623–627. [Google Scholar] [CrossRef]
- Hadjinicolaou, A.E.; Leung, R.T.; Garrett, D.J.; Ganesan, K.; Fox, K.; Nayagam, D.A.X.; Shivdasani, M.N.; Meffin, H.; Ibbotson, M.R.; Prawer, S.; et al. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 2012, 33, 5812–5820. [Google Scholar] [CrossRef]
- Ganesan, K.; Garrett, D.J.; Ahnood, A.; Shivdasani, M.N.; Tong, W.; Turnley, A.M.; Fox, K.; Meffin, H.; Prawer, S. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 2014, 35, 908–915. [Google Scholar] [CrossRef]
- Lichter, S.G.; Escudié, M.C.; Stacey, A.D.; Ganesan, K.; Fox, K.; Ahnood, A.; Apollo, N.V.; Kua, D.C.; Lee, A.Z.; McGowan, C.; et al. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials 2015, 53, 464–474. [Google Scholar] [CrossRef]
- Garrett, D.J.; Seligman, P.; Shivdasani, M.N.; Sikder, M.K.U.; Fallon, J.; Ganesan, K. Wireless induction coils embedded in diamond for power transfer in medical implants. Biomed. Microdevices 2017, 19, 79. [Google Scholar]
- Xiao, X.; Wang, J.; Liu, C.; Carlisle, J.A.; Mech, B.; Greenberg, R.; Guven, D.; Freda, R.; Humayun, M.S.; Weiland, J.; et al. In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 273–281. [Google Scholar] [CrossRef]
- Chen, Y.C.; Tsai, C.Y.; Lee, C.Y.; Lin, I.N. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips. Acta Biomater. 2014, 10, 2187–2199. [Google Scholar] [CrossRef]
- Tien, H.W.; Lee, C.Y.; Lin, I.N.; Chen, Y.C. Long term: In vivo functional stability and encapsulation reliability of using ultra-nanocrystalline diamond as an insulating coating layer for implantable microchips. J. Mater. Chem. B 2017, 5, 3706–3717. [Google Scholar] [CrossRef]
- Cui, F.Z.; Li, D.J. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf. Coat. Technol. 2000, 131, 481–487. [Google Scholar] [CrossRef]
- Roy, R.K.; Lee, K. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 72–84. [Google Scholar] [CrossRef]
- Mohanty, M.; Anilkumar, T.V.; Mohanan, P.V.; Muraleedharan, C.V.; Bhuvaneshwar, G.S.; Derangere, F.; Sampeur, Y.; Suryanarayanan, R. Long term tissue response to titanium coated with diamond like carbon. Biomol. Eng. 2002, 19, 125–128. [Google Scholar] [CrossRef]
- HD Microsystems. PI 2525 Datasheet; HD Microsystems: Parlin, NJ, USA, 2012. [Google Scholar]
- Specialty Coating Systems. SCS Parylene Datasheet; Specialty Coating Systems: Indianapolis, IN, USA, 2016. [Google Scholar]
- Dow Corning Corporation. Electronics Sylgard® 184 Silicone Elastomer; Dow Corning Corporation: Midland, MI, USA, 2013. [Google Scholar]
- Kuraray Co., Ltd. Kuraray Vecstar Datasheet; Kuraray Co., Ltd.: Tokyo, Japan, 2018. [Google Scholar]
- MicroChem Corp. MicroChem SU-8 3000 Datasheet; MicroChem Corp.: Westborough, MA, USA, 2009. [Google Scholar]
- TOPAS advanced Polymers Inc. TOPAS COC Datasheet; TOPAS advanced Polymers Inc.: Raunheim, Germany, 2011. [Google Scholar]
- Lee, S.W.; Min, K.S.; Jeong, J.; Kim, J.; Kim, S.J. Monolithic Encapsulation of Implantable Neuroprosthetic Devices Using Liquid Crystal Polymers. IEEE Trans. Biomed. Eng. 2011, 58, 2255–2263. [Google Scholar]
- Rubehn, B.; Stieglitz, T. In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 2010, 31, 3449–3458. [Google Scholar] [CrossRef]
- Woods, V.; Trumpis, M.; Bent, B.; Palopoli-Trojani, K.; Chiang, C.H.; Wang, C.; Yu, C.; Insanally, M.N.; Froemke, R.C.; Viventi, J. Long-term recording reliability of liquid crystal polymer μECoG arrays. J. Neural Eng. 2018, 15, 66024. [Google Scholar] [CrossRef]
- Palopoli-Trojani, K.; Woods, V.; Chiang, C.H.; Trumpis, M.; Viventi, J. In vitro assessment of long-term reliability of low-cost μηCoG arrays. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4503–4506. [Google Scholar]
- Chang, J.H.C.; Liu, Y.; Tai, Y.C. Long term glass-encapsulated packaging for implant electronics. In Proceedings of the 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 1127–1130. [Google Scholar]
- Jeong, J.; Chou, N.; Kim, S. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Biomed. Microdevices 2016, 18, 42. [Google Scholar] [CrossRef]
- Jeong, J.; Woo Lee, S.; Sik Min, K.; Shin, S.; Beom Jun, S.; June Kim, S. Liquid Crystal Polymer (LCP), an Attractive Substrate for Retinal Implant. Sens. Mater. 2012, 24, 189–203. [Google Scholar]
- Gwon, T.M.; Kim, J.H.; Choi, G.J.; Kim, S.J. Mechanical interlocking to improve metal–polymer adhesion in polymer-based neural electrodes and its impact on device reliability. J. Mater. Sci. 2016, 51, 6897–6912. [Google Scholar] [CrossRef]
- Lago, N.; Ceballos, D.; Rodríguez, F.J.; Stieglitz, T.; Navarro, X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 2005, 26, 2021–2031. [Google Scholar] [CrossRef]
- Richardson, R.R.; Miller, J.A.; Reichert, W.M. Polyimides as biomaterials: Preliminary biocompatibility testing. Biomaterials 1993, 14, 627–635. [Google Scholar] [CrossRef]
- Sun, Y.; Lacour, S.P.; Brooks, R.A.; Rushton, N.; Fawcett, J.; Cameron, R.E. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. A 2009, 90, 648–655. [Google Scholar] [CrossRef]
- Lee, K.; Singh, A.; He, J.; Massia, S.; Kim, B.; Raupp, G. Polyimide based neural implants with stiffness improvement. Sens. Actuators B Chem. 2004, 102, 67–72. [Google Scholar] [CrossRef]
- Lee, K.K.; He, J.; Singh, A.; Massia, S.; Ehteshami, G.; Kim, B.; Raupp, G. Polyimide-based intracortical neural implant with improved structural stiffness. J. Micromech. Microeng. 2004, 14, 32–37. [Google Scholar] [CrossRef]
- Schmidt, S.; Horch, K.; Normann, R. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater. Res. 1993, 27, 1393–1399. [Google Scholar] [CrossRef]
- Tolstosheeva, E.; Biefeld, V.; Lang, W. Accelerated soak performance of BPDA-PPD polyimide for implantable MEAs. Procedia Eng. 2015, 120, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.M.; Kim, S.J.; Chung, H.; Kim, E.T.; Yu, H.G.; Yu, Y.S. Biocompatibility of polyimide microelectrode array for retinal stimulation. Mater. Sci. Eng. C 2004, 24, 185–189. [Google Scholar] [CrossRef]
- Vetter, R.J.; Williams, J.C.; Kipke, D.R.; Rousche, P.J.; Pellinen, D.S.; Pivin, D.P. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 2001, 48, 361–371. [Google Scholar]
- Fukukawa, K.; Ueda, M. Recent Progress of Photosensitive Polyimides. Polym. J. 2008, 40, 281–296. [Google Scholar] [CrossRef]
- Wilson, W.C.; Atkinson, G.M. Review of Polyimides Used in the Manufacturing of Micro Systems; NASA: Greenbelt, Maryland, 2007; pp. 1–16.
- Frazier, A.B.; Allen, M.G. Metallic Microstructures Fabricated Using Photosensitive Polyimide Electroplating Molds. J. Microelectromech. Syst. 1993, 2, 87–94. [Google Scholar] [CrossRef]
- Lubecke, V.M.; Pardo, F.; Lifton, V.A. Polyimide spacers for flip-chip optical MEMS. J. Microelectromech. Syst. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Nayve, R.; Fujii, M.; Fukugawa, A.; Takeuchi, T.; Murata, M.; Yamada, Y.; Koyanagi, M. High-resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE. J. Microelectromech. Syst. 2004, 13, 814–821. [Google Scholar] [CrossRef]
- Itabashi, T.; Zussman, M.P. High temperature resistant bonding solutions enabling thin wafer processing (characterization of polyimide base temporary bonding adhesive for thinned wafer handling). In Proceedings of the 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 1–4 June 2010; pp. 1877–1880. [Google Scholar]
- Kim, B.J.; Meng, E. Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 2016, 27, 564–576. [Google Scholar] [CrossRef]
- Kuppusami, S.; Oskouei, R.H. Parylene Coatings in Medical Devices and Implants: A Review. Univ. J. Biomed. Eng. 2015, 3, 9–14. [Google Scholar]
- Samson, G.; Cardenas, D.D. Neurogenic Bladder in Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2007, 18, 255–274. [Google Scholar] [CrossRef]
- Takeuchi, S.; Ziegler, D.; Yoshida, Y.; Mabuchi, K.; Suzuki, T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 2005, 5, 519–523. [Google Scholar] [CrossRef]
- Winslow, B.D.; Christensen, M.B.; Yang, W.K.; Solzbacher, F.; Tresco, P.A. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials 2010, 31, 9163–9172. [Google Scholar] [CrossRef]
- Metallo, C.; White, R.D.; Trimmer, B.A. Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals. J. Neurosci. Methods 2011, 195, 176–184. [Google Scholar] [CrossRef]
- Zhang, B.G.X.; Myers, D.E.; Wallace, G.G.; Brandt, M.; Choong, P.F.M. Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int. J. Mol. Sci. 2014, 15, 11878–11921. [Google Scholar] [CrossRef]
- Cieślik, M.; Zimowski, S.; Gołda, M.; Engvall, K.; Pan, J.; Rakowski, W.; Kotarba, A. Engineering of bone fixation metal implants biointerface - Application of parylene C as versatile protective coating. Mater. Sci. Eng. C 2012, 32, 2431–2435. [Google Scholar] [CrossRef]
- Zhou, L.; Tong, Z.; Wu, G.; Feng, Z.; Bai, S.; Dong, Y.; Ni, L.; Zhao, Y. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch. Oral Biol. 2010, 55, 401–409. [Google Scholar] [CrossRef]
- Santos, M.; Soo, S.; Petridis, H. The effect of Parylene coating on the surface roughness of PMMA after brushing. J. Dent. 2013, 41, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Fortin, J.B.; Lu, T.-M. Deposition kinetics for polymerization via the Gorham route. In Chemical Vapor Deposition Polymerization; Springer: Berlin, Germany, 2004; pp. 41–55. [Google Scholar]
- Hassler, C.; Von Metzen, R.P.; Ruther, P.; Stieglitz, T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 266–274. [Google Scholar] [CrossRef]
- Hsu, J.M.; Rieth, L.; Normann, R.A.; Tathireddy, P.; Solzbacher, F. Encapsulation of an integrated neural interface device with parylene C. IEEE Trans. Biomed. Eng. 2009, 56, 23–29. [Google Scholar] [CrossRef]
- Wang, P.; Majerus, S.J.A.; Karam, R.; Hanzlicek, B.; Lin, D.L.; Zhu, H.; Anderson, J.M.; Damaser, M.S.; Zorman, C.A.; Ko, W.H. Long-term evaluation of a non-hermetic micropackage technology for MEMS-based, implantable pressure sensors. In Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 484–487. [Google Scholar]
- Kim, S.H.; Moon, J.H.; Kim, J.H.; Jeong, S.M.; Lee, S.H. Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device. Biomed. Eng. Lett. 2011, 1, 199–203. [Google Scholar] [CrossRef]
- Adrega, T.; Lacour, S.P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization. J. Micromech. Microeng. 2010, 20, 55025. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Y.; Wang, W.; Wu, W.; Li, Z. Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications. Lab Chip 2011, 11, 1385–1388. [Google Scholar] [CrossRef]
- Jeong, J.; Bae, S.H.; Min, K.S.; Seo, J.M.; Chung, H.; Kim, S.J. A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans. Biomed. Eng. 2015, 62, 982–989. [Google Scholar] [CrossRef]
- Lee, C.J.; Oh, S.J.; Song, J.K.; Kim, S.J. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater. Sci. Eng. C 2004, 24, 265–268. [Google Scholar] [CrossRef]
- Min, K.S.; Lee, C.J.; Jun, S.B.; Kim, J.; Lee, S.E.; Shin, J.; Chang, J.W.; Kim, S.J. A Liquid Crystal Polymer-Based Neuromodulation System: An Application on Animal Model of Neuropathic Pain. Neuromodulation Technol. Neural Interface 2014, 17, 160–169. [Google Scholar] [CrossRef]
- Min, K.S.; Oh, S.H.; Park, M.-H.; Jeong, J.; Kim, S.J. A Polymer-Based Multichannel Cochlear Electrode Array. Otol. Neurotol. 2014, 35, 1179–1186. [Google Scholar] [CrossRef]
- Gwon, T.M.; Min, K.S.; Kim, J.H.; Oh, S.H.; Lee, H.S.; Park, M.-H.; Kim, S.J. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed. Microdevices 2015, 17, 32. [Google Scholar] [CrossRef]
- Jeong, J.; Shin, S.; Lee, G.J.; Gwon, T.M.; Park, J.H.; Kim, S.J. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP). In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5295–5298. [Google Scholar]
- Ha, D.; De Vries, W.N.; John, S.W.M.; Irazoqui, P.P.; Chappell, W.J. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed. Microdevices 2012, 14, 207–215. [Google Scholar] [CrossRef]
- Bae, S.H.; Jeong, J.; Kim, S.J.; Chung, H.; Seo, J.-M. Investigation of Surgical Techniques for Optimization of Long-Term Outcomes of LCP-Based Retinal Prosthesis Implantation. Transl. Vis. Sci. Technol. 2018, 7, 17. [Google Scholar] [CrossRef]
- Hess, A.E.; Dunning, J.; Tyler, D.; Zorman, C.A. Development of a microfabricated flat interface nerve electrode based on liquid crystal polymer and polynorbornene multilayered structures. In Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 32–35. [Google Scholar]
- Mohtashami, S.; Howlader, M.R.; Doyle, T. Comparative electrochemical investigation of Pt, Au and Ti electrodes on liquid crystal polymer for the application of neuromuscular prostheses. ECS Trans. 2011, 35, 23–33. [Google Scholar]
- Kim, S.J.; Kim, J.-W.; Wee, J.H.; Park, P.; Seo, J.; Park, J.H. Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation. J. Neural Eng. 2016, 13, 066014. [Google Scholar]
- Nemani, K.V.; Moodie, K.L.; Brennick, J.B.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 2013, 33, 4453–4459. [Google Scholar] [CrossRef]
- Cho, S.H.; Lu, H.M.; Cauller, L.; Romero-Ortega, M.I.; Lee, J.B.; Hughes, G.A. Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens. J. 2008, 8, 1830–1836. [Google Scholar] [CrossRef]
- Marelli, M.; Divitini, G.; Collini, C.; Ravagnan, L.; Corbelli, G.; Ghisleri, C.; Gianfelice, A.; Lenardi, C.; Milani, P.; Lorenzelli, L. Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J. Micromech. Microeng. 2011, 21, 45013. [Google Scholar] [CrossRef]
- Huang, S.H.; Lin, S.P.; Chen, J.J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording. Sens. Actuators A Phys. 2014, 216, 257–265. [Google Scholar] [CrossRef]
- Altuna, A.; de la Menendez Prida, L.; Bellistri, E.; Gabriel, G.; Guimerá, A.; Berganzo, J.; Villa, R.; Fernández, L.J. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens. Bioelectron. 2012, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.Y.; Sirowatka, B.; Weber, A.; Li, W. Opto-μ ECoG array: A hybrid neural interface with transparent μ ECoG electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 593–600. [Google Scholar] [CrossRef]
- Fan, B.; Kwon, K.Y.; Weber, A.J.; Li, W. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 450–453. [Google Scholar]
- Kwon, K.Y.; Lee, H.-M.; Ghovanloo, M.; Weber, A.; Li, W. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 2015, 9, 69. [Google Scholar] [CrossRef]
- Cho, S.H.; Xue, N.; Cauller, L.; Rosellini, W.; Lee, J.B. A SU-8-based fully integrated biocompatible inductively powered wireless neurostimulator. J. Microelectromech. Syst. 2013, 22, 170–176. [Google Scholar] [CrossRef]
- Xue, N.; Chang, S.P.; Lee, J.B. A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor. J. Microelectromech. Syst. 2012, 21, 1338–1346. [Google Scholar] [CrossRef]
- Lorenz, H.; Despont, M.; Fahrni, N.; Brugger, J.; Vettiger, P.; Renaud, P. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sens. Actuators A Phys. 1998, 64, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Bernard, M.; Jubeli, E.; Bakar, J.; Tortolano, L.; Saunier, J.; Yagoubi, N. Biocompatibility assessment of cyclic olefin copolymers: Impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility. J. Biomed. Mater. Res. Part A 2017, 105, 3333–3349. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Park, H.Y.; Choi, G.J.; Shin, H.C.; Kim, S.J. A Simply Fabricated Neural Probe by Laser Machining of a Thermally Laminated Gold Thin Film on Transparent Cyclic Olefin Polymer. ACS Omega 2019, 4, 2590–2595. [Google Scholar] [CrossRef] [Green Version]
- Emiliyanov, G.; Høiby, P.E.; Pedersen, L.H.; Bang, O. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 2013, 13, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.J.; Ottman, R.; Tao, G.; Shabahang, S.; Banaei, E.-H.; Liang, X.; Johnson, S.G.; Fink, Y.; Chakrabarti, R.; Abouraddy, A.F. In-fiber production of polymeric particles for biosensing and encapsulation. Proc. Natl. Acad. Sci. USA 2013, 110, 15549–15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y.; et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.I.; Shi, Y.; et al. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell 2015, 162, 662–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normann, R.A.; Fernandez, E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J. Neural Eng. 2016, 13, 061003. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, L.R.; Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Simeral, J.D.; Vogel, J. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012, 485, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, L.; Dorn, J.D.; Humayun, M.S.; Dagnelie, G.; Handa, J.; Barale, P.; Sahel, J.; Stanga, P.E.; Hafezi, F.; Safran, A.B.; et al. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology 2016, 123, 2248–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roessler, G.; Laube, T.; Brockmann, C.; Kirschkamp, T.; Mazinani, B.; Goertz, M.; Koch, C.; Krisch, I.; Sellhaus, B.; Trieu, H.K.; et al. Implantation and explantation of a wireless epiretinal retina implant device: Observations during the EPIRET3 prospective clinical trial. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3003–3008. [Google Scholar] [CrossRef] [PubMed]
