Electro-Discharge Machining of Ceramics: A Review
Abstract
:1. Introduction
2. Ceramic Materials
2.1. Conductive
2.2. Non-Conductive
3. Principle of EDM
3.1. Basic Mechanism of EDM/Micro-EDM
3.2. Sparking and Gap Phenomena in EDM/Micro-EDM: Physics of the Process
3.3. Differences between EDM and Micro-EDM
4. EDM of Conductive Ceramics
5. EDM of Non-Conductive Ceramics
6. Current Challenges and Future Research Direction
- One of the important criteria for successful machining of ceramics is the selection of an assisting electrode. The challenges faced by the current researchers include the selection of coating material, appropriate coating thickness, and ways of creating these coatings. Since there is a wide variety of assisting electrodes, it is difficult to effectively choose the kind of assisting electrode that would fit a particular area of application. No specific criteria based on the electrical conductivity or other electro-thermal properties are presented in the literature. Moreover, studies on investigating the effectiveness of various coatings for a single material and the selection of an optimum coating originated on physics based reasoning are missing. Hence, future studies should focus on establishing the guidelines for the selection of an assisting electrode based on material properties, and the structure of the ceramics and the underlying physics.
- Another important challenge of EDM of ceramics is the need for a modified pulse generator specifically designed for conducting EDM on ceramics. Several studies have reported pulse duration as one of the most influential parameters for successful machining. Hence, there is also a need to develop a control algorithm for the pulse generator that would precisely control pulse duration. This parameter significantly affects the intrinsic conductive layer, which is important in machining non-conductive ceramics [53]. The growth of the intrinsic conductive layer with the increase of pulse duration can be modeled, which would provide proper explanations behind the mechanism of growth of the conductive layer, and if any other external factors/parameters play a role in the process.
- So far, the majority of the research studies on EDM of ceramics focused on feasibility and performance studies by carrying out experimental investigation. The major challenge is to understand the physics of the process and to develop physics based modeling for the EDM of ceramics. Considering the physics of processing for non-conductive ceramics, numerical models should be developed, as well as existing models should be improved. The physics based modeling should address the mechanism of formation of intrinsic conductive layer, and how that influences the material removal mechanism and further advances the machining process. The analytical (physics based) and numerical (Finite Element Method based) modeling should focus on the EDM induced surface modification, crack formation, and mechanical property changes of the ceramics. Thermal fractures should be considered during the modeling to understand the crack formation in the surface and sub-surfaces.
- Analytical and numerical modeling of the material removal mechanisms during EDM and micro-EDM of ceramics is of prime importance to broaden the application of EDM usage in ceramic machining. This is one of the major challenges faced by the current researchers due to the complex nature of the material removal involved in EDM. Several material removal mechanisms have been discussed in the literature, such as, melting and evaporation, thermal spalling, fusion and vaporization, oxidation and decomposition. Hence, it is important to investigate whether the material removal mechanism in EDM/micro-EDM of ceramics is significantly different from the EDM of conductive metals and, if different, then establishing the analytical and/or numerical model of the material removal mechanism during EDM/micro-EDM of non-conductive ceramics. It is also important to investigate whether the material removal mechanism has any correlation with thermos-electrical or thermos-physical properties of ceramics.
- Few studies focused on predictive modelling to understand the effect of EDM on the machined product [189]. It is extremely imperative to evaluate the post-machined characteristics of components to analyze the effectiveness of the process on machined ceramics. Future studies may include the measurement of residual stresses, hardness and the methodology can be similar to the studies that were done for metals such as in [190] or [191]. In addition, the phase transformation and the changes in the crystal structures of the ceramics due to the EDM process need to be investigated in future research.
- One of the major challenges of EDM and micro-EDM of ceramics are slow machining rate, post-processing requirement to improve the surface finish, and low throughput. Therefore, the future research trend should focus on solving the associated problems either by developing newer hybrid machining processes or by incorporating novel ideas to improve the existing process and creating new processes for machining ceramics. There have been few research studies on nanopowder mixed EDM, ultrasonic vibration assisted EDM, CNT or graphene mixed EDM of ceramics. However, a fundamental understanding and modeling of those hybrid processes are still missing.
- Finally, most of the studies have focused on the feasibility testing and machinability studies of various ceramics. Very few studies have focused on machining parts, components, or features of ceramics using EDM/micro-EDM for real life applications in the industries. The challenges that the current researchers will face is the broadening of applications by machining industrial grade parts and components. In order to establish the EDM/micro-EDM as a process of choice to the industries, extensive research on the industrial applications of the process is needed. Therefore, future studies should focus on machining of high aspect ratio micro-holes, complex 3D micro-features, and 3D functional parts on ceramics.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vereschaka, A.; Batako, A.; Krapostin, A.; Sitnikov, N.; Oganyan, G. Improvement in reliability of ceramic cutting tool using a damping system and nano-structured multi-layered composite coatings. Procedia CIRP 2017, 63, 563–568. [Google Scholar] [CrossRef]
- New Structural Materials Technologies: Opportunities for the Use of Advanced Ceramics and Composites, Report; University of North Texas Libraries, Digital Library, digital.library.unt.edu; Crediting UNT Libraries Government Documents Department: Gainesville, FL, USA, 1986.
- Claussen, N. Fracture toughness of Al2O3 with an unstabilized ZrO2dispersed phase. J. Am. Ceram. Soc. 1976, 59, 49–51. [Google Scholar] [CrossRef]
- Wang, J.; Stevens, R. Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 1989, 24, 3421–3440. [Google Scholar] [CrossRef]
- Evans, A. Engineering property requirements for high performance ceramics. Mater. Sci. Eng. 1985, 71, 3–21. [Google Scholar] [CrossRef]
- Yao, S.-W.; Wang, H.; Wang, S.-L. The study and application of the special ceramics. Ind. Heat. 2006, 35, 1. [Google Scholar]
- Uhlmann, E.; Schimmelpfennig, T.-M.; Perfilov, I.; Streckenbach, J.; Schweitzer, L. Comparative analysis of dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN. Procedia CIRP 2016, 42, 173–178. [Google Scholar] [CrossRef]
- Sabur, A.; Ali, M.Y.; Maleque, M.A.; Khan, A.A. Investigation of material removal characteristics in EDM of nonconductive ZrO2 ceramic. Procedia Eng. 2013, 56, 696–701. [Google Scholar] [CrossRef]
- Tuersley, I.; Jawaid, A.; Pashby, I. Various methods of machining advanced ceramic materials. J. Mater. Process. Technol. 1994, 42, 377–390. [Google Scholar] [CrossRef]
- Schmitt-Radloff, U.; Kern, F.; Gadow, R. Wire EDM of ZTA-NBC dispersion ceramics–the influence of ed machining on mechanical properties. Procedia CIRP 2018, 68, 91–95. [Google Scholar] [CrossRef]
- Fernández-Valdivielso, A.; López de Lacalle, L.; Urbikain, G.; Rodriguez, A. Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 3725–3742. [Google Scholar] [CrossRef]
- Pérez, J.; Llorente, J.; Sanchez, J. Advanced cutting conditions for the milling of aeronautical alloys. J. Mater. Process. Technol. 2000, 100, 1–11. [Google Scholar]
- Yao, Y.; Wang, B.; Wang, J.; Jin, H.; Zhang, Y.; Dong, S. Chemical machining of zerodur material with atmospheric pressure plasma jet. CIRP Ann. 2010, 59, 337–340. [Google Scholar] [CrossRef]
- Shimpi, J.R.; Sidhaye, D.S.; Prasad, B.L. Digestive ripening: A fine chemical machining process on the nanoscale. Langmuir 2017, 33, 9491–9507. [Google Scholar] [CrossRef] [PubMed]
- Romoli, L.; Tantussi, G.; Dini, G. Experimental approach to the laser machining of pmma substrates for the fabrication of microfluidic devices. Opt. Lasers Eng. 2011, 49, 419–427. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, H.; Lim, G.; Chu, P.; Li, L. Study on uv laser machining quality of carbon fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1403–1408. [Google Scholar] [CrossRef]
- Samant, A.N.; Dahotre, N.B. Laser machining of structural ceramics—A review. J. Eur. Ceram. Soc. 2009, 29, 969–993. [Google Scholar] [CrossRef]
- Pham, D.T.; Dimov, S.S.; Ji, C.; Petkov, P.V.; Dobrev, T. Laser milling as a ‘rapid’micromanufacturing process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1–7. [Google Scholar] [CrossRef]
- Shi, B.; Dai, Y.; Xie, X.; Li, S.; Zhou, L. Arc-enhanced plasma machining technology for high efficiency machining of silicon carbide. Plasma Chem. Plasma Process. 2016, 36, 891–900. [Google Scholar] [CrossRef]
- Malhotra, R.; Saxena, I.; Ehmann, K.; Cao, J. Laser-induced plasma micro-machining (lipmm) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. -Manuf. Technol. 2013, 62, 211–214. [Google Scholar] [CrossRef]
- Spinney, P.; Howitt, D.; Smith, R.; Collins, S. Nanopore formation by low-energy focused electron beam machining. Nanotechnology 2010, 21, 375301. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (ti6al4v) structures with electron beam melting (ebm). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Koike, M.; Martinez, K.; Guo, L.; Chahine, G.; Kovacevic, R.; Okabe, T. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 2011, 211, 1400–1408. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Sundaram, M.; Malshe, A. Review of electrochemical and electrodischarge machining. Procedia Cirp 2013, 6, 13–26. [Google Scholar] [CrossRef]
- Tiwari, A.; Mandal, A.; Kumar, K. Multi-objective optimization of electro-chemical machining by non-dominated sorting genetic algorithm. Mater. Today Proc. 2015, 2, 2569–2575. [Google Scholar] [CrossRef]
- Holstein, N.; Krauss, W.; Konys, J. Development of novel tungsten processing technologies for electro-chemical machining (ecm) of plasma facing components. Fusion Eng. Des. 2011, 86, 1611–1615. [Google Scholar] [CrossRef]
- Chen, S.T.; Jiang, Z.H.; Wu, Y.Y.; Yang, H.Y. Development of a grinding–drilling technique for holing optical grade glass. Int. J. Mach. Tools Manuf. 2011, 51, 95. [Google Scholar] [CrossRef]
- Cong, W.; Pei, Z.; Sun, X.; Zhang, C. Rotary ultrasonic machining of cfrp: A mechanistic predictive model for cutting force. Ultrasonics 2014, 54, 663–675. [Google Scholar] [CrossRef]
- Rao, R.V.; Pawar, P.; Davim, J. Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Mater. Manuf. Process. 2010, 25, 1120–1130. [Google Scholar] [CrossRef]
- Liu, D.; Cong, W.; Pei, Z.J.; Tang, Y. A cutting force model for rotary ultrasonic machining of brittle materials. Int. J. Mach. Tools Manuf. 2012, 52, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Singhal, S. An experimental study on rotary ultrasonic machining of macor ceramic. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1221–1234. [Google Scholar] [CrossRef]
- Singh, R.P.; Singhal, S. Experimental investigation of machining characteristics in rotary ultrasonic machining of quartz ceramic. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 232, 870–889. [Google Scholar] [CrossRef]
- Alberdi, A.; Rivero, A.; López de Lacalle, L.N.; Etxeberria, I.; Suárez, A. Effect of process parameter on the kerf geometry in abrasive water jet milling. Int. J. Adv. Manuf. Technol. 2010, 51, 467–480. [Google Scholar] [CrossRef]
- Ting, H.; Abou-El-Hossein, K.; Chua, H. Review of micromachining of ceramics by etching. Trans. Nonferrous Met. Soc. China 2009, 19, S1–S16. [Google Scholar] [CrossRef]
- Matsumura, T.; Muramatsu, T.; Fueki, S. Abrasive water jet machining of glass with stagnation effect. CIRP Ann. -Manuf. Technol. 2011, 60, 355–358. [Google Scholar] [CrossRef]
- Gupta, V.; Pandey, P.; Garg, M.P.; Khanna, R.; Batra, N. Minimization of kerf taper angle and kerf width using taguchi’s method in abrasive water jet machining of marble. Procedia Mater. Sci. 2014, 6, 140–149. [Google Scholar] [CrossRef]
- Deris, A.M.; Zain, A.M.; Sallehuddin, R. A note of hybrid gr-svm for prediction of surface roughness in abrasive water jet machining: A response. Meccanica 2017, 52, 1993–1994. [Google Scholar] [CrossRef]
- Selvarajan, L.; Mouri, P.; Raja, R.R. Experimental investigation of EDM parameters on machining si 3 n 4-TiN conductive ceramic composite using hallow tube electrode for improving geometrical accuracy. Mater. Today Proc. 2018, 5, 8080–8088. [Google Scholar] [CrossRef]
- Faulk, N. Electrical discharge machining of advanced ceramics. Mach. Adv. Mater. 1993, 525–534. [Google Scholar]
- Mordecai, N.; Huddleston, J. Spark erosion of a modified silicon nitride ceramic. In Proceedings of the Sixth International Manufacturing Conference in China, Hong Kong, China, 10–13 March 1993; pp. 721–726. [Google Scholar]
- Kuzin, V.; Fedorov, S.Y.; Szalay, T.; Farkas, B. Micromachining of a high-density current-conducting ceramic with the use of electrical-discharge machining. Part 2. Refract. Ind. Ceram. 2016, 57, 283–287. [Google Scholar] [CrossRef]
- Ferraris, E.; Castiglioni, V.; Ceyssens, F.; Annoni, M.; Lauwers, B.; Reynaerts, D. EDM drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann. 2013, 62, 191–194. [Google Scholar] [CrossRef]
- Skrabalak, G.; Kozak, J. Study on dry electrical discharge machining. In Proceedings of the world congress on Engineering WCE 2010, London, UK, 30 June–2 July 2010. [Google Scholar]
- De Lacalle, L.N.L.; Lamikiz, A.; Salgado, M.A.; Herranz, S.; Rivero, A. Process planning for reliable high-speed machining of moulds. Int. J. Prod. Res. 2002, 40, 2789–2809. [Google Scholar] [CrossRef]
- Bortz, S. Reliability of ceramics for heat engine applications. In Ceramics for High-performance Applications III: Reliability; Lenoe, E.M., Katz, R.N., Burke, J.J., Eds.; Springer: Boston, MA, USA, 1983; pp. 445–473. [Google Scholar]
- Pawar, P.; Ballav, R.; Kumar, A. An overview of machining process of alumina and alumina ceramic composites. Manuf. Sci. Technol. 2015, 3, 10–15. [Google Scholar] [CrossRef]
- Liew, P.J.; Yan, J.; Kuriyagawa, T. Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J. Mater. Process. Technol. 2013, 213, 1076–1087. [Google Scholar] [CrossRef]
- Liu, K.; Peirs, J.; Ferraris, E.; Lauwers, B.; Reynaerts, D. Micro electrical discharge machining of Si3N4-based ceramic composites. In Proceedings of the 4th International Confernece on Multi-Material Micro Manufacture; Whittles Publishing: Dunbeath, UK, 2008; pp. 161–166. [Google Scholar]
- Gommeringer, A.; Schmitt-Radloff, U.; Ninz, P.; Kern, F.; Klocke, F.; Schneider, S.; Holsten, M.; Klink, A. Ed-machinable ceramics with oxide matrix: Influence of particle size and volume fraction of the electrical conductive phase on the mechanical and electrical properties and the edm characteristics. Procedia CIRP 2018, 68, 22–27. [Google Scholar] [CrossRef]
- Puertas, I.; Luis, C.J. Optimization of EDM conditions in the manufacturing process of B4C and wc-co conductive ceramics. Int. J. Adv. Manuf. Technol. 2012, 59, 575–582. [Google Scholar] [CrossRef]
- Uhlmann, E.; Piltz, S.; Doll, U. Machining of micro/miniature dies and moulds by electrical discharge machining—Recent development. J. Mater. Process. Technol. 2005, 167, 488–493. [Google Scholar] [CrossRef]
- Khalid, W.; Ali, M.S.M.; Dahmardeh, M.; Choi, Y.; Yaghoobi, P.; Nojeh, A.; Takahata, K. High-aspect-ratio, free-form patterning of carbon nanotube forests using micro-electro-discharge machining. Diam. Relat. Mater. 2010, 19, 1405–1410. [Google Scholar] [CrossRef]
- Gotoh, H.; Tani, T.; Mohri, N. EDM of insulating ceramics by electrical conductive surface layer control. Procedia CIRP 2016, 42, 201–205. [Google Scholar] [CrossRef]
- Mohri, N.; Fukusima, Y.; Fukuzawa, Y.; Tani, T.; Saito, N. Layer generation process on work-piece in electrical discharge machining. CIRP Ann. -Manuf. Technol. 2003, 52, 157–160. [Google Scholar] [CrossRef]
- Schubert, A.; Zeidler, H.; Kühn, R.; Hackert-Oschätzchen, M. Microelectrical discharge machining: A suitable process for machining ceramics. J. Ceram. 2015, 2015, 470801. [Google Scholar] [CrossRef]
- Martin, C.; Cales, B.; Vivier, P.; Mathieu, P. Electrical discharge machinable ceramic composites. Mater. Sci. Eng. A 1989, 109, 351–356. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Ji, R.; Yu, L.; Zhang, H.; Li, Q. Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic. J. Mater. Process. Technol. 2008, 208, 245–250. [Google Scholar] [CrossRef]
- Salehi, S.; Van der Biest, O.; Vleugels, J. Electrically conductive ZrO2–TiN composites. J. Eur. Ceram. Soc. 2006, 26, 3173–3179. [Google Scholar] [CrossRef]
- Holmes, J.W.; Cho, C. Experimental observations of frictional heating in fiber-reinforced ceramics. J. Am. Ceram. Soc. 1992, 75, 929–938. [Google Scholar] [CrossRef]
- Pavese, M.; Fino, P.; Ugues, D.; Badini, C. High cycle fatigue study of metal–ceramic co-continuous composites. Scr. Mater. 2006, 55, 1135–1138. [Google Scholar] [CrossRef]
- König, W.; Dauw, D.; Levy, G.; Panten, U. EDM-future steps towards the machining of ceramics. CIRP Ann. -Manuf. Technol. 1988, 37, 623–631. [Google Scholar]
- Mohri, N.; Fukuzawa, Y.; Tani, T.; Saito, N.; Furutani, K. Assisting electrode method for machining insulating ceramics. CIRP Ann. -Manuf. Technol. 1996, 45, 201–204. [Google Scholar] [CrossRef]
- Kalpakjian, S.; Vijai Sekar, K.; Schmid, S.R. Manufacturing Engineering and Technology; Pearson: London, UK, 2014. [Google Scholar]
- Wachtman, J.B.; Cannon, W.R.; Matthewson, M.J. Mechanical Properties of Ceramics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Budinski, K.G.; Budinski, M.K. Engineering materials. Nature 2009, 25, 28. [Google Scholar]
- Meek, J.M.; Craggs, J.D. Electrical Breakdown of Gases; John Wiley & Sons: Hoboken, NJ, USA, 1978. [Google Scholar]
- Hockenberry, T.O.; Williams, E.M. Dynamic evolution of events accompanying the low-voltage discharges employed in EDM. IEEE Trans. Ind. Gen. Appl. 1967, IGA-3, 302–309. [Google Scholar] [CrossRef]
- Rahman, M.; Asad, A.; Masaki, T.; Saleh, T.; Wong, Y.; Kumar, A.S. A multiprocess machine tool for compound micromachining. Int. J. Mach. Tools Manuf. 2010, 50, 344–356. [Google Scholar] [CrossRef]
- Wong, Y.; Rahman, M.; Lim, H.; Han, H.; Ravi, N. Investigation of micro-EDM material removal characteristics using single rc-pulse discharges. J. Mater. Process. Technol. 2003, 140, 303–307. [Google Scholar] [CrossRef]
- Masuzawa, T. Micro EDM. In Proceedings of the ISEM XIII 2001, Bilbao, Spain, 9–11 May 2001; pp. 3–19. [Google Scholar]
- Tibbles, C. Analysis of Micro-scale EDM Process; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Lee, T. T-f theory of electron emission in high-current arcs. J. Appl. Phys. 1959, 30, 166–171. [Google Scholar] [CrossRef]
- Kunieda, M.; Lauwers, B.; Rajurkar, K.; Schumacher, B. Advancing EDM through fundamental insight into the process. CIRP Ann. -Manuf. Technol. 2005, 54, 64–87. [Google Scholar] [CrossRef]
- Lim, H.; Wong, Y.; Masaki, T.; Asad, A.; Rahman, M. Integrated hybrid micro/nano-machining. In Proceedings of the ASME 2007 International Manufacturing Science and Engineering Conference, Los Angeles, CA, USA, 4–8 June 2017; pp. 197–209. [Google Scholar]
- Jahan, M.; Rahman, M.; Wong, Y. Micro-electrical Discharge Machining (micro-EDM): Processes, Varieties, and Applications; Springer: Singapore, 2014. [Google Scholar]
- Katz, Z.; Tibbles, C. Analysis of micro-scale EDM process. Int. J. Adv. Manuf. Technol. 2005, 25, 923–928. [Google Scholar] [CrossRef]
- Qian, J.; Yang, F.; Wang, J.; Lauwers, B.; Reynaerts, D. Material removal mechanism in low-energy micro-EDM process. CIRP Ann. 2015, 64, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Ghosh, A. A thermo-electric model of material removal during electric discharge machining. Int. J. Mach. Tools Manuf. 1999, 39, 669–682. [Google Scholar] [CrossRef]
