New Insights into Mycotoxin Contamination, Detection, and Mitigation in Food and Feed Systems
Abstract
1. Introduction
2. Mycotoxin Contamination and Mitigation Strategies
2.1. Mycotoxin Occurrence and Detection
2.1.1. Mycotoxin Occurrence in Food and Feed
2.1.2. Mycotoxin Detection Techniques
2.2. Mycotoxin Mitigation Strategies
2.2.1. Physical Treatment
2.2.2. Chemical Control
2.2.3. Biological Control
3. Innovative Approaches for Mycotoxin Mitigation
3.1. Botanicals and Their Phytochemicals
3.2. Nanotechnology
3.3. Genetic Engineering and Antibody-Mediated Technology
3.4. Novel Physical Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovač Tomas, M. Grain production and environment. In Environmental Remediation in Agri-Food Industry Using Nanotechnology and Sustainable Strategies, 1st ed.; Putnik, P., Šojić Merkulov, D., Eds.; Elsevier: Berkeley, CA, USA, 2025; pp. 23–30. [Google Scholar]
- Steiner, D.; Sulyok, M.; Malachová, A.; Mueller, A.; Krska, R. Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A 2020, 1629, 461502. [Google Scholar] [CrossRef] [PubMed]
- Oyedele, O.A.; Akinyemi, M.O.; Kovač, T.; Eze, U.A.; Ezekiel, C.N. Food safety in the face of climate change. Croat. J. Food Sci. Technol. 2020, 12, 280–286. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Kovač, M.; Bulaić, M.; Nevistić, A.; Rot, T.; Babić, J.; Panjičko, M.; Kovač, T.; Šarkanj, B. Regulated mycotoxin occurrence and co-occurrence in Croatian cereals. Toxins 2022, 14, 112. [Google Scholar] [CrossRef]
- Van Der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Kovač, M.; Šubarić, D.; Bulaić, M.; Kovač, T.; Šarkanj, B. Yesterday masked, today modified; what do mycotoxins bring next? Arh. Hig. Rada Toksikol. 2018, 69, 196–214. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.R.; Mata, A.T.; Ferreira, J.P.; Barreto Crespo, M.T.; Pereira, V.J.; Bronze, M.R. Production of mycotoxins by filamentous fungi in untreated surface water. Environ. Sci. Pollut. Res. 2018, 25, 17519–17528. [Google Scholar] [CrossRef]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. Mutat. Res. Rev. Mutat. Res. 2015, 766, 32–41. [Google Scholar] [CrossRef]
- Shekhar, R.; Raghavendra, V.B.; Rachitha, P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol. Rep. 2025, 14, 101952. [Google Scholar] [CrossRef]
- Khan, R.; Anwar, F.; Ghazali, F.M. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024, 10, e17488. [Google Scholar] [CrossRef]
- Kos, J.; Radić, B.; Lešić, T.; Anić, M.; Jovanov, P.; Šarić, B.; Pleadin, J. Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review. Foods 2024, 13, 1391. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. [Google Scholar]
- European Commission. Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC). Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union 2002, 140, 10–22. [Google Scholar]
- Wang, Y.; Zhou, A.; Yu, B.; Sun, X. Recent advances in non-contact food decontamination technologies for removing mycotoxins and fungal contaminants. Foods 2024, 13, 2244. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023, 144, 109262. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- Habschied, K.; Krstanović, V.; Zdunić, Z.; Babić, J.; Mastanjević, K.; Šarić, G.K. Mycotoxins biocontrol methods for healthier crops and stored products. J. Fungi 2021, 7, 348. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products (2013/165/EU). Off. J. Eur. Union 2013, 91, 12–15. [Google Scholar]
- Kifer, D.; Sulyok, M.; Jakšić, D.; Krska, R.; Šegvić Klarić, M. Fungi and their metabolites in grain from individual households in Croatia. Food Addit. Contam. Part B Surveill. 2021, 14, 98–109. [Google Scholar] [CrossRef]
- Kovač, T.; Šarkanj, B.; Borišev, I.; Djordjević, A.; Jović, D.; Lončarić, A.; Babić, J.; Jozinović, A