- Kitiratschky, V.B.D.; Stingl, K.; Wilhelm, B.; Peters, T.; Besch, D.; Sachs, H.; Gekeler, F.; Bartz-Schmidt, K.U.; Zrenner, E. Safety evaluation of “retina implant alpha IMS”—A prospective clinical trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Chee, C.K.; Cottriall, C.L.; Gekeler, F.; Groppe, M.; Jackson, T.L.; MacLaren, R.E.; Koitschev, A.; et al. Subretinal Visual Implant Alpha IMS—Clinical trial interim report. Vision Res. 2015, 111, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Jorfi, M.; Skousen, J.L.; Weder, C.; Lee, Y.; Lin, C.; Lin, C.; Takmakov, P.; Ruda, K.; Phillips, K.S. A silicon carbide array for electrocorticography and peripheral nerve recording. J. Neural Eng. 2017, 14, 056006. [Google Scholar]
- Street, M.G.; Welle, C.G.; Takmakov, P.A. Automated reactive accelerated aging for rapid in vitro evaluation of neural implant performance. Rev. Sci. Instrum. 2018, 89, 094301. [Google Scholar] [CrossRef] [PubMed]
- Popov-Pergal, K.; Pergal, M.; Babić, D.; Marinović-Cincović, M.; Jovanović, R. Thermal, oxidative and radiation stability of polyimides. I. Bismaleimidoethane and different diamine-based polyimides. Polym. Degrad. Stab. 2000, 67, 547–552. [Google Scholar] [CrossRef]
- Marinovic-Cincovic, M.; Babic, D.; Jovanovic, R.; Popov-Pergal, K.; Pergal, M. Thermal, oxidative and radiation stability of polyimides II. Polyimides based on bismaleimidohexane and bismaleimidodiphenylsulphone with different diamines. Polym. Degrad. Stab. 2003, 81, 387–392. [Google Scholar] [CrossRef]
- Beshchasna, N.; Adolphi, B.; Granovsky, S.; Braunschweig, M.; Schneider, W.; Uhlemann, J.; Wolter, K.J. Influence of artificial body fluids and medical sterilization procedures on chemical stability of parylene C. In Proceedings of the 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 1–4 June 2010; pp. 1846–1852. [Google Scholar]
- Von Metzen, R.; Stieglitz, T. Impact of sterilization procedures on the stability of Parylene based flexible multilayer structures. Biomed. Eng. Technol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, P.; Karppinen, M. Organic and inorganic-organic thin film structures by molecular layer deposition: A review. Beilstein J. Nanotechnol. 2014, 5, 1104–1136. [Google Scholar] [CrossRef]
- Yang, J.; Charif, A.C.; Puskas, J.E.; Phillips, H.; Shanahan, K.J.; Garsed, J.; Fleischman, A.; Goldman, K.; Luebbers, M.T.; Dombrowski, S.M.; et al. Biocompatibility evaluation of a thermoplastic rubber for wireless telemetric intracranial pressure sensor coating. J. Mech. Behav. Biomed. Mater. 2015, 45, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wu, T.; Robich, M.P. Drug-eluting stent coatings. Interv. Cardiol. 2012, 4, 73–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Liu, Z.; Luo, W.; Li, L.; Cai, X.; Liang, D.; Su, Y.; Ding, H.; Wang, Q.; et al. Wirelessly Operated, Implantable Optoelectronic Probes for Optogenetics in Freely Moving Animals. IEEE Trans. Electron Devices 2019, 66, 785–792. [Google Scholar] [CrossRef]
- Kelly, S.K.; Shire, D.B.; Doyle, P.; Gingerich, M.D.; Drohan, W.A.; Rizzo, J.F.; Theogarajan, L.S.; Cogan, S.F.; Chen, J.; Wyatt, J.L. The Boston retinal prosthesis a 15-channel hermetic wireless neural stimulator. In Proceedings of the 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Bratislava, Slovakia, 24–27 November 2009; pp. 4–9. [Google Scholar]
- Yang, H.; Wu, T.; Zhao, S.; Xiong, S.; Peng, B.; Humayun, M.S. Chronically Implantable Package Based on Alumina Ceramics and Titanium with High-density Feedthroughs for Medical Implants. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 3382–3385. [Google Scholar]
- Kim, C.; Jeong, J.; Kim, S.J. Recent progress on non-conventional microfabricated probes for the chronic recording of cortical neural activity. Sensors 2019, 19, 1069. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.A.; Panchawagh, H.V.; Ortega, A.; Artale, R.; Richardson-Burns, S.; Finch, D.S.; Gall, K.; Mahajan, R.L.; Restrepo, D. Toward a self-deploying shape memory polymer neuronal electrode. J. Neural Eng. 2006, 3, L23. [Google Scholar] [CrossRef] [PubMed]
- Ware, T.; Simon, D.; Arreaga-Salas, D.E.; Reeder, J.; Rennaker, R.; Keefer, E.W.; Voit, W. Fabrication of responsive, softening neural interfaces. Adv. Funct. Mater. 2012, 22, 3470–3479. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, N.; Ma, Y.; Xie, T.; Feng, X. Bio-inspired 3D neural electrodes for the peripheral nerves stimulation using shape memory polymers. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Lendlein, A.; Langer, R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2009, 296, 1673–1677. [Google Scholar] [CrossRef] [PubMed]
Material 1 | Deposition Method | Thickness | Testing Temp. (°C) | Test Samples | Measured 2 | Failure Criteria | Results | 1 Lifetime at 37 °C 3 (Years) | Ref. | Remarks |
---|---|---|---|---|---|---|---|---|---|---|
Al2O3 (+ 1PA) | ALD + CVD | 52 nm + 6 μm | 80 | IDE | LC | >1 nA | >180 days * | >9.71 | [30,32] | * Did not fail for 185 days |
ALD + CVD | 52 nm + 6 μm | 57 | Wireless UEA interface | RF signal strength | Signal loss | * >465 days | 5.10 | [28] | * Without powering, did not fail for 465 days | |
** 35 days | 0.38 | ** continuous 5 V DC powering ×10 longer than PA-only | ||||||||
ALD + CVD | 52 nm + 6 μm | 60 | IDE | LC | >1 nA | 214.6 days | 2.90 * | [23] | * Averaged MTTF of XX samples | |
ALD + CVD | 52 nm + 6 μm | 67 | t-type IDE | LC | >1 nA | 450 days | 9.86 | [26] | ||
UEA | 510 days | 11.18 | ||||||||
PI/HfO2/Al2O/HfO2/PI | ALD, spin (PI) | 16 μm/8 nm/20 nm/8 nm/16 μm | Films | WVTR | - | * <0.5 mg/m2 day | - | [33,34] | * Below detection limit, Cf. 4300 for PI-only, 4 for PI/Al2O3/PI | |
HfO2 | ALD | 100 nm | 87 | IDE | LC | >1 nA | 126 days | 11.1 | [29] | * Five repetitions of (10 nm HfO2 + 10 nmSiO2) |
HfO2/SiO2 | ALD | * 100 nm | IDE | 170 days | 14.9 | |||||
HfO2/SiO2 | ALD | * 100 nm | RF chips | Backscattered signal | Signal loss | 185 days | 16.2 | |||
SiO2 | Thermal | 100 nm | 90 | Film | DR | - | 80 nm/day | * 70 | [35] | * Estimated from results of four temperatures |
1 μm | 96 | Electric components | Functionality | - | 12 days | * 70 | ||||
Thermal | 511 nm | 87 | Photodiode | DR | - | 0.104 nm/day | - | [36] | ||
LPCVD | 520 nm | 90 | Films | DR | - | 1 nm/h | [37] | No dissolution at 37 °C for 22 weeks | ||
SiC | PECVD | 694 nm | 87 | Photodiode | DR | - | - | - | [36] | No dissolution for 16 weeks |
PECVD | 67 nm | 90 | Films | DR | - | 0.1 nm/h | [37] | No dissolution at 37 °C for 40 weeks | ||
PECVD | 650 nm | 90 | IDE | EIS | - | - | - | [38] | No dissolution/defect for >6 weeks |
Properties of Materials | Polyimide 1 | Parylene C 2 | Silicone Elastomer 3 | LCP 4 | SU-8 5 | COC 6 |
---|---|---|---|---|---|---|
Encapsulation method | Spin coating | CVD | Casting, spin coating | Thermal bond | Spin coating | Thermal bond |
Tensile strength (MPa) | 128 | 69 | 6.7 | 180–190 | 73 | 46 |
Elongation (%) | 10 | 200 | 305 | 30–40 | 4.8 | 1.7 |
Thermal expansion coefficient (ppm/°C) | 40 | 35 | 340 | 15–18 | 52 | 60 |
Density(g/cm3) | – | 1.289 | – | – | 1.075–1.153 | 1.02 |
Moisture absorption (%) | 2-3 | – | – | 0.04 | 0.55 | <0.01 |
Melting temperature (°C) | – | 290 | – | 280–310 | - | 240–300 |
Glass transition temperature (°C) | >320 | – | – | 82–280 | 200 | – |
Dielectric coefficient | 3.3 (1 kHz) | 3.1 (1 kHz) | 2.68 (100 kHz) | 3.3 (2.8 GHz) | 3.28 (1 GHz) | 2.35 (1–10 kHz) |
Resistivity (Ω∙cm) | 1016 | 8.8 × 1016 | 2.9 × 1014 | 2 × 1016–3 × 1016 | 7.8 × 1014 | >1014 |
Refractive index | 1.7 | 1.639 | 1.3997–1.4225 | – | – | 1.53 |
UPS class | - | IV | VI | VI | - | VI |
Material | Encapsulation Method | Thickness | Testing Temp. (°C) | Test Samples | 1 Measured | Failure Criteria | Results | 2 Lifetime at 37 °C (Years) | Ref. | Remarks |
---|---|---|---|---|---|---|---|---|---|---|
Polyimide | Spin | 10 μm | 75 | IDE | LC | >1 μA | 66 days | 2.52 | [85] | |
Spin | 6.4–7.6 μm | 37, 60 | Film | * Mechanical properties | ** No change | - | [86] | * e.g., Young’s modulus, stress and stress at break, fracture energy ** After 20 months of soaking | ||
85 | ** Degraded | [86] | ||||||||
Spin | 10 μm | 60 | Electrode array | EIS | Loss of working channel | * 400 days | * 5 | [87,88] | * Best two cases out of six samples | |
Parylene C | CVD | 10 μm | 75 | IDE | LC | >1 μA | 117 days | 4.46 | [85] | |
CVD | 40 μm | 85 | Electrode array | Inter-line Resistance | 50% change | 31 days | 2.4 | [89] | ||
97 | 15 days | 2.7 | ||||||||
CVD | 6 μm | 60 | IDE | LC, EIS | >1 nA | 49.1 days | 0.66 | [23] | ||
CVD | 6 μm | 57 | IDE | LC | >1 nA | 150 days | 1.64 | [30] | ||
CVD | 6 μm | 67 | t-type IDE | LC | >1 nA | 110 days | 2.4 | [26] | ||
Silicone elastomer (+Parylene C) | Dip (+CVD) | 5 mm + 40 μm | 85 | Electrode array | Impedance | 50% change | 82 days | 6.3 | [89] | |
97 | 40 days | 7.0 | ||||||||
PDMS | Spin | 150 μm | 36.5 | Electrode array | EIS | - | * 54% | - | [90] | * Working electrode ratio relative to initial values after 209 days of soaking |
Parylene-caulked PDMS | Spin + CVD | * 78% | - | |||||||
LCP | Thermal bonding | 25 μm | 75 | IDE | LC | >1 μA | 379 days | 14.5 | [85,91] | |
50 μm | 87 | Electrode array | * Waveform | >1 μA | 114 days | 10.0 | [25] | |||
25 μm | * IDE | LC | 87 days | 7.6 | IDE in a mock package | |||||
25 μm | 75 | IDE | LC | >1 μA | 185 days | 7.1 | [92] | |||
* IDE + MI | 224 days | 8.6 | * MI: mechanical interlocking structure |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-H.; Jeong, J.; Kim, S.J. Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. Micromachines 2019, 10, 508. https://doi.org/10.3390/mi10080508
Ahn S-H, Jeong J, Kim SJ. Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. Micromachines. 2019; 10(8):508. https://doi.org/10.3390/mi10080508
Chicago/Turabian StyleAhn, Seung-Hee, Joonsoo Jeong, and Sung June Kim. 2019. "Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices" Micromachines 10, no. 8: 508. https://doi.org/10.3390/mi10080508
APA StyleAhn, S.-H., Jeong, J., & Kim, S. J. (2019). Emerging Encapsulation Technologies for Long-Term Reliability of Microfabricated Implantable Devices. Micromachines, 10(8), 508. https://doi.org/10.3390/mi10080508