- Lee, T.; Lau, W. Some characteristics of electrical discharge machining of conductive ceramics. Mater. Manuf. Process. 1991, 6, 635–648. [Google Scholar] [CrossRef]
- Petrofes, N.F. Electrical discharge machining of advanced ceramics. Am. Ceram. Soc. Bull. 1988, 67, 1048–1052. [Google Scholar]
- Puertas-Arbizu, I.; Luis-Perez, C. A revision of the applications of the electrical discharge machining process to the manufacture of conductive ceramics. Rev. Metal. (Spain) 2002, 38, 358–372. [Google Scholar] [CrossRef]
- Trueman, C.; Huddleston, J. Material removal by spalling during EDM of ceramics. J. Eur. Ceram. Soc. 2000, 20, 1629–1635. [Google Scholar] [CrossRef]
- Gadalla, A. Thermal spalling during electro-discharge machining of advanced ceramics and ceramic--ceramic composites. Mach. Comp. Mater. 1992, 151–157. [Google Scholar]
- Lauwers, B.; Kruth, J.-P.; Liu, W.; Eeraerts, W.; Schacht, B.; Bleys, P. Investigation of material removal mechanisms in EDM of composite ceramic materials. J. Mater. Process. Technol. 2004, 149, 347–352. [Google Scholar] [CrossRef]
- Mohri, N. Surface modification by EDM-an innovation in EDM with semi-conductive electrodes. In Proceedings of the Winter Annual Meeting of the ASME, Chicago, IL, USA, 27 November–2 December 1988; pp. 21–31. [Google Scholar]
- Lau, W.; Wang, M.; Lee, W. Electrical discharge machining of carbon fibre composite materials. Int. J. Mach. Tools Manuf. 1990, 30, 297–308. [Google Scholar] [CrossRef]
- Puertas, I.; Luis, C.J. A study on the electrical discharge machining of conductive ceramics. J. Mater. Process. Technol. 2004, 153–154, 1033–1038. [Google Scholar] [CrossRef]
- Noble, C. Electro-discharge machining of silicon carbide. In Proceedings of the International Symposium of Electro Machining, ISEM VII, Birmingham, UK, 12–14 April 1983; pp. 305–312. [Google Scholar]
- Puertas, I.; Luis, C. A study of optimization of machining parameters for electrical discharge machining of boron carbide. Mater. Manuf. Process. 2004, 19, 1041–1070. [Google Scholar] [CrossRef]
- Puertas, I.; Perez, C.J.L. Modelling the manufacturing parameters in electrical discharge machining of siliconized silicon carbide. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 791–803. [Google Scholar] [CrossRef]
- Sanchez, J.; Cabanes, I.; de Lacalle, L.L.; Lamikiz, A. Development of optimum electrodischarge machining technology for advanced ceramics. Int. J. Adv. Manuf. Technol. 2001, 18, 897–905. [Google Scholar] [CrossRef]
- Lok, Y.; Lee, T. Processing of advanced ceramics using the wire-cut EDM process. J. Mater. Process. Technol. 1997, 63, 839–843. [Google Scholar] [CrossRef]
- Lok, Y.; Lee, T. Wire-cut electrical discharge machining of sialon ceramics. In Proceedings of the Seventh International Manufacturing Conference with China, Harbin, China, 19–21 October 1995; pp. 71–76. [Google Scholar]
- Assarzadeh, S.; Ghoreishi, M. Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (wc/6% co). Procedia Cirp 2013, 6, 463–468. [Google Scholar] [CrossRef]
- Patil, N.G.; Brahmankar, P. Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis. Int. J. Adv. Manuf. Technol. 2010, 51, 599–610. [Google Scholar] [CrossRef]
- Huang, J.L.; Chiu, H.L.; Lee, M.T. Microstructure and chemical reaction in a Si3N4–TiC composite. J. Am. Ceram. Soc. 1994, 77, 705–710. [Google Scholar] [CrossRef]
- Liu, C.-C.; Huang, J.-L. Micro-electrode discharge machining of TiN/Si3N4 composites. Br. Ceram. Trans. 2000, 99, 149–152. [Google Scholar] [CrossRef]
- Dauw, D.; Brown, C.; Van Griethuysen, J.; Albert, J. Surface topography investigations by fractal analysis of spark-eroded, electrically conductive ceramics. CIRP Ann. -Manuf. Technol. 1990, 39, 161–165. [Google Scholar] [CrossRef]
- Ito, S.; Nakamura, M.; Kanematsu, W. Machining of high performance ceramics. Bull. Jpn. Soc. Precis. Eng. 1987, 21, 167–172. [Google Scholar]
- Matsuo, T.; Oshima, E. Investigation on the optimum carbide content and machining condition for wire EDM of zirconia ceramics. CIRP Ann. -Manuf. Technol. 1992, 41, 231–234. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, T.; Lau, W. Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic. J. Mater. Process. Technol. 1997, 63, 908–912. [Google Scholar] [CrossRef]
- Pitman, A.; Huddleston, J. Electrical discharge machining of ZrO2/TiN particulate composite. Br. Ceram. Trans. 2000, 99, 77–84. [Google Scholar] [CrossRef]
- Ramulu, M.; Garbini, J. EDM surface characterization of a ceramic composite TiB2/SiC. J. Eng. Mater. Technol. 1991, 113, 437–442. [Google Scholar] [CrossRef]
- Ramulu, M. EDM sinker cutting of a ceramic particulate composite, SiC-TiB sub 2. Adv. Ceram. Mater. 1988, 3. [Google Scholar] [CrossRef]
- Ramulu, M.; Taya, M. EDM machinability of metal matrix composite SiCw/Ai. J. Mater. Sci. 1989, 29, 1103–1108. [Google Scholar] [CrossRef]
- Ramulu, M.; See, H.; Wang, D. Machining of ceramic composite TiB2/SiC by spark erosion. Manuf. Rev. 1990, 3, 123–129. [Google Scholar]
- Deng, J.; Lee, T. Techniques for improved surface integrity of electrodischarge machined ceramic composites. Surf. Eng. 2000, 16, 411–414. [Google Scholar] [CrossRef]
- López-Esteban, S.; Gutierrez-Gonzalez, C.F.; Mata-Osoro, G.; Pecharromán, C.; Díaz, L.A.; Torrecillas, R.; Moya, J. Electrical discharge machining of ceramic/semiconductor/metal nanocomposites. Scr. Mater. 2010, 63, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Luis, C.; Puertas, I.; Villa, G. Material removal rate and electrode wear study on the edm of silicon carbide. J. Mater. Process. Technol. 2005, 164, 889–896. [Google Scholar] [CrossRef]
- Liew, P.J.; Yan, J.; Kuriyagawa, T. Experimental investigation on material migration phenomena in micro-edm of reaction-bonded silicon carbide. Appl. Surf. Sci. 2013, 276, 731–743. [Google Scholar] [CrossRef]
- Liew, P.J.; Yan, J.; Kuriyagawa, T. Fabrication of deep micro-holes in reaction-bonded sic by ultrasonic cavitation assisted micro-edm. Int. J. Mach. Tools Manuf. 2014, 76, 13–20. [Google Scholar] [CrossRef]
- Ji, R.; Liu, Y.; Zhang, Y.; Wang, F.; Cai, B.; Li, H. Compound machining of silicon carbide ceramics by high speed end electrical discharge milling and mechanical grinding. Chin. Sci. Bull. 2012, 57, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Liu, Y.; Zhang, Y.; Cai, B.; Li, X.; Zheng, C. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining. J. Mech. Sci. Technol. 2013, 27, 177–183. [Google Scholar] [CrossRef]
- Patel, K.; Pandey, P.M.; Rao, P.V. Determination of an optimum parametric combination using a surface roughness prediction model for edm of Al2O3/SiCw/TiC ceramic composite. Mater. Manuf. Process. 2009, 24, 675–682. [Google Scholar] [CrossRef]
- Patel, K.; Pandey, P.M.; Rao, P.V. Surface integrity and material removal mechanisms associated with the EDM of Al2O3 ceramic composite. Int. J. Refract. Met. Hard Mater. 2009, 27, 892–899. [Google Scholar] [CrossRef]
- Chang, W.J.; Zhang, J.H.; Zhu, T.; Wang, T. Material removal mechanisms of electric discharge milling conductive ceramic. Adv. Mater. Res. 2011, 1746–1750. [Google Scholar] [CrossRef]
- Chiang, K.-T. Modeling and analysis of the effects of machining parameters on the performance characteristics in the edm process of Al2O3 + TiC mixed ceramic. Int. J. Adv. Manuf. Technol. 2008, 37, 523–533. [Google Scholar] [CrossRef]
- Chiang, K.-T.; Chang, F.-P. Applying grey forecasting method for fitting and predicting the performance characteristics of an electro-conductive ceramic (Al2O3+ 30% tic) during electrical discharge machining. Int. J. Adv. Manuf. Technol. 2007, 33, 480–488. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Wang, A.-C.; Wang, D.-A.; Chen, C.-C. Machining performance and optimizing machining parameters of Al2O3–TiC ceramics using edm based on the taguchi method. Mater. Manuf. Process. 2009, 24, 667–674. [Google Scholar] [CrossRef]
- Patel, K.; Pandey, P.M.; Rao, P.V. Optimisation of process parameters for multi-performance characteristics in edm of Al2O3 ceramic composite. Int. J. Adv. Manuf. Technol. 2010, 47, 1137–1147. [Google Scholar] [CrossRef]
- Calignano, F.; Denti, L.; Bassoli, E.; Gatto, A.; Iuliano, L. Studies on electrodischarge drilling of an Al2O3–TiC composite. Int. J. Adv. Manuf. Technol. 2013, 66, 1757–1768. [Google Scholar]
- Satyarthi, M.; Pandey, P.M. Comparison of edg, diamond grinding, and edm processing of conductive alumina ceramic composite. Mater. Manuf. Process. 2013, 28, 369–374. [Google Scholar] [CrossRef]
- Bonny, K.; De Baets, P.; Vleugels, J.; Salehi, A.; Van der Biest, O.; Lauwers, B.; Liu, W. Edm machinability and frictional behavior of ZrO2-WC composites. Int. J. Adv. Manuf. Technol. 2009, 41, 1085–1093. [Google Scholar] [CrossRef]
- Bonny, K.; De Baets, P.; Vleugels, J.; Salehi, A.; Van der Biest, O.; Lauwers, B.; Liu, W. Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites. J. Mater. Process. Technol. 2008, 208, 423–430. [Google Scholar] [CrossRef]
- Vogeler, F.; Lauwers, B.; Ferraris, E. Analysis of wire-edm finishing cuts on large scale ZrO2-TiN hybrid spark plasma sintered blanks. Procedia CIRP 2016, 42, 268–273. [Google Scholar] [CrossRef]
- Vogeler, F.; Migdal, A.; Lauwers, B.; Ferraris, E. The effect of wire-edm processing on the flexural strength of large scale ZrO2-TiN. Procedia CIRP 2016, 45, 179–182. [Google Scholar] [CrossRef]
- Lauwers, B.; Kruth, J.-P.; Brans, K. Development of technology and strategies for the machining of ceramic components by sinking and milling EDM. CIRP Ann. -Manuf. Technol. 2007, 56, 225–228. [Google Scholar] [CrossRef]
- Puertas, I.; Luis, C.; Villa, G. Spacing roughness parameters study on the EDM of silicon carbide. J. Mater. Process. Technol. 2005, 164, 1590–1596. [Google Scholar] [CrossRef]
- Clijsters, S.; Liu, K.; Reynaerts, D.; Lauwers, B. EDM technology and strategy development for the manufacturing of complex parts in sisic. J. Mater. Process. Technol. 2010, 210, 631–641. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kimura, Y.; Okada, A.; Uno, Y.; Ohya, J.; Yamauchi, T. Challenge to development of functional multi-wire EDM slicing method using wire electrode with track-shaped section. Key Eng. Mater. 2012, 287–292. [Google Scholar] [CrossRef]
- Kato, T.; Noro, T.; Takahashi, H.; Yamaguchi, S.; Arai, K. Characterization of electric discharge machining for silicon carbide single crystal. Mater. Sci. Forum 2009, 855–858. [Google Scholar] [CrossRef]
- Kimura, A.; Okamoto, Y.; Okada, A.; Ohya, J.; Yamauchi, T. Fundamental study on multi-wire EDM slicing of sic by wire electrode with track-shaped section. Procedia CIRP 2013, 6, 232–237. [Google Scholar] [CrossRef]
- Yamada, H.; Yamaguchi, S.; Yamamoto, N.; Kato, T. Cutting speed of electric discharge machining for sic ingot. Mater. Sci. Forum 2012, 861–864. [Google Scholar] [CrossRef]
- Zhao, Y.; Kunieda, M.; Abe, K. Multi-discharge EDM coring of single crystal sic ingot by electrostatic induction feeding method. Precis. Eng. 2015, 41, 24–31. [Google Scholar] [CrossRef]
- Liu, C.-C. Microstructure and tool electrode erosion in EDMed of TiN/Si3N4 composites. Mater. Sci. Eng. A 2003, 363, 221–227. [Google Scholar] [CrossRef]
- Kozak, J.; Rajurkar, K.P.; Chandarana, N. Machining of low electrical conductive materials by wire electrical discharge machining (wEDM). J. Mater. Process. Technol. 2004, 149, 266–271. [Google Scholar] [CrossRef]
- Putyra, P.; Laszkiewicz-Łukasik, J.; Wyżga, P.; Podsiadło, M.; Smuk, B. The selection of phase composition of silicon nitride ceramics for shaping with the use of EDM machining. J. Achiev. Mater. Manuf. Eng. 2011, 48, 35–40. [Google Scholar]
- Malek, O.; González-Julián, J.; Vleugels, J.; Vanderauwera, W.; Lauwers, B.; Belmonte, M. Carbon nanofillers for machining insulating ceramics. Mater. Today 2011, 14, 496–501. [Google Scholar] [CrossRef]
- Jones, A.; Trueman, C.; Dobedoe, R.; Huddleston, J.; Lewis, M. Production and EDM of Si3N4–TiB2 ceramic composites. Br. Ceram. Trans. 2001, 100, 49–54. [Google Scholar] [CrossRef]
- Liu, K.; Reynaerts, D.; Lauwers, B. Influence of the pulse shape on the EDM performance of Si3N4–TiN ceramic composite. CIRP Ann. 2009, 58, 217–220. [Google Scholar] [CrossRef]
- Zhang, C. Effect of wire electrical discharge machining (wEDM) parameters on surface integrity of nanocomposite ceramics. Ceram. Int. 2014, 40, 9657–9662. [Google Scholar] [CrossRef]
- Hösel, T.; Müller, C.; Reinecke, H. Spark erosive structuring of electrically nonconductive zirconia with an assisting electrode. CIRP J. Manuf. Sci. Technol. 2011, 4, 357–361. [Google Scholar] [CrossRef]
- Yoo, H.-K.; Ko, J.-H.; Lim, K.-Y.; Kwon, W.T.; Kim, Y.-W. Micro-electrical discharge machining characteristics of newly developed conductive sic ceramic. Ceram. Int. 2015, 41, 3490–3496. [Google Scholar] [CrossRef]
- FUKUZAWA, Y. Machining characteristics of insulating ceramics by electrical discharge machine. Ind. Ceram. 2001, 21, 187–189. [Google Scholar]
- Shin, T.; Mohri, N.; Yamada, H.; Kosuge, M.; Furutani, K.; Fukuzawa, Y.; Tani, T. Machining phenomena in EDM of insulating ceramics-effect of condenser electrical discharges. VDI BERICHTE 1998, 1405, 437–444. [Google Scholar]
- Ali, M.Y.; Sabur, A.; Banu, A.; Maleque, M.A.; Adesta, E.Y. Micro electro discharge machining for nonconductive ceramic materials. Mater. Sci. Forum 2018. [CrossRef]
- Zeller, F.; Hösel, T.; Müller, C.; Reinecke, H. Microstructuring of non-conductive silicon carbide by electrical discharge machining. Microsyst. Technol. 2014, 20, 1875–1880. [Google Scholar] [CrossRef]
- Srivastava, M. Study of machining non-conducting materials using EDM. Int. J. Eng. Trends Technol. 2016. [Google Scholar] [CrossRef]
- Fukuzawa, Y.; Mohri, N.; Gotoh, H.; Takayuki, T. Three-dimensional machining of insulating ceramics materials with electrical discharge machining. Trans. Nonferrous Met. Soc. China 2009, 19, S150–S156. [Google Scholar] [CrossRef]
- Banu, A.; Ali, M.Y.; Rahman, M.A. Micro-electro discharge machining of non-conductive zirconia ceramic: Investigation of mrr and recast layer hardness. Int. J. Adv. Manuf. Technol. 2014, 75, 257–267. [Google Scholar] [CrossRef]
- Moudood, M.; Sabur, A.; Ali, M.Y.; Jaafar, I. Effect of gap voltage and pulse-on time on material removal rate for electrical discharge machining of Al2O3. Adv. Mater. Res. 2015, 3–6. [Google Scholar] [CrossRef]
- Ferraris, E.; Reynaerts, D.; Lauwers, B. Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites. CIRP Ann. -Manuf. Technol. 2011, 60, 235–238. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, R.K. Assessing the effects of different dielectrics on environmentally conscious powder-mixed EDM of difficult-to-machine material (wc-co). Front. Mech. Eng. 2016, 11, 374–387. [Google Scholar] [CrossRef]
- Schubert, A.; Zeidler, H.; Hackert-Oschäzchen, M.; Schneider, J.; Hahn, M. Enhancing micro-EDM using ultrasonic vibration and approaches for machining of nonconducting ceramics. Stroj. Vestnik/J. Mech. Eng. 2013, 59, 156–164. [Google Scholar] [CrossRef]
- Gadow, R.; Landfried, R.; Kern, F. Electrical discharge machining (EDM) of high-performance ceramics. In Proceedings of the III Advanced Ceramics and Applications Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 25–32. [Google Scholar]
- Landfried, R.; Kern, F.; Gadow, R. Electrically conductive ZTA–TiC ceramics: Influence of tic particle size on material properties and electrical discharge machining. Int. J. Refract. Met. Hard Mater. 2015, 49, 334–338. [Google Scholar] [CrossRef]
- Liew, P.J.; Yan, J. Micro electrical discharge machining of reaction-bonded silicon carbide. Electr. Discharge Mach. (EDM) 2013, 425–489. [Google Scholar]
- Jahan, M.; Rahman, M.; Wong, Y. Modelling and experimental investigation on the effect of nanopowder-mixed dielectric in micro-electrodischarge machining of tungsten carbide. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 1725–1739. [Google Scholar] [CrossRef]
- Yonghong, L.; Zhixin, J.; Jinchun, L. Study on hole machining of non-conducting ceramics by gas-filled electrodischarge and electrochemical compound machining. J. Mater. Process. Technol. 1997, 69, 198–202. [Google Scholar] [CrossRef]
- Zaripov, A.; Ashurov, K.B. Electrical discharge machining of nonconductive materials. Surf. Eng. Appl. Electrochem. 2011, 47, 197–200. [Google Scholar] [CrossRef]
- Xiaopeng, L.; Yonghong, L.; Renjie, J. A new method for electrical discharge machining of non-conductive engineering ceramics. In Proceedings of the 2nd International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT), Shenyang, China, 7 September 2012; pp. 1266–1269. [Google Scholar]
- Wüthrich, R.; Fascio, V. Machining of non-conducting materials using electrochemical discharge phenomenon—An overview. Int. J. Mach. Tools Manuf. 2005, 45, 1095–1108. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Doloi, B.; Sorkhel, S. Experimental investigations into electrochemical discharge machining (ecdm) of non-conductive ceramic materials. J. Mater. Process. Technol. 1999, 95, 145–154. [Google Scholar] [CrossRef]
- Muttamara, A.; Fukuzawa, Y.; Mohri, N.; Tani, T. Effect of electrode material on electrical discharge machining of alumina. J. Mater. Process. Technol. 2009, 209, 2545–2552. [Google Scholar] [CrossRef]
- Petrofes, N.; Gadalla, A. Processing aspects of shaping advanced materials by electrical discharge machining. Adv. Mater. Manuf. Process. 1988, 3, 127–153. [Google Scholar] [CrossRef]
- Ji, R.; Liu, Y.; Zhang, Y.; Zhang, H.; Li, X.; Dong, X. An experimental research on single discharge machining of insulating ceramics efficiently with high energy capacitor. Sci. China Technol. Sci. 2011, 54, 1537–1545. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, R.; Li, X.; Yu, L.; Zhang, H.; Li, Q. Effect of machining fluid on the process performance of electric discharge milling of insulating Al2O3 ceramic. Int. J. Mach. Tools Manuf. 2008, 48, 1030–1035. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Xu, Y.; Ji, R.; Li, Q. Numerical simulation of single pulse discharge machining insulating Al2O3 ceramic. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 55–62. [Google Scholar] [CrossRef]
- Chak, S.K.; Rao, P.V. Trepanning of Al2O3 by electro-chemical discharge machining (ecdm) process using abrasive electrode with pulsed dc supply. Int. J. Mach. Tools Manuf. 2007, 47, 2061–2070. [Google Scholar] [CrossRef]
- Chak, S.K.; Rao, P.V. The drilling of Al2O3 using a pulsed dc supply with a rotary abrasive electrode by the electrochemical discharge process. Int. J. Adv. Manuf. Technol. 2008, 39, 633–641. [Google Scholar] [CrossRef]
- Jain, V.; Choudhury, S.; Ramesh, K. On the machining of alumina and glass. Int. J. Mach. Tools Manuf. 2002, 42, 1269–1276. [Google Scholar] [CrossRef]
- Mohri, N.; Fukuzawa, Y.; Tani, T.; Sata, T. Some considerations to machining characteristics of insulating ceramics-towards practical use in industry. CIRP Ann. -Manuf. Technol. 2002, 51, 161–164. [Google Scholar] [CrossRef]
- Hou, P.; Guo, Y.; Shao, D.; Li, Z.; Wureli, Y.; Tang, L. Influence of open-circuit voltage on high-speed wire electrical discharge machining of insulating zirconia. Int. J. Adv. Manuf. Technol. 2014, 73, 229–239. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, P.; Shao, D.; Li, Z.; Wang, L.; Tang, L. High-speed wire electrical discharge machining of insulating zirconia with a novel assisting electrode. Mater. Manuf. Process. 2014, 29, 526–531. [Google Scholar] [CrossRef]
- Hösel, T.; Müller, C.; Reinecke, H. Analysis of surface reaction mechanisms on electrically non-conductive zirconia, occurring within the spark erosion process chain. Key Eng. Mater. 2012, 1171–1176. [Google Scholar] [CrossRef]
- Fukuzawa, Y.; Yukihiro, K.; Yamasita, K. Machining properties of insulating ZrO2 ceramics using porous copper electrodes. Key Eng. Mater. 2010, 608–613. [Google Scholar] [CrossRef]
- Schubert, A.; Zeidler, H.; Hahn, M.; Hackert-Oschätzchen, M.; Schneider, J. Micro-EDM milling of electrically nonconducting zirconia ceramics. Procedia Cirp 2013, 6, 297–302. [Google Scholar] [CrossRef]
- Sabur, A.; Ali, M.Y.; Maleque, M. Modelling of material removal rate in EDM of nonconductive ZrO2 ceramic by taguchi method. Appl. Mech. Mater. 2013, 246–252. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.; Lin, Y.; Chen, S.; Hsu, L. Optimization of electrodischarge machining parameters on ZrO2 ceramic using the taguchi method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 195–205. [Google Scholar] [CrossRef]
- Muttamara, A.; Fukuzawa, Y.; Mohri, N.; Tani, T. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. J. Mater. Process. Technol. 2003, 140, 243–247. [Google Scholar] [CrossRef]
- Praneetpongrung, C.; Fukuzawa, Y.; Nagasawa, S.; Yamashita, K. Effects of the EDM combined ultrasonic vibration on the machining properties of Si3N4. Mater. Trans. 2010, 51, 2113–2120. [Google Scholar] [CrossRef]
- Tani, T.; Fukuzawa, Y.; Mohri, N.; Saito, N.; Okada, M. Machining phenomena in wEDM of insulating ceramics. J. Mater. Process. Technol. 2004, 149, 124–128. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, R.; Li, Q.; Yu, L.; Li, X. Electric discharge milling of silicon carbide ceramic with high electrical resistivity. Int. J. Mach. tools Manuf. 2008, 48, 1504–1508. [Google Scholar] [CrossRef]
- Hou, P.; Guo, Y.; Sun, L.; Deng, G. Simulation of temperature and thermal stress filed during reciprocating traveling wEDM of insulating ceramics. Procedia CIRP 2013, 6, 410–415. [Google Scholar] [CrossRef]
- Xu, X.B.; Xiong, T.K.; Tan, L.J.; Zeng, Y. The research on simulation model in EDM of insulating ceramic Si3N4. Adv. Mater. Res. 2012, 556–559. [Google Scholar] [CrossRef]
- Sarkar, B.; Doloi, B.; Bhattacharyya, B. Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int. J. Adv. Manuf. Technol. 2006, 28, 873–881. [Google Scholar] [CrossRef]
- Schubert, A.; Zeidler, H.; Kühn, R.; Hackert-Oschätzchen, M.; Flemmig, S.; Treffkorn, N. Investigation of ablation behaviour in micro-EDM of nonconductive ceramic composites atz and Si3N4-TiN. Procedia CIRP 2016, 42, 727–732. [Google Scholar] [CrossRef]
- Mohammad Yeakub, A.N.S.a.A.B. Micro electro discharge machining of non-conductive ceramic using conductive powder mix dielectric fluid. J. Eng. Appl. Sci. 2016, 11, 1469–1474. [Google Scholar]
- Kandemir, A.; Sevik, C.; Yurdakul, H.; Turan, S. First-principles investigation of titanium doping into β-sialon crystal in tin–sialon composites for EDM applications. Mater. Chem. Phys. 2015, 162, 781–786. [Google Scholar] [CrossRef]
- Ekmekci, B.; Elkoca, O.; Erman Tekkaya, A.; Erden, A. Residual stress state and hardness depth in electric discharge machining: De-ionized water as dielectric liquid. Mach. Sci. Technol. 2005, 9, 39–61. [Google Scholar] [CrossRef]
- Ekmekci, B. Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 2007, 253, 9234–9240. [Google Scholar] [CrossRef]
Applications | Performance Properties | Ceramics |
---|---|---|
Wear parts: seals, bearings, valves, fuel nozzles, aerospace industry, cutting tool inserts, automotive brakes, prosthetic products, piezoceramic sensors, biomedical implants, mold-dies [44], heat engines [45], next generation computer memories [46]. | High hardness, lower friction, high thermal conductivity, high stiffness, and low density [47]. | SiC, Al2O3 |
Cutting tools, gas turbine impeller manufacturing [48]. | High strength, high hardness, thermal shock, and oxidation resistance | Si3N4 |
Heat engines: Diesel engines components, gas turbines. | Thermal insulation, high temperature strength, Fuel economy, exceptional high fracture resistance [49], good corrosion resistance [8]. | ZrO2, SiC, Si3N4 |
Medical implants: Hip joint, teeth, other joints. | Biocompatibility, machined surfaces’ bond to tissue, corrosion resistance. | Hydroxyapatite, Bioglass, Al2O3, ZrO2 |
Ballistic applications, shielding in nuclear fission reactors, bearings, dies, cutting tools, extrusion nozzles, seals and rings [50]. | Excellent hardness, wear resistance, fracture toughness properties Low density, high compressive strength, high elastic modulus. | B4C |
Construction: highways, bridges, buildings. | Improved durability, low overall cost. | Advanced cements & Concrete |
Properties | Aluminum Oxide (Al2O3) | Silicon Carbide (SiC) | Silicon Nitride (Si3N4) | Partially Stabilized Zirconia (PSZ) | Silica, Fused (SiO2) | |
---|---|---|---|---|---|---|
Transverse rupture strength (MPa) | 140–240 | 100–750 | 480–600 | 620 | - | |
Compressive strength (MPa) | 1000–2900 | 700–3500 | - | - | 1300 | |
Elastic modulus (GPa) | 310–410 | 240–480 | 300–310 | 200 | 70 | |
Hardness (HK) | 2000–3000 | 2100–3000 | 2000–2500 | 1100 | 550 | |
Poisson’s ratio, υ | 0.26 | 0.14 | 0.24 | 0.30 | 0.25 | |
Physical properties | Density (kg/m3) | 4000–4500 | 3100 | 3300 | 5800 | - |
Thermal conductivity (W/m/K) | 8.4 | 83.6 | 25 | 2 | - | |
Thermal expansion coefficient (m/m/K) | 9.0 × 10−6 | 4.3 × 10−6 | 3.2 × 10−6 | 10.6 × 10−6 | - | |
Specific heat (J/kg/K) | 1040 | 1040 | 710 | 543 | - |
Ceramics Type | Composites | Type of Operation | Material Removal Mechanism | Remarks |
---|---|---|---|---|
Aluminum based | Al2O3-TiC composite | ED-Drilling | Combined melting and evaporation | Crater diameter is not affected by pulse duration but increases with pulse power [121]. |
Al2O3–SiCW–TiC | Diamond-G, EDM, EDG | EDG offers 50 times higher MRR and 4 times less roughness than EDM. EDG also produces 4.5 times better surface than diamond grinding [122]. | ||
Zirconia based | ZrO2-WC (40%) | W-EDM | Full melting and evaporation | MRR increases with pulse duration and decreases with pulse interval for both coarse and fine ZrO2-WC [123]. |
ZrO2 composite | W-EDM | Full melting and evaporation. | With pulse duration MRR increases and WC based ceramics exhibits better roughness [124]. | |
ZrO2-TiN | W-EDM | Melting, evaporation & Chemical decomposition | With the increased number of finishing cut, roughness reduces for every cutting dimension, however bending strength does not vary much [125]. | |
ZrO2-TiN | W-EDM | Melting, evaporation & Chemical decomposition | Finish cutting seems not be related with flexural strength [126]. | |
SiC, B4C, Si3N4-TiN | M-EDM, S-EDM | Micro-EDM provides better performance for MRR and surface quality compared to S-EDM [127]. | ||
Silica based | SiSiC | S-EDM | First order model proposed was satisfactory for Sm (mean spacing of profile irregularities); pulse time and duty cycle increase the mean spacing distance while voltage does opposite [128]. | |
S-EDM | Melting and evaporation | For optimum MRR and to avoid subsurface damage, high peak current, long pulse on with short pulse off combination needs to be avoided [129]. | ||
Si, SiC | Multi W-EDM | Straight and uniform kerf can be achieved by using brass coated steel wire having track shaped section and increased wire tension, this process also suffers less vibration [130]. | ||
SiC Single ingot | EDM | EDM causes low surface damage compared to diamond saw cutting [131,132]. Kerf loss and roughness achieved are much less for EDM. Using maximum cutting speed of 0.8 mm/min and 50 μm wire, 2 inches ingot can cut within 7 h [133]. | ||
SiC Single ingot | Multi-discharge EDM coring method; | Multi-discharge EDM with 6 electrodes offers either simultaneous or sequential discharge during single pulse duration. With improved discharged frequency, surface integrity and machining efficiency gets better [134]. | ||
TiN/Si3N4 | Sinker-EDM | With current, electrode wear ratios increases and brass experiences higher wear compared to copper [135]. | ||
TiN/Si3N4 (37.5 & 40% TiN) | WEDM | MRR increases with the aid of silver layer and depends on the relative position of wire and clamping [136]. | ||
Si3N4 composite | EDM | With the addition of a proper secondary conductive phase, EDM of complex shape can be generated [137]. | ||
Si3N4/CNTs | EDM | EDM process offers high MRR, low roughness as well as tool wear compared to Si3N4/TiN. With voltage, MRR, TWR and roughness show increasing trends [138]. | ||
Si3N4–TiB2 | S-EDM W-EDM | 40% addition of TiB2 makes the ceramics conductive enough to be machined by EDM [139]. | ||
Si3N4–TiN | M-EDM, S-EDM | melting, decomposition and oxidation | Iso-energatic pulse with S-EDM offers better surface and high tool wear whereas relaxation pulses offers contrary results [140]. | |
Si3N4–TiN | WEDM | Melting, evaporation, thermal spalling | MRR increases with increases of power and decreases with increases of pulse off time [141]. |
Ceramics Type | Composites | Type of Operation | Material Removal Mechanism | Remarks |
---|---|---|---|---|
Al based | aluminum oxide (Al2O3) ceramic | ECDM | Electrochemical (EC) reaction and electrical spark combined | Higher MRR and dimensional accuracy can be attained by using 80 V and 25% NaOH electrolyte [163]. |
AE-EDM | Melting, dissociation, Evaporation | Copper-infiltrated-graphite (Poco-EDM-C3) outperforms copper; graphite (Poco EDM-3) in term of MRR and EWR, better surface roughness [164]. | ||
AE-EDM | Melting, Evaporation, Spalling [165] | Single discharge crater volume increases with voltage and capacitance increment, while it decreases with increasing resistant as well assistive electrode thickness [166]. | ||
Electrical discharge (ED) milling | Higher flow velocity of dielectric increases MRR and offers improved surface roughness [167]. | |||
ED-milling | Simulation results of thermal eroding shows agreement with experimental results [168]. | |||
ECDM | Pulsed DC reduces the chance of crack formation compared to smooth DC and abrasive electrode increases MRR [169,170]. | |||
Electrochemical spark abrasive drilling | Increase in voltage and temperature of electrolyte can enhance machining performance [171]. | |||
Zr based | Zr2O3, SiC, Si3N4 | AE Wire EDM | flake by flake | ZrO2 performs well in terms of material removal [172]. |
Zr2O3 | AE WEDM | Chemical decomposition | For pulse on time of 20 μsec and high machining speed, low roughness can be reached [173,174]. | |
Melting, Spalling, crack formation | Presence of monoclinic zirconia, suggesting the conversion of ZrC to Zr2O which can be prevented by higher temperature oven process with 10 K/s active cooling [175]. | |||
ZrO2-Y2O3 | AE Sinking EDM | Copper porous electrode with 85% density provides maximum MRR. Volumetric wear ratio reduces with the increase of tool density [176]. | ||
Zr2O3 | AE ED-milling | Discharge pulses have shorter peak but longer duration for ceramics [177]. | ||
Zr2O3 | AE Wire EDM; | MRR increases with peak current and pulse on time [178]. Model MRR and surface roughness was proposed [179]. | ||
Si based | Si3N4 | AE WED-milling | Discharge duration & duty factor both increase MRR & surface roughness [53]. | |
AE Die sinking EDM | Voltage enhances electrode wear ratio but, increased diameter reduces this ratio [180]. | |||
Ultrasonic assisted AE-EDM | MRR increases twice compared with Assistive EDM, however roughness increases due to vibration [181]. | |||
Si3N4 | AE-WEDM | Using higher current, 100 mm thick plate was successfully cut where straightness as well as roundness value reached to 12 and 17 μm [182]. | ||
SiC | ED-Milling | Positive tool polarity results in better MRR and low EWR [183]. | ||
Si3N4 | WEDM | Conductive layer has much effect on thermal transmission in radially than in crater depth direction [184]. | ||
Si3N4 | EDM | Predictive accuracy seem high and convergent is present [185]. | ||
Si3N4 | ECDM | Mathematical model for MRR, Radial overcut, heat affected zone suggested leading effect of voltage [186]. |
Performance Parameters | Ceramics Type | Type of Operation & Parameters | Remarks |
---|---|---|---|
Material removal rate (MRR) | Si3N4-TiN and Alumina Toughened Zirconia (ATZ) | Micro EDM, Open circuit voltage, discharge type | The ablation behavior of Si3N4-TiN enables 200% of MRR compared to ATZ [187]. |
Zirconium oxide (ZrO2) | AE micro-EDM Polarity, flushing, feed rate, gap voltage, and tool electrode, rotational speed | Capacitance significantly affects the formation of pyrolytic carbon layer, however, MRR is mainly controlled by voltage. Experimental MRR was lower than theoretical values [150]. | |
zirconia (titanium carbide powder mixed with the kerosene) | AE M-EDM, Gap voltage, capacitance | The factor, which affected the most to MRR, was capacitance. 86 V and 1.0 nF are optimum for reaching maximum MRR [188]. | |
ZrO2 | AE die-sinking EDM Pulse on time, pulse off time, input power, negative polarity | Mechanism of material removal is mainly spalling. The minimum power needed for the stable formation of pyrolytic carbon layer with low MRR is 1.2 KVA [8]. | |
Surface Roughness | ZrO2 and Al3O2 with secondary conductive phase TiCN | Micro-EDM Current, open circuit voltage, Energy, frequency, pulse width | In comparison with ZrO2-TiN, Al3O2-TiCN show lower surface roughness due to higher amount of secondary conductive phase [152]. |
ZrO2 | AE die-sinking EDM Voltage, capacitance, RPM | Significant parameters for surface roughness are voltage and capacitance and that increasing these parameters results in increase of surface roughness [8]. | |
Dimensional accuracy | Sintered silicon carbide | AE method of micro- EDM, Current, frequency, tool geometry | The adaptation of current and frequency was performed to reduce the carbonized products and adaptation of tool geometry to improve flushing conditions [147]. |
Si3N4, SiC, AlN, and ZrO2 | AE-WEDM Open circuit voltage | Thickness of intrinsic electrically conductive layer increased with the increase of open circuit voltage [149]. | |
Al2O3 | Double electrodes synchronous servo electrical discharge grinding (DESSEDG) | The advantages of DESSEDG include high efficiency precision machining, low machining cost and environmental pollution-free [161]. | |
Tool wear | SiSiC | Die-sinking EDM, Discharge current, open gap voltage, discharge duration | Overall EWR is about 30% for both rough and semi-rough condition [129]. |
Al2O3 | AE-EDM | Copper electrodes experiences higher EWR compared to EDM-C3 and EDM-3. EWR [164]. | |
Lower RWR can be achieved with negative tool electrode. Tool wear decreases with decreasing capacitance and increasing current limiting resistance [166]. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, A.; Jahan, M.P.; Talamona, D.; Perveen, A. Electro-Discharge Machining of Ceramics: A Review. Micromachines 2019, 10, 10. https://doi.org/10.3390/mi10010010
Bilal A, Jahan MP, Talamona D, Perveen A. Electro-Discharge Machining of Ceramics: A Review. Micromachines. 2019; 10(1):10. https://doi.org/10.3390/mi10010010
Chicago/Turabian StyleBilal, Azat, Muhammad Pervej Jahan, Didier Talamona, and Asma Perveen. 2019. "Electro-Discharge Machining of Ceramics: A Review" Micromachines 10, no. 1: 10. https://doi.org/10.3390/mi10010010