Next Article in Journal
Quasi Single Point Calibration Method for High-Speed Measurements of Resistive Sensors
Next Article in Special Issue
Compensating Circuit to Reduce the Impact of Wire Resistance in a Memristor Crossbar-Based Perceptron Neural Network
Previous Article in Journal
2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices
Previous Article in Special Issue
A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications
Open AccessArticle

Comparison of the Electrical Response of Cu and Ag Ion-Conducting SDC Memristors Over the Temperature Range 6 K to 300 K

Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725-2075, USA
*
Author to whom correspondence should be addressed.
Micromachines 2019, 10(10), 663; https://doi.org/10.3390/mi10100663
Received: 3 September 2019 / Revised: 21 September 2019 / Accepted: 29 September 2019 / Published: 30 September 2019
Electrical performance of self-directed channel (SDC) ion-conducting memristors which use Ag and Cu as the mobile ion source are compared over the temperature range of 6 K to 300 K. The Cu-based SDC memristors operate at temperatures as low as 6 K, whereas Ag-based SDC memristors are damaged if operated below 125 K. It is also observed that Cu reversibly diffuses into the active Ge2Se3 layer during normal device shelf-life, thus changing the state of a Cu-based memristor over time. This was not observed for the Ag-based SDC devices. The response of each device type to sinusoidal excitation is provided and shows that the Cu-based devices exhibit hysteresis lobe collapse at lower frequencies than the Ag-based devices. In addition, the pulsed response of the device types is presented. View Full-Text
Keywords: chalcogenide; electrochemical metallization cell; electrochemical metallization (ECM); ion conduction; memristor; self-directed channel (SDC) chalcogenide; electrochemical metallization cell; electrochemical metallization (ECM); ion conduction; memristor; self-directed channel (SDC)
Show Figures

Figure 1

MDPI and ACS Style

Drake, K.; Lu, T.; Majumdar, M.K.H.; Campbell, K.A. Comparison of the Electrical Response of Cu and Ag Ion-Conducting SDC Memristors Over the Temperature Range 6 K to 300 K. Micromachines 2019, 10, 663.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop