Calcimimetics and Vascular Calcification
Abstract
:1. Introduction
2. Methods
3. History and Evolution of Calcimimetics
4. Mechanisms of Action: Direct and Indirect
5. Clinical Implication of Calcimimetics in the Reduction in Vascular Calcification
6. Effect of Cinacalcet on Calciphylaxis Lesions
7. Effect of Cinacalcet on Arterial Stiffness in SHPT
8. Vitamin D Analogues, Calcimimetics and Vascular Calcification
9. Conclusions
10. Key Point
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torregrosa, J.V.; Bover, J.; Rodríguez Portillo, M.; González Parra, E.; Dolores Arenas, M.; Caravaca, F.; González Casaus, M.L.; Martín-Malo, A.; Navarro-González, J.F.; Lorenzo, V.; et al. Recommendations of the Spanish Society of Nephrology for the management of mineral and bone metabolism disorders in patients with chronic kidney disease: 2021 (SEN-MM). Nefrologia 2022, 42, 1–37. [Google Scholar] [CrossRef]
- Rodrigo Orozco, B. Enfermedad cardiovascular (ecv) en la enfermedad renal crónica (ERC). Rev. Médica Clínica Las Condes 2015, 26, 142–155. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, V.; Boedigheimer, M.; McNinch, J.; Twomey, B.; Kiaei, P.; Haas, K.; Fitzpatrick, D.; Ward, S.; Lacey, D.L.; Shatzen, E.; et al. Calcification inhibitors and Wnt signaling proteins are implicated in bovine artery smooth muscle cell calcification in the presence of phosphate and vitamin D sterols. Calcif. Tissue Int. 2006, 79, 431–442. [Google Scholar] [CrossRef]
- Leopold, J.A. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc. Med. 2015, 25, 267–274. [Google Scholar] [CrossRef]
- Farese, S.; Floege, J.; Pasch, A.; Gräber, S.; Wald, J.; Jahnen-Dechent, W.; Richtering, W. Nanoparticle-based test measures overall propensity for calcification in serum. J. Am. Soc. Nephrol. 2012, 23, 1744–1752. [Google Scholar]
- Neves, K.R.; Graciolli, F.G.; dos Reis, L.M.; Graciolli, R.G.; Neves, C.L.; Magalhães, A.O.; Custódio, M.R.; Batista, D.G.; Jorgetti, V.; Moysés, R.M.A. Vascular calcification: Contribution of parathyroid hormone in renal failure. Kidney Int. 2007, 71, 1262–1270. [Google Scholar] [CrossRef]
- Bacchetta, J.; De Mul, A.; Schmitt, C.P.; Bernardor, J. Impact of Cinacalcet and Etelcalcetide on Bone Mineral and Cardiovascular Disease in Dialysis Patients. Curr. Osteoporos. Rep. 2023, 21, 193–204. [Google Scholar]
- Brown, E.M.; Gamba, G.; Riccardi, D.; Lombardi, M.; Butters, R.; Kifor, O.; Sun, A.; Hediger, M.A.; Lytton, J.; Hebert, S.C. Cloning and characterization of an extracellular Ca (2+)-sensing receptor from bovine parathyroid. Nature 1993, 366, 575–580. [Google Scholar] [CrossRef]
- Antonsen, J.E.; Sherrard, D.J.; Andress, D.L. A calcimimetic agent acutely suppresses parathyroid hormone levels in patients with chronic renal failure. Rapid communication. Kidney Int. 1998, 53, 223–227. [Google Scholar] [CrossRef]
- Goodman, W.G. Calcimimetic agents for the treatment of secondary hyperparathyroidism. Semin. Nephrol. 2004, 24, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Gincherman, Y.; Moloney, K.; McKee, C.; Coyne, D.W. Assessment of adherence to cinacalcet by prescription refill rates in hemodialysis patients. Hemodial. Int. 2010, 14, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Karaboyas, A.; Muenz, D.; Fuller, D.S.; Desai, P.; Lin, T.-C.; Robinson, B.M.; Rossetti, S.; Pisoni, R.L. Etelcalcetide utilization, dosing titration, and chronic kidney disease–mineral and bone disease (CKD-MBD) marker responses in US hemodialysis patients. Am. J. Kidney Dis. 2022, 79, 362–373. [Google Scholar] [CrossRef]
- Fukagawa, M.; Shimazaki, R.; Akizawa, T.; Evocalcet Study Group. Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2018, 94, 818–825. [Google Scholar] [CrossRef]
- Akizawa, T.; Yanagida, T.; Wada, M.; Tokunaga, S.; Kawata, T.; Hisada, Y.; Masuda, N.; Haruyama, W.; Shoukei, Y.; Miyazaki, H.; et al. A novel calcimimetic agent, evocalcet (MT-4580/KHK7580), suppresses the parathyroid cell function with little effect on the gastrointestinal tract or CYP isozymes in vivo and in vitro. PLoS ONE 2018, 13, e0195316. [Google Scholar]
- Hamano, N.; Endo, Y.; Kawata, T.; Fukagawa, M. Development of evocalcet for unmet needs among calcimimetic agents. Expert. Rev. Endocrinol. Metab. 2020, 15, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Ikejiri, K.; Kondo, Y.; Endo, Y.; Fukagawa, M. Evocalcet: A New Oral Calcimimetic for Dialysis Patients With Secondary Hyperparathyroidism. Ther. Apher. Dial. 2020, 24, 248–257. [Google Scholar] [CrossRef]
- Hénaut, L.; Boudot, C.; Massy, Z.A.; Lopez-Fernandez, I.; Dupont, S.; Mary, A.; Drüeke, T.B.; Kamel, S.; Brazier, M.; Mentaverri, R. Calcimimetics increase CaSR expression and reduce mineralization in vascular smooth muscle cells: Mechanisms of action. Cardiovasc. Res. 2014, 101, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Lopez, I.; Mendoza, F.J.; Guerrero, F.; Almaden, Y.; Henley, C.; Aguilera-Tejero, E.; Rodriguez, M. The calcimimetic AMG 641 accelerates regression of extraosseous calcification in uremic rats. Am. J. Physiol. Renal. Physiol. 2009, 296, F1376–F1385. [Google Scholar] [CrossRef]
- Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 2004, 15, 2857–2867. [Google Scholar] [CrossRef]
- Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 2000, 87, E10–E17. [Google Scholar] [CrossRef] [PubMed]
- Joki, N.; Nikolov, I.G.; Caudrillier, A.; Mentaverri, R.; Massy, Z.A.; Drüeke, T.B. Effects of calcimimetic on vascular calcification and atherosclerosis in uremic mice. Bone 2009, 45 (Suppl. S1), S30–S34. [Google Scholar] [CrossRef]
- Ivanovski, O.; Nikolov, I.G.; Joki, N.; Caudrillier, A.; Phan, O.; Mentaverri, R.; Maizel, J.; Hamada, Y.; Nguyen-Khoa, T.; Fukagawa, M.; et al. The calcimimetic R-568 retards uremia-enhanced vascular calcification and atherosclerosis in apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis 2009, 205, 55–62. [Google Scholar] [CrossRef]
- Lopez, I.; Mendoza, F.J.; Aguilera-Tejero, E.; Perez, J.; Guerrero, F.; Martin, D.; Rodriguez, M. The effect of calcitriol, paricalcitol, and a calcimimetic on extraosseous calcifications in uremic rats. Kidney Int. 2008, 73, 300–307. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Bai, M.; Brown, E.M. Extracellular calcium (Ca2+o)-sensing receptor in a mouse monocyte-macrophage cell line (J774): Potential mediator of the actions of Ca2+o on the function of J774 cells. J. Bone Miner. Res. 1998, 13, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Molostvov, G.; James, S.; Fletcher, S.; Bennett, J.; Lehnert, H.; Bland, R.; Zehnder, D. Extracellular calcium-sensing receptor is functionally expressed in human artery. Am. J. Physiol. Renal. Physiol. 2007, 293, F946–F955. [Google Scholar] [CrossRef]
- Kawata, T.; Nagano, N.; Obi, M.; Miyata, S.; Koyama, C.; Kobayashi, N.; Wakita, S.; Wada, M. Cinacalcet suppresses calcification of the aorta and heart in uremic rats. Kidney Int. 2008, 74, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.J.; Martinez-Moreno, J.; Almaden, Y.; Rodriguez-Ortiz, M.E.; Lopez, I.; Estepa, J.C.; Henley, C.; Rodriguez, M.; Aguilera-Tejero, E. Effect of calcium and the calcimimetic AMG 641 on matrix-Gla protein in vascular smooth muscle cells. Calcif. Tissue Int. 2011, 88, 169–178. [Google Scholar] [CrossRef]
- Koleganova, N.; Piecha, G.; Ritz, E.; Schmitt, C.P.; Gross, M.-L. A calcimimetic (R-568), but not calcitriol, prevents vascular remodeling in uremia. Kidney Int. 2009, 75, 60–71. [Google Scholar] [CrossRef]
- Moe, S.M.; Seifert, M.F.; Chen, N.X.; Sinders, R.M.; Chen, X.; Duan, D.; Henley, C.; Martin, D.; Gattone, V.H., 2nd. R-568 reduces ectopic calcification in a rat model of chronic kidney disease-mineral bone disorder (CKD-MBD). Nephrol. Dial. Transplant. 2009, 24, 2371–2377. [Google Scholar] [CrossRef]
- Henley, C.; Davis, J.; Miller, G.; Shatzen, E.; Cattley, R.; Li, X.; Martin, D.; Yao, W.; Lane, N.; Shalhou, V. The calcimimetic AMG 641 abrogates parathyroid hyperplasia, bone and vascular calcification abnormalities in uremic rats. Eur. J. Pharmacol. 2009, 616, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, J.; Cornago, I.; Gallardo, I.; García-ledesma, P.; Hernando, A.; Martinez, I.; Muñoz, R.I.; Romero, M.A. Efficacy and safety of cinacalcet for the treatment of secondary hyperparathyroidism in patients with advanced chronic kidney disease before initiation of regular dialysis. Nephrology 2012, 17, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Volpi, E.; Brenna, I.; Elli, F.; Borghi, E.; Brancaccio, D.; Cozzolino, M. The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification. Biochem. Biophys. Res. Commun. 2012, 418, 770–773. [Google Scholar] [CrossRef]
- Raggi, P.; Chertow, G.M.; Torres, P.U.; Csiky, B.; Naso, A.; Nossuli, K.; Moustafa, M.; Goodman, W.G.; Lopez, N.; Downey, G.; et al. The ADVANCE study: A randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol. Dial. Transplant. 2011, 26, 1327–1339. [Google Scholar] [CrossRef]
- Ureña-Torres, P.A.; Floege, J.; Hawley, C.M.; Pedagogos, E.; Goodman, W.G.; Pétavy, F.; Reiner, M.; Raggi, P. Protocol adherence and the progression of cardiovascular calcification in the ADVANCE study. Nephrol. Dial. Transplant. 2013, 28, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Behets, G.J.; Spasovski, G.; Sterling, L.R.; Goodman, W.G.; Spiegel, D.M.; De Broe, M.E.; D’Haese, P.C. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015, 87, 846–856. [Google Scholar] [CrossRef]
- EVOLVE Trial Investigators; Chertow, G.M.; Block, G.A.; Correa-Rotter, R.; Drüeke, T.B.; Floege, J.; Goodman, W.G.; Herzog, C.A.; Kubo, Y.; London, G.M.; et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 2012, 367, 2482–2494. [Google Scholar]
- Floege, J.; Kubo, Y.; Floege, A.; Chertow, G.M.; Parfrey, P.S. The Effect of Cinacalcet on Calcific Uremic Arteriolopathy Events in Patients Receiving Hemodialysis: The EVOLVE Trial. Clin. J. Am. Soc. Nephrol. 2015, 10, 800–807. [Google Scholar] [CrossRef]
- Velasco, N.; MacGregor, M.S.; Innes, A.; MacKay, I.G. Successful treatment of calciphylaxis with cinacalcet-an alternative to parathyroidectomy? Nephrol. Dial. Transplant. 2006, 21, 1999–2004. [Google Scholar] [CrossRef]
- Robinson, M.R.; Augustine, J.J.; Korman, N.J. Cinacalcet for the treatment of calciphylaxis. Arch. Dermatol. 2007, 143, 152–154. [Google Scholar] [CrossRef]
- Sharma, A.; Burkitt-Wright, E.; Rustom, R. Cinacalcet as an adjunct in the successful treatment of calciphylaxis. Br. J. Dermatol. 2006, 155, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Bonet, J.; Bayés, B.; Fernández-Crespo, P.; Casals, M.; López-Ayerbe, J.; Romero, R. Cinacalcet may reduce arterial stiffness in patients with chronic renal disease and secondary hyperparathyroidism—Results of a small-scale, prospective, observational study. Clin. Nephrol. 2011, 75, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, R.; Zhong, H.; Tang, N.; Liu, Y.; Zhao, Y.; Zhang, T.; He, F. CaSR participates in the regulation of vascular tension in the mesentery of hypertensive rats via the PLC-IP3/AC-V/cAMP/RAS pathway. Mol. Med. Rep. 2019, 20, 4433–4448. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, N.; Potenza, M.A.; Di Silvestre, S.; Addabbo, F.; Di Pietrantonio, N.; Di Tomo, P.; Pipino, C.; Mandatori, D.; Palmerini, C.; Failli, P.; et al. Calcimimetic R-568 vasodilatory effect on mesenteric vascular beds from normotensive (WKY) and spontaneously hypertensive (SHR) rats. Potential involvement of vascular smooth muscle cells (vSMCs). PLoS ONE 2018, 13, e0202354. [Google Scholar] [CrossRef]
- Smajilovic, S.; Sheykhzade, M.; Holmegard, H.N.; Haunso, S.; Tfelt-Hansen, J. Calcimimetic, AMG 073, induces relaxation on isolated rat aorta. Vascul. Pharmacol. 2007, 47, 222–228. [Google Scholar] [CrossRef]
- Greenberg, H.Z.E.; Jahan, K.S.; Shi, J.; Vanessa Ho, W.-S.; Albert, A.P. The calcilytics Calhex-231 and NPS 2143 and the calcimimetic Calindol reduce vascular reactivity via inhibition of voltage-gated Ca channels. Eur. J. Pharmacol. 2016, 791, 659–668. [Google Scholar] [CrossRef]
- Henley, C.; Colloton, M.; Cattley, R.C.; Shatzen, E.; Towler, D.A.; Lacey, D.; Martin, D. 1,25-Dihydroxyvitamin D3 but not cinacalcet HCl (Sensipar/Mimpara) treatment mediates aortic calcification in a rat model of secondary hyperparathyroidism. Nephrol. Dial. Transplant. 2005, 20, 1370–1377. [Google Scholar] [CrossRef]
- Inagaki, O.; Nakagawa, K.; Syono, T.; Nishian, Y.; Takenaka, Y.; Takamitsu, Y. Effect of 1,25-dihydroxyvitamin D3 and diltiazem on tissue calcium in uremic rat. Ren. Fail. 1995, 17, 651–657. [Google Scholar] [CrossRef]
- Haffner, D.; Hocher, B.; Müller, D.; Simon, K.; König, K.; Richter, C.-M.; Eggert, B.; Schwarz, J.; Godes, M.; Nissel, R.; et al. Systemic cardiovascular disease in uremic rats induced by 1,25(OH)2D3. J. Hypertens. 2005, 23, 1067–1075. [Google Scholar] [CrossRef]
- Wu-Wong, J.R.; Noonan, W.; Ma, J.; Dixon, D.; Nakane, M.; Bolin, A.L.; Koch, K.A.; Postl, S.; Morgan, S.J.; Reinhart, G.A. Role of phosphorus and vitamin D analogs in the pathogenesis of vascular calcification. J. Pharmacol. Exp. Ther. 2006, 318, 90–98. [Google Scholar] [CrossRef]
- Terai, K.; Nara, H.; Takakura, K.; Mizukami, K.; Sanagi, M.; Fukushima, S.; Fujimori, A.; Itoh, H.; Okada, M. Vascular calcification and secondary hyperparathyroidism of severe chronic kidney disease and its relation to serum phosphate and calcium levels. Br. J. Pharmacol. 2009, 156, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012, 82, 1261–1270. [Google Scholar] [CrossRef]
- Mathew, S.; Lund, R.J.; Chaudhary, L.R.; Geurs, T.; Hruska, K.A. Vitamin D receptor activators can protect against vascular calcification. J. Am. Soc. Nephrol. 2008, 19, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Martinez-Moreno, J.M.; Rodríguez-Ortiz, M.E.; Muñoz-Castañeda, J.R.; Almaden, Y. Vitamin D and vascular calcification in chronic kidney disease. Kidney Blood Press. Res. 2011, 34, 261–268. [Google Scholar] [CrossRef]
- McCabe, K.M.; Zelt, J.G.; Kaufmann, M.; Laverty, K.; Ward, E.; Barron, H.; Jones, G.; Adams, M.A.; Holden, R.M. Calcitriol Accelerates Vascular Calcification Irrespective of Vitamin K Status in a Rat Model of Chronic Kidney Disease with Hyperphosphatemia and Secondary Hyperparathyroidism. J. Pharmacol. Exp. Ther. 2018, 366, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, M.; Finch, J.L.; Martin, D.R.; Slatopolsky, E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007, 72, 709–715. [Google Scholar] [CrossRef]
- Jono, S.; Nishizawa, Y.; Shioi, A.; Morii, H. 1,25-Dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone-related peptide. Circulation 1998, 98, 1302–1306. [Google Scholar] [CrossRef]
- Lomashvili, K.A.; Cobbs, S.; Hennigar, R.A.; Hardcastle, K.I.; O’Neill, W.C. Phosphate-induced vascular calcification: Role of pyrophosphate and osteopontin. J. Am. Soc. Nephrol. 2004, 15, 1392–1401. [Google Scholar] [CrossRef]
Cinacalcet | Evocalcet | Etelcalcetide | Upacicalcet | |
---|---|---|---|---|
Drug composition | Phenylalkylamine | Phenylalkylamine | D-amino acid peptide | Non-peptidic |
Route of administration | Oral | Oral | Endovenous | Endovenous |
Mechanism of action | CaSR + allosteric modulator | CaSR + allosteric modulator | CaSR + allosteric modulator | CaSR + allosteric modulator |
Bioavailability | 5.1–28.4% | 62.7% | 100% | 100% |
Half-life | 30–40 h | 20–22 h | 18–19 h | 1–2 h |
Effective dose | 30–180 mg/day | 1–8 mg/day | 2.5–15 mg 3 times a week | 25–300 μg 3 times a week |
Gastrointestinal adverse effects | 30% | 15% | 15% | 1% |
Severe hypocalcemia | 2.3% | 2% | 5% | 0–2% |
CYP2D6 inhibition | High | Low | No | No |
Clinical Study | Year | Study Design | Population | Primary Endpoint | Results |
---|---|---|---|---|---|
ADVANCE [34] | 2011 | Randomized Clinical Trial | In total, 360 adult hemodialysis patients with secondary hyperparathyroidism were randomly assigned to treatment with cinacalcet plus low-dose vitamin D or variable doses of vitamin D alone for 52 weeks. | To evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in subjects undergoing hemodialysis over a 52-week period. | Decrease in the total CAC Agatston score from baseline to week 52, being 24% in the cinacalcet group and 31% in the control group, with a treatment difference of −10.3% (p = 0.073). |
ADVANCE (post hoc) [35] | 2013 | Randomized Clinical Trial | A total of 70 subjects received cinacalcet and low-dose vitamin D, and 120 control subjects received vitamin D sterols. | To evaluate CAC1 progression in patients on cinacalcet and low-dose vitamin D (<2 μg) vs. variable doses of vitamin D. | Reduction in Agatston CAC1 score from 17.8% to 31.3% (p = 0.02). Decrease in the progression of aortic valve calcification (p = 0.02). |
BONAFIDE [36] | 2014 | Multicenter, single-arm clinical trial | Adult patients on dialysis with: - Plasma PTH ≥ 300 pg/mL - Serum calcium ≥ 8.4 mg/dL - Bone-specific alkaline phosphatase > 20.9 ng/mL - Biopsy-proven high-turnover bone disease - On treatment with Cinacalcet | Change in bone formation rate per tissue area (BFR/T.Ar) in patients treated with cinacalcet from baseline to 12-month follow-up. | Bone formation rate/tissue area (BFR/T.Ar) decreased from 728 to 336 μm2/mm2/day, osteoblast perimeter/osteoid perimeter decreased from 17.4 to 13.9%, and eroded perimeter/bone perimeter decreased from 12.7 to 8.3% after 12 months of treatment with cinacalcet (bone biopsies). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandu, A.; Arana, C.; Díaz-García, J.D.; Cozzolino, M.; Ciceri, P.; Torregrosa, J.-V. Calcimimetics and Vascular Calcification. Toxins 2025, 17, 297. https://doi.org/10.3390/toxins17060297
Chandu A, Arana C, Díaz-García JD, Cozzolino M, Ciceri P, Torregrosa J-V. Calcimimetics and Vascular Calcification. Toxins. 2025; 17(6):297. https://doi.org/10.3390/toxins17060297
Chicago/Turabian StyleChandu, Avinash, Carolt Arana, Juan Daniel Díaz-García, Mario Cozzolino, Paola Ciceri, and José-Vicente Torregrosa. 2025. "Calcimimetics and Vascular Calcification" Toxins 17, no. 6: 297. https://doi.org/10.3390/toxins17060297
APA StyleChandu, A., Arana, C., Díaz-García, J. D., Cozzolino, M., Ciceri, P., & Torregrosa, J.-V. (2025). Calcimimetics and Vascular Calcification. Toxins, 17(6), 297. https://doi.org/10.3390/toxins17060297