Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship?
Abstract
1. Introduction
2. Results
2.1. Temperature, Phytoplankton, and C. sphaericus Seasonal Dynamics
2.2. Phytoplankton Marker Pigment Concentrations in Lake Water; C. sphaericus Feeding and Selectivity for Cyanobacteria
2.3. Potentially Microcystin-Producing Cyanobacteria in Lake Water and in C. sphaericus Gut Content
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Site
5.2. Field Survey
5.3. Phyto- and Zooplankton Biomass and C. sphaericus Sample Preparations for Analysis
5.4. Pigment Extraction and HPLC Analysis
5.5. DNA Extraction and Molecular Analysis
5.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPLC | High-Performance Liquid Chromatography |
qPCR | Quantitative Polymerase Chain Reaction |
WW | Wet Weight |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
Cantha | Canthaxantin |
Zea | Zeaxanthin |
Echin | Echinenone |
Fuco | Fucoxanthin |
Lut | Lutein |
Allo | Alloxanthin |
Peri | Peridinin |
D+D | Diadinoxanthin+Diatoxanthin |
References
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Bullerjahn, G.S.; McKay, R.M.L. The Complicated and Confusing Ecology of Microcystis Blooms. mBio 2020, 11, e00529-20. [Google Scholar] [CrossRef]
- Ger, K.A.; Faassen, E.J.; Pennino, M.G.; Lürling, M. Effect of the Toxin (Microcystin) Content of Microcystis on Copepod Grazing. Harmful Algae 2016, 52, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Lehman, P.W.; Kurobe, T.; Huynh, K.; Lesmeister, S.; Teh, S.J. Covariance of Phytoplankton, Bacteria, and Zooplankton Communities Within Microcystis Blooms in San Francisco Estuary. Front. Microbiol. 2021, 12, 632264. [Google Scholar] [CrossRef]
- Moustaka-Gouni, M.; Sommer, U. Effects of Harmful Blooms of Large-Sized and Colonial Cyanobacteria on Aquatic Food Webs. Water 2020, 12, 1587. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Elnour, R.O.; Alamri, S.; Hashem, M. Paramecium Jenningsi Effectively Grazes on Toxic Raphidiopsis Raciborskii and Degrades Cylindrospermopsin: Implications for Control Harmful Cyanobacterial Blooms. Ecohydrol. Hydrobiol. 2023, 23, 614–622. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, H.; Zhang, L.; Montagnes, D.J.S.; Yang, Z. “Surface Browsing” May Allow “Filter-Feeding” Protozoa to Exert Top-Down Control on Colony-Forming Toxic Cyanobacterial Blooms. Environ. Sci. Technol. 2023, 57, 10331–10338. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.S.S.; Nandini, S.; Miracle, M.R.; Vicente, E. Effect of a Cyanobacterial Diet on the Competition between Rotifers: A Case Study in Lake Albufera of Valencia, Spain. Limnetica 2019, 38, 279–289. [Google Scholar] [CrossRef]
- Semenova, A.S.; Sidelev, S.I.; Dmitrieva, O.A. Experimental Investigation of Natural Populations of Daphnia Galeata G.O. Sars from the Curonian Lagoon Feeding on Potentially Toxigenic Cyanobacteria. Biol. Bull. Russ. Acad. Sci. 2017, 44, 538–546. [Google Scholar] [CrossRef]
- Ger, K.A.; Otten, T.G.; DuMais, R.; Ignoffo, T.; Kimmerer, W. In Situ Ingestion of Microcystis Is Negatively Related to Copepod Abundance in the Upper San Francisco Estuary. Limnol. Oceanogr. 2018, 63, 2394–2410. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Bakr, A.A.; Ghramh, H.A. Grazing of the Copepod Cyclops Vicinus on Toxic Microcystis Aeruginosa: Potential for Controlling Cyanobacterial Blooms and Transfer of Toxins. Oceanol. Hydrobiol. Stud. 2018, 47, 296–302. [Google Scholar] [CrossRef]
- Leitão, E.; Panosso, R.; Molica, R.; Ger, K.A. Top-down Regulation of Filamentous Cyanobacteria Varies among a Raptorial versus Current Feeding Copepod across Multiple Prey Generations. Freshw. Biol. 2021, 66, 142–156. [Google Scholar] [CrossRef]
- Rangel, L.M.; Silva, L.H.S.; Faassen, E.J.; Lürling, M.; Ger, K.A. Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria. Toxins 2020, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Nandini, S.; Miracle, M.R.; Vicente, E.; Sarma, S.S.S. Strain-Related Differences in Bacterivory and Demography of Diaphanosoma Mongolianum (Cladocera) in Relation to Diet and Previous Exposure to Cyanobacteria in Nature. Aquat. Ecol. 2021, 55, 1225–1239. [Google Scholar] [CrossRef]
- Gorokhova, E.; El-Shehawy, R.; Lehtiniemi, M.; Garbaras, A. How Copepods Can Eat Toxins Without Getting Sick: Gut Bacteria Help Zooplankton to Feed in Cyanobacteria Blooms. Front. Microbiol. 2021, 11, 589816. [Google Scholar] [CrossRef]
- Crease, T.J.; Omilian, A.R.; Costanzo, K.S.; Taylor, D.J. Transcontinental Phylogeography of the Daphnia Pulex Species Complex. PLoS ONE 2012, 7, e46620. [Google Scholar] [CrossRef]
- Galimov, Y.; Walser, B.; Haag, C.R. Frequency and Inheritance of Non-male Producing Clones in Daphnia Magna: Evolution towards Sex Specialization in a Cyclical Parthenogen? J. Evol. Biol. 2011, 24, 1572–1583. [Google Scholar] [CrossRef]
- Hegg, A.; Radersma, R.; Uller, T. Seasonal Variation in the Response to a Toxin-producing Cyanobacteria in Daphnia. Freshw. Biol. 2022, 67, 1035–1044. [Google Scholar] [CrossRef]
- Ma, X.; Deng, Z.; Blair, D.; Bi, Y.; Hu, W.; Yin, M. Cyanobacterial Bloom Associated with a Complete Turnover of a Daphnia Population in a Warm-temperate Eutrophic Lake in Eastern China. Freshw. Biol. 2022, 67, 508–517. [Google Scholar] [CrossRef]
- Vijverberg, J.; Koelewijn, H.P.; Van Densen, W.L.T. Effects of Predation and Food on the Population Dynamics of the Raptorial Cladoceran Leptodora kindtii. Limnol. Oceanogr. 2005, 50, 455–464. [Google Scholar] [CrossRef]
- Ventelä, A.; Wiackowski, K.; Moilanen, M.; Saarikari, V.; Vuorio, K.; Sarvala, J. The Effect of Small Zooplankton on the Microbial Loop and Edible Algae during a Cyanobacterial Bloom. Freshw. Biol. 2002, 47, 1807–1819. [Google Scholar] [CrossRef]
- Vijverberg, J.; Boersma, M. Long-Term Dynamics of Small-Bodied and Large-Bodied Cladocerans during the Eutrophication of a Shallow Reservoir, with Special Attention for Chydorus Sphaericus. Hydrobiologia 1997, 360, 233–242. [Google Scholar] [CrossRef]
- Fryer, G. The Freshwater Crustacea of Yorkshire: A Faunistic and Ecological Survey; Yorkshire Naturalists’ Union: Leeds, UK, 1993; ISBN 978-0-9521638-1-7. [Google Scholar]
- Fryer, G. Evolution and Adaptive Radiation in the Chydoridae (Crustacea: Cladocera): A Study in Comparative Functional Morphology and Ecology. Phil. Trans. R. Soc. Lond B 1968, 254, 221–384. [Google Scholar] [CrossRef]
- De Eyto, E.; Irvine, K.; García-Criado, F.; Gyllström, M.; Jeppensen, E.; Kornijow, R.; Miracle, M.; Rosa Nykänen, M.; Bareiss, C.; Cerbin, S.; et al. The Distribution of Chydorids (Branchiopoda, Anomopoda) in European Shallow Lakes and Its Application to Ecological Quality Monitoring. Arch. Hydrobiol. 2003, 156, 181–202. [Google Scholar] [CrossRef]
- Ejsmont-Karabin, J.; Karabin, A. The Suitability of Zooplankton as Lake Ecosystem Indicators: Crustacean Trophic State Index. Pol. J. Ecol. 2013, 61, 561–573. [Google Scholar]
- Moody, E.K.; Wilkinson, G.M. Functional Shifts in Lake Zooplankton Communities with Hypereutrophication. Freshw. Biol. 2019, 64, 608–616. [Google Scholar] [CrossRef]
- Basińska, A.M.; Antczak, M.; Świdnicki, K.; Jassey, V.E.J.; Kuczyńska-Kippen, N. Habitat Type as Strongest Predictor of the Body Size Distribution of Chydorus Sphaericus (O. F. Müller) in Small Water Bodies. Internat. Rev. Hydrobiol. 2014, 99, 382–392. [Google Scholar] [CrossRef]
- Ochocka, A. Zooplankton Index for Shallow Lakes’ Assessment: Elaboration of a New Classification Method for Polish Lakes. Water 2024, 16, 2730. [Google Scholar] [CrossRef]
- Karabanov, D.P.; Bekker, E.I.; Garibian, P.G.; Shiel, R.J.; Kobayashi, T.; Taylor, D.J.; Kotov, A.A. Multiple Recent Colonizations of the Australian Region by the Chydorus Sphaericus Group (Crustacea: Cladocera). Water 2022, 14, 594. [Google Scholar] [CrossRef]
- Sharma, P.; Kotov, A.A. Establishment of Chydorus Sphaericus (O.F. Muller, 1785) (Crustacea: Cladocera) in Australia: Consequences of Mass Fish Stocking from Northern Europe? J. Limnol. 2015, 2015 74, 225–233. [Google Scholar] [CrossRef]
- Frey, D.G. A New Species of the Chydorus Sphaericus Group (Cladocera, Chydoridae) from Western Montana. Int. Rev. Hydrobiol. 1985, 70, 1–20. [Google Scholar] [CrossRef]
- Frey, D.G. On the Plurality of Chydorus Sphaericus (O. F. Müller) (Cladocera, Chydoridae), and Designation of a Neotype from Sjaelsø, Denmark. Hydrobiologia 1980, 69, 83–123. [Google Scholar] [CrossRef]
- Drugă, B.; Turko, P.; Spaak, P.; Pomati, F. Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations. Environ. Sci. Technol. 2016, 50, 3416–3424. [Google Scholar] [CrossRef]
- Jiang, X.; Liang, H.; Chen, Y.; Xu, X.; Huang, D. Microgeographic Adaptation to Toxic Cyanobacteria in Two Aquatic Grazers. Limnol. Oceanogr. 2015, 60, 947–956. [Google Scholar] [CrossRef]
- Tõnno, I.; Agasild, H.; Kõiv, T.; Freiberg, R.; Nõges, P.; Nõges, T. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. PLoS ONE 2016, 11, e0154526. [Google Scholar] [CrossRef]
- Agasild, H.; Blank, K.; Haberman, J.; Tuvikene, L.; Zingel, P.; Nõges, P.; Olli, K.; Bernotas, P.; Cremona, F. Interactive Effects Shape the Dynamics of Chydorus Sphaericus (O.F. Müller, 1776) Population in a Shallow Eutrophic Lake. Hydrobiologia 2025, 852, 341–357. [Google Scholar] [CrossRef]
- Cremona, F.; Tuvikene, L.; Haberman, J.; Nõges, P.; Nõges, T. Factors Controlling the Three-Decade Long Rise in Cyanobacteria Biomass in a Eutrophic Shallow Lake. Sci. Total Environ. 2018, 621, 352–359. [Google Scholar] [CrossRef]
- Downing, J.A. In Situ Foraging Responses of Three Species of Littoral Cladocerans. Ecol. Monogr. 1981, 51, 85–104. [Google Scholar] [CrossRef]
- Agasild, H.; Nõges, T. Cladoceran and Rotifer Grazing on Bacteria and Phytoplankton in Two Shallow Eutrophic Lakes: In Situ Measurement with Fluorescent Microspheres. J. Plankton Res. 2005, 27, 1155–1174. [Google Scholar] [CrossRef]
- Bern, L. Particle Selection over a Broad Size Range by Crustacean Zooplankton. Freshw. Biol. 1994, 32, 105–112. [Google Scholar] [CrossRef]
- Gabyshev, V.A.; Sidelev, S.I.; Chernova, E.N.; Vilnet, A.A.; Davydov, D.A.; Barinova, S.; Gabysheva, O.I.; Zhakovskaya, Z.A.; Voronov, I.V. Year-Round Presence of Microcystins and Toxin-Producing Microcystis in the Water Column and Ice Cover of a Eutrophic Lake Located in the Continuous Permafrost Zone (Yakutia, Russia). Toxins 2023, 15, 467. [Google Scholar] [CrossRef] [PubMed]
- Joung, S.-H.; Oh, H.-M.; Ko, S.-R.; Ahn, C.-Y. Correlations between Environmental Factors and Toxic and Non-Toxic Microcystis Dynamics during Bloom in Daechung Reservoir, Korea. Harmful Algae 2011, 10, 188–193. [Google Scholar] [CrossRef]
- Beversdorf, L.J.; Chaston, S.D.; Miller, T.R.; Mcmahon, K.D. Microcystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes. PLoS ONE 2015, 10, e0125353. [Google Scholar] [CrossRef]
- Yu, L.; Kong, F.; Zhang, M.; Yang, Z.; Shi, X.; Du, M. The Dynamics of Microcystis Genotypes and Microcystin Production and Associations with Environmental Factors during Blooms in Lake Chaohu, China. Toxins 2014, 6, 3238–3257. [Google Scholar] [CrossRef] [PubMed]
- Conradie, K.R.; Barnard, S. The Dynamics of Toxic Microcystis Strains and Microcystin Production in Two Hypertrofic South African Reservoirs. Harmful Algae 2012, 20, 1–10. [Google Scholar] [CrossRef]
- Martínez De La Escalera, G.; Kruk, C.; Segura, A.M.; Nogueira, L.; Alcántara, I.; Piccini, C. Dynamics of Toxic Genotypes of Microcystis Aeruginosa Complex (MAC) through a Wide Freshwater to Marine Environmental Gradient. Harmful Algae 2017, 62, 73–83. [Google Scholar] [CrossRef]
- Guedes, I.A.; Da Costa Leite, D.M.; Manhães, L.A.; Bisch, P.M.; Azevedo, S.M.F.O.e.; Pacheco, A.B.F. Fluctuations in Microcystin Concentrations, Potentially Toxic Microcystis and Genotype Diversity in a Cyanobacterial Community from a Tropical Reservoir. Harmful Algae 2014, 39, 303–309. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Yang, W.; Li, R. Dynamics of the Water Bloom-Forming Microcystis and Its Relationship with Physicochemical Factors in Lake Xuanwu (China). Environ. Sci. Pollut. Res. 2010, 17, 1581–1590. [Google Scholar] [CrossRef]
- Gonzales Ferraz, M.E.; Agasild, H.; Piirsoo, K.; Saat, M.; Nõges, T.; Panksep, K. Seasonal Dynamics of Toxigenic Microcystis in a Large, Shallow Lake Peipsi (Estonia) Using Microcystin mcyE Gene Abundance. Environ. Monit. Assess. 2024, 196, 747. [Google Scholar] [CrossRef]
- Te, S.H.; Gin, K.Y.-H. The Dynamics of Cyanobacteria and Microcystin Production in a Tropical Reservoir of Singapore. Harmful Algae 2011, 10, 319–329. [Google Scholar] [CrossRef]
- Agasild, H.; Gonzales Ferraz, M.E.G.; Saat, M.; Zingel, P.; Piirsoo, K.; Blank, K.; Kisand, V.; Nõges, T.; Panksep, K. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Toxins 2025, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Agasild, H.; Panksep, K.; Tõnno, I.; Blank, K.; Kõiv, T.; Freiberg, R.; Laugaste, R.; Jones, R.I.; Nõges, P.; Nõges, T. Role of Potentially Toxic Cyanobacteria in Crustacean Zooplankton Diet in a Eutrophic Lake. Harmful Algae 2019, 89, 101688. [Google Scholar] [CrossRef]
- Panksep, K.; Tamm, M.; Mantzouki, E.; Rantala-Ylinen, A.; Laugaste, R.; Sivonen, K.; Tammeorg, O.; Kisand, V. Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi. Toxins 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Feist, S.M.; Lance, R.F. Genetic Detection of Freshwater Harmful Algal Blooms: A Review Focused on the Use of Environmental DNA (eDNA) in Microcystis Aeruginosa and Prymnesium Parvum. Harmful Algae 2021, 110, 102124. [Google Scholar] [CrossRef]
- Sotton, B.; Guillard, J.; Anneville, O.; Maréchal, M.; Savichtcheva, O.; Domaizon, I. Trophic Transfer of Microcystins through the Lake Pelagic Food Web: Evidence for the Role of Zooplankton as a Vector in Fish Contamination. Sci. Total Environ. 2014, 466–467, 152–163. [Google Scholar] [CrossRef]
- Salujõe, J. Kalamaimude Toitumine ja Nende Mõju Zooplanktonile; University of Tartu: Tartu, Estonia, 2003. [Google Scholar]
- Ginter, K.; Kangur, K.; Kangur, A.; Kangur, P.; Haldna, M. Diet Niche Relationships among Predator and Prey Fish Species in Their Early Life Stages in Lake Võrtsjärv (Estonia): Diet Niche Relationships among Predator and Prey Fish Species. J. Appl. Ichthyol. 2012, 28, 713–720. [Google Scholar] [CrossRef]
- Nõges, P. Uuring Peipsi Järve Füüsikalis-Keemiliste ja Fütoplanktoni Kvaliteedinäitajate Klassipiiride Täpsustamiseks; Eesti Maaülikool, Hüdrobioloogia ja Kalanduse õppetool: Tartu, Estonia, 2020. [Google Scholar]
- Nõges, P.; Tuvikene, L. Spatial and Annual Variability of Environmental and Phytoplankton Indicators in Lake Võrtsjärv: Implications for Water Quality Monitoring. Est. J. Ecol. 2012, 61, 227. [Google Scholar] [CrossRef]
- Bhele, U.; Öğlü, B.; Feldmann, T.; Bernotas, P.; Agasild, H.; Zingel, P.; Nõges, P.; Nõges, T.; Cremona, F. Modelling How Bottom-up and Top-down Processes Control the Major Functional Groups of Biota in a Large Temperate Shallow Lake. Inland Waters 2022, 12, 368–382. [Google Scholar] [CrossRef]
- Cremona, F.; Kõiv, T.; Kisand, V.; Laas, A.; Zingel, P.; Agasild, H.; Feldmann, T.; Järvalt, A.; Nõges, P.; Nõges, T. From Bacteria to Piscivorous Fish: Estimates of Whole-Lake and Component-Specific Metabolism with an Ecosystem Approach. PLoS ONE 2014, 9, e101845. [Google Scholar] [CrossRef]
- Haberman, J.; Haldna, M. How Are Spring Zooplankton and Autumn Zooplankton Influenced by Water Temperature in a Polymictic Lake? Proc. Est. Acad. Sci. 2017, 66, 264. [Google Scholar] [CrossRef]
- Tkadlecová, A. Detection of Toxic Cyanobacteria in Estonian Large Lakes and Coastal Waters. Master’s Thesis, University of South Bohemia in České Budějovice, Czech Republic, 2020. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. SIL Commun. 1953–1996 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Studenikina, E.I.; Cherepakhina, M.M. Srednii ves osnovykh form zooplanktona Azavskogo morya [mean weight forms of the Azov Sea. Gidrobiol. Zhurnal 1969, 5, 89–91. [Google Scholar]
- Balushkina, E.V.; Winberg, G.G. Relation between body mass and length of planktonic animals. In Obshchiye Osnovy Izucheniya Vodnykh Ekosistemi; Nauka: Moscow, Russia, 1979; pp. 169–172. [Google Scholar]
- Ruttner-Kolisko, A. Suggestions for Biomass Calculation of Plankton Rotifers. Arch. Hydrobiol. Beih. Ergebn 1977, 8, 71–76. [Google Scholar]
- Leavitt, P.R.; Hodgson, D.A. Sedimentary Pigments. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K., Eds.; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2002; Volume 3, pp. 295–325. ISBN 978-1-4020-0681-4. [Google Scholar]
- Roy, S.; Llewellyn, C.A.; Egeland, E.S. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography; Cambridge Environmental Chemistry Series; Cambridge University Press: Cambridge, GB, USA, 2011; ISBN 978-1-107-00066-7. [Google Scholar]
- Waters, M.N.; Schelske, C.L.; Brenner, M. Cyanobacterial Dynamics in Shallow Lake Apopka (Florida, U.S.A.) before and after the Shift from a Macrophyte-dominated to a Phytoplankton-dominated State. Freshw. Biol. 2015, 60, 1571–1580. [Google Scholar] [CrossRef]
- Brotas, V.; Plante-Cuny, M.-R. The Use of HPLC Pigment Analysis to Study Microphytobenthos Communities. Acta Oecologica 2003, 24, S109–S115. [Google Scholar] [CrossRef]
- Lie, A.A.Y.; Wong, C.K. Selectivity and Grazing Impact of Microzooplankton on Phytoplankton in Two Subtropical Semi-Enclosed Bays with Different Chlorophyll Concentrations. J. Exp. Mar. Biol. Ecol. 2010, 390, 149–159. [Google Scholar] [CrossRef]
- Airs, R.L.; Borrego, C.M.; Garcia-Gil, J.; Keely, B.J. Identification of the Bacteriochlorophyll Homologues of Chlorobium Phaeobacteroides Strain UdG6053 Grown at Low Light Intensity. Photosynth. Res. 2001, 70, 221–230. [Google Scholar] [CrossRef]
- Tamm, M.; Freiberg, R.; Tõnno, I.; Nõges, P.; Nõges, T. Pigment-Based Chemotaxonomy—A Quick Alternative to Determine Algal Assemblages in Large Shallow Eutrophic Lake? PLoS ONE 2015, 10, e0122526. [Google Scholar] [CrossRef]
- Poister, D.; Armstrong, D.E.; Hurley, J.P. Influences of Grazing on Temporal Patterns of Algal Pigments in Suspended and Sedimenting Algae in a North Temperate Lake. Can. J. Fish. Aquat. Sci. 1999, 56, 60–69. [Google Scholar] [CrossRef]
