Next Article in Journal
Effect of Etching Depth on Threshold Characteristics of GaSb-Based Middle Infrared Photonic-Crystal Surface-Emitting Lasers
Next Article in Special Issue
Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source
Previous Article in Journal
Design, Fabrication and Experiment of Double U-Beam MEMS Vibration Ring Gyroscope
Previous Article in Special Issue
Gas Mixing and Final Mixture Composition Control in Simple Geometry Micro-mixers via DSMC Analysis
Article

Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit

1
ICPEES UMR 7515, Université de Strasbourg/CNRS, F-67000 Strasbourg, France
2
Institut Clément Ader (ICA), Université de Toulouse/CNRS, INSA, ISAE-SUPAERO, Mines-Albi, UPS, 31400 Toulouse, France
3
In’Air Solutions, 25 rue Becquerel, 67087 Strasbourg, France
*
Author to whom correspondence should be addressed.
Micromachines 2019, 10(3), 187; https://doi.org/10.3390/mi10030187
Received: 8 February 2019 / Revised: 4 March 2019 / Accepted: 7 March 2019 / Published: 13 March 2019
(This article belongs to the Special Issue Gas Flows in Microsystems)
In this work, a compact gas chromatograph prototype for near real-time benzene, toluene, ethylbenzene and xylenes (BTEX) detection at sub-ppb levels has been developed. The system is composed of an aluminium preconcentrator (PC) filled with Basolite C300, a 20 m long Rxi-624 capillary column and a photoionization detector. The performance of the device has been evaluated in terms of adsorption capacity, linearity and sensitivity. Initially, PC breakthrough time for an equimolar 1 ppm BTEX mixture has been determined showing a remarkable capacity of the adsorbent to quantitatively trap BTEX even at high concentrations. Then, a highly linear relationship between sample volume and peak area has been obtained for all compounds by injecting 100-ppb samples with volumes ranging from 5–80 mL. Linear plots were also observed when calibration was conducted in the range 0–100 ppb using a 20 mL sampling volume implying a total analysis time of 19 min. Corresponding detection limits of 0.20, 0.26, 0.49, 0.80 and 1.70 ppb have been determined for benzene, toluene, ethylbenzene, m/p-xylenes and o-xylene, respectively. These experimental results highlight the potential applications of our device to monitor indoor or outdoor air quality. View Full-Text
Keywords: preconcentrator; microfluidics; miniaturized gas chromatograph; BTEX; PID detector preconcentrator; microfluidics; miniaturized gas chromatograph; BTEX; PID detector
Show Figures

Figure 1

MDPI and ACS Style

Lara-lbeas, I.; Rodríguez-Cuevas, A.; Andrikopoulou, C.; Person, V.; Baldas, L.; Colin, S.; Le Calvé, S. Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines 2019, 10, 187. https://doi.org/10.3390/mi10030187

AMA Style

Lara-lbeas I, Rodríguez-Cuevas A, Andrikopoulou C, Person V, Baldas L, Colin S, Le Calvé S. Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines. 2019; 10(3):187. https://doi.org/10.3390/mi10030187

Chicago/Turabian Style

Lara-lbeas, Irene, Alberto Rodríguez-Cuevas, Christina Andrikopoulou, Vincent Person, Lucien Baldas, Stéphane Colin, and Stéphane Le Calvé. 2019. "Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit" Micromachines 10, no. 3: 187. https://doi.org/10.3390/mi10030187

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop