Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT: PSS
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusion and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Park, K.T.; Kim, H.J.; Park, M.J.; Jeong, J.H.; Lee, J.; Choi, D.G.; Lee, J.H.; Choi, J.H. 13.2% efficiency Si nanowire/PEDOT: PSS hybrid solar cell using a transfer-imprinted Au mesh electrode. Sci. Rep. 2015, 5, 12093. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Tsai, Y.; Chang, J.; Lai, C.; Chen, P.; Lai, Y.; Tsai, P.; Li, M.; Pan, H.; Huang, Y.; et al. 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell via Interface Engineering. ACS Nano 2013, 7, 10780–10787. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.M.; Kim, H.C. Photovoltaics: Life-cycle analyses. Sol. Energy 2011, 85, 1609–1628. [Google Scholar] [CrossRef]
- Ken, Z. Thin film PV manufacturing: Materials costs and their optimization. Sol. Energy Mater. Sol. Cells 2000, 63, 375–386. [Google Scholar]
- Ge, Z.; Xu, L.; Cao, Y.; Wu, T.; Song, H.; Ma, Z.; Xu, J.; Chen, K. Substantial improvement of short wavelength response in n-SiNW/PEDOT: PSS solar cell. Nanoscale Res. Lett. 2015, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Zhang, L.-J.; Fu, X.-C.; Su, D.; Zhou, H.-L.; Wu, W.; Zhang, T. Highly-efficient low cost anisotropic wet etching of silicon wafers for solar cells application. AIP Adv. 2018, 8, 025223. [Google Scholar] [CrossRef]
- Qi, Z.; Zhai, Y.; Wen, L.; Wang, Q.; Chen, Q.; Iqbal, S.; Chen, G.; Xu, J.; Tu, Y. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. Nanotechnology 2017, 28, 1–9. [Google Scholar] [CrossRef]
- Iqbal, S.; Su, D.; Zhou, H.L.; Zhang, T. Highly efficient and less time consuming additive free anisotropic etching of silicon wafers for photovoltaics. Silicon 2019, 11, 1–6. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wei, T.C.; Hsiao, P.H.; Hung, C.H. Vanadium oxide as transparent carrier-selective layer in silicon hybrid solar cells promoting photovoltaic performances. ACS Appl. Energy Mater. 2019, 7, 4873–4881. [Google Scholar] [CrossRef]
- Ni, G.; Li, G.; Boriskina, S.V.; Li, H.; Yang, W.; Zhang, T.J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126. [Google Scholar] [CrossRef]
- Battaglia, C.; Yin, X.; Zheng, M.; Sharp, I.D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B.; Maboudian, R.; et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967–971. [Google Scholar] [CrossRef]
- Zielke, D.; Gogolin, R.; Halbich, M.-U.; Marquardt, C.; Lövenich, W.; Sauer, R.; Schmidt, J. Large-area PEDOT:PSS/c-Si heterojunction solar cells with screen-printed metal contacts. Sol. RRL 2018, 2, 1700191. [Google Scholar] [CrossRef]
- Jäckle, S.; Liebhaber, M.; Gersmann, C.; Mews, M.; Jäger, K.; Christiansen, S.; Lips, K. Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Duche, D.; Escoubas, L.; Simon, J.-J.; Torchio, P.; Vervisch, W.; Flory, F. Slow bloch modes for enhancing the absorption of light in thin films for photovoltaic cells. Appl. Phys. Lett. 2008, 92, 193310. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.H.; Swihart, M.T.; Lee, J.-C.; Kim, J.Y. Silicon nanoparticle size-dependent open circuit voltage in an organic–inorganic hybrid solar cell. Curr. Appl. Phys. 2014, 14, 127–131. [Google Scholar] [CrossRef]
- Gao, P.; Amine, J.C.; Sheng, J.; Zhang, Y.; Yang, Z.; Yu, J.; Ye, J.; He, J.; Yu, W.; Cui, Y. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv. Mater. 2017, 29, 1606321. [Google Scholar]
- Jäckle, S.; Mattiza, M.; Liebhaber, M.; Brönstrup, G.; Rommel, M.; Lips, K.; Christiansen, S. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci. Rep. 2015, 5, 13008. [Google Scholar] [CrossRef]
- Thomas, J.P.; Leung, K.T. Defect-minimized PEDOT:PSS/planar-si solar cell with very high efficiency. Adv. Funct. Mater. 2014, 24, 4978–4985. [Google Scholar] [CrossRef]
- Nagamatsu, K.A.; Avasthi, S.; Jhaveri, J.; Sturm, J.C. A 12% Efficient Silicon/PEDOT:PSS heterojunction solar cell fabricated at <100 °C. IEEE J. Photovoltaics 2014, 4, 260–264. [Google Scholar]
- Price, M.J.; Foley, J.M.; May, R.A.; Maldonado, S. Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions. Appl. Phys. Lett. 2010, 97, 83503. [Google Scholar] [CrossRef]
- Tsai, S.H.; Chang, H.C.; Wang, H.H.; Chen, S.Y.; Lin, C.A.; Chen, S.A.; Chueh, Y.L.; He, J.H. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting. ACS Nano 2011, 5, 9501–9510. [Google Scholar] [CrossRef]
- Khurelbaatar, Z.; Hyung, J.-H.; Kim, G.-S.; Park, N.-W.; Shim, K.-H.; Lee, S.-K. Electrical transport characterization of PEDOT:PSS/n-Si schottky diodes and their applications in solar cells. J. Nanosci. Nanotechnol. 2014, 14, 4394–4399. [Google Scholar] [CrossRef]
- He, L.; Jiang, C.; Wang, H.; Lai, D.; Rusli. High efficiency planar Si/organic heterojunction hybrid solar cells. Appl. Phys. Lett. 2012, 100, 073503. [Google Scholar] [CrossRef]
- Kegel, J.; Angermann, H.; Stürzebecher, U.; Stegemann, B. IPA-free texturization of n-type Si wafers: Correlation of optical, electronic and morphological surface properties. Energy Procedia 2013, 38, 833–842. [Google Scholar] [CrossRef]
- Sato, K.; Dutta, M.; Fukata, N. Inorganic/organic hybrid solar cells: Optimal carrier transport in vertically aligned silicon nanowire arrays. Nanoscale 2014, 6, 6092–6101. [Google Scholar] [CrossRef]
- Lee, Y.T.; Lin, F.R.; Chen, C.H.; Pei, Z. A 14.7% Organic/Silicon nanoholes hybrid solar cell via interfacial engineering by solution-processed inorganic conformal layer. ACS Appl. Mater. Interfaces 2016, 8, 34537–34545. [Google Scholar] [CrossRef]
- Xia, Z.; Song, T.; Sun, J.; Lee, S.T.; Sun, B. Plasmonic enhancement in hybrid organic/Si heterojunction solar cells enabled by embedded gold nanoparticles. Appl. Phys. Lett. 2014, 105, 241110. [Google Scholar] [CrossRef]
- Thomas, J.P.; Zhao, L.; McGillivray, D.; Leung, K.T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition. J. Mater. Chem. A 2014, 2, 2383–2389. [Google Scholar] [CrossRef]
- Kern, W.; Soc, J.E. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 1990, 137, 1887–1892. [Google Scholar] [CrossRef]
- Abdur-rahman, E.; Alghoraibi, I.; Alkurdi, H. Effect of isopropyl alcohol concentration and etching time on wet chemical anisotropic etching of low-resistivity crystalline silicon wafer. Int. J. Anal. Chem. 2017, 2017. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Yang, Z.; Guo, X.; Liu, B.; Ren, X.; Liu, S. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Sci. Rep. 2016, 6, 35091. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Gao, P.; Ling, Z.; Ding, L.; Yang, Z.; Ye, J.; Cui, Y. High-efficiency Silicon/Organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano 2016, 10, 11525–11531. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, S.T.; Sun, B. Effect of series and shunt resistance on organic-inorganic hybrid solar cells performance. Electrochim. Acta 2014, 146, 845–849. [Google Scholar] [CrossRef]
- Li, J.Y.; Hung, C.H.; Chen, C.Y. Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement. Sci. Rep. 2017, 7, 17177. [Google Scholar] [CrossRef]
- Syu, H.-J.; Shiu, S.-C.; Lin, C.-F. Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%. Sol. Energy Mater. Sol. Cells 2012, 98, 267–272. [Google Scholar] [CrossRef]
- Pudasaini, P.R.; Ayon, A.A. Low-cost, high-efficiency organic/inorganic hetero-junction hybrid solar cells for next generation photovoltaic device. J. Phys. Conf. Ser. 2013, 476, 012140. [Google Scholar] [CrossRef] [Green Version]
Thickness of PEDOT:PSS Film (nm) | Jsc (mA/cm2) | Voc (mV) | FF (%) | PCE-η (%) | Ethylene Glycol (EG) (%) |
---|---|---|---|---|---|
80 | 13.5 | 418 | 35 | 1.98 | 3 |
100 | 14 | 515 | 41 | 2.9 | 5 |
120 | 16.5 | 506 | 38 | 3.2 | 7 |
150 | 15.7 | 598 | 58 | 5.1 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Su, D.; Yang, Y.; Ullah, F.; Zhou, H.; Hussain, A.; Zhang, T. Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT: PSS. Micromachines 2019, 10, 648. https://doi.org/10.3390/mi10100648
Iqbal S, Su D, Yang Y, Ullah F, Zhou H, Hussain A, Zhang T. Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT: PSS. Micromachines. 2019; 10(10):648. https://doi.org/10.3390/mi10100648
Chicago/Turabian StyleIqbal, Sami, Dan Su, Yi Yang, Fahim Ullah, Huanli Zhou, Azam Hussain, and Tong Zhang. 2019. "Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT: PSS" Micromachines 10, no. 10: 648. https://doi.org/10.3390/mi10100648
APA StyleIqbal, S., Su, D., Yang, Y., Ullah, F., Zhou, H., Hussain, A., & Zhang, T. (2019). Fabrication of an Efficient Planar Organic-Silicon Hybrid Solar Cell with a 150 nm Thick Film of PEDOT: PSS. Micromachines, 10(10), 648. https://doi.org/10.3390/mi10100648