- Quiblier-Lloberas, C.; Bourdier, G.; Amblard, C.; Pepin, D. Impact of Grazing on Phytoplankton in Lake Pavin (France): Contribution of Different Zooplankton Groups. J. Plankton. Res. 1996, 18, 305–322. [Google Scholar] [CrossRef]
- Head, E.J.H.; Harris, L.R. Chlorophyll and Carotenoid Transformation and Destruction by Calanus spp. Grazing on Diatoms. Mar. Ecol. Prog. Ser. 1992, 86, 229–238. [Google Scholar] [CrossRef]
- Head, E.J.H.; Harris, L.R. Feeding Selectivity by Copepods Grazing on Natural Mixtures of Phytoplankton Determined by HPLC Analysis of Pigments. Mar. Ecol. Prog. Ser. 1994, 110, 75–83. [Google Scholar] [CrossRef]
- Chesson, J. The Estimation and Analysis of Preference and Its Relatioship to Foraging Models. Ecology 1983, 64, 1297–1304. [Google Scholar] [CrossRef]
- Pandolfini, E. Grazing Experiments with Two Freshwater Zooplankters:Fate of Chlorophyll and Carotenoid Pigments. J. Plankton Res. 2000, 22, 305–319. [Google Scholar] [CrossRef]
- Thys, I. Seasonal Shifts in Phytoplankton Ingestion by Daphnia Galeata, Assessed by Analysis of Marker Pigments. J. Plankton Res. 2003, 25, 1471–1484. [Google Scholar] [CrossRef]
- Vaitomaa, J.; Rantala, A.; Halinen, K.; Rouhiainen, L.; Tallberg, P.; Mokelke, L.; Sivonen, K. Quantitative Real-Time PCR for Determination of Microcystin Synthetase E Copy Numbers for Microcystis and Anabaena in Lakes. Appl. Environ. Microbiol. 2003, 69, 7289–7297. [Google Scholar] [CrossRef]
- Overlingė, D.; Toruńska-Sitarz, A.; Kataržytė, M.; Pilkaitytė, R.; Gyraitė, G.; Mazur-Marzec, H. Characterization and Diversity of Microcystins Produced by Cyanobacteria from the Curonian Lagoon (SE Baltic Sea). Toxins 2021, 13, 838. [Google Scholar] [CrossRef]
- Pacheco, A.; Guedes, I.; Azevedo, S. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins 2016, 8, 172. [Google Scholar] [CrossRef]
- Rantala, A.; Rajaniemi-Wacklin, P.; Lyra, C.; Lepistö, L.; Rintala, J.; Mankiewicz-Boczek, J.; Sivonen, K. Detection of Microcystin-Producing Cyanobacteria in Finnish Lakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Appl. Environ. Microbiol. 2006, 72, 6101–6110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agasild, H.; Tõnno, I.; Ferraz, M.E.G.; Nõges, P.; Zingel, P.; Tuvikene, L.; Freiberg, R.; Nõges, T.; Panksep, K. Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship? Toxins 2025, 17, 298. https://doi.org/10.3390/toxins17060298
Agasild H, Tõnno I, Ferraz MEG, Nõges P, Zingel P, Tuvikene L, Freiberg R, Nõges T, Panksep K. Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship? Toxins. 2025; 17(6):298. https://doi.org/10.3390/toxins17060298
Chicago/Turabian StyleAgasild, Helen, Ilmar Tõnno, Margarita E. Gonzales Ferraz, Peeter Nõges, Priit Zingel, Lea Tuvikene, René Freiberg, Tiina Nõges, and Kristel Panksep. 2025. "Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship?" Toxins 17, no. 6: 298. https://doi.org/10.3390/toxins17060298
APA StyleAgasild, H., Tõnno, I., Ferraz, M. E. G., Nõges, P., Zingel, P., Tuvikene, L., Freiberg, R., Nõges, T., & Panksep, K. (2025). Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship? Toxins, 17(6), 298. https://doi.org/10.3390/toxins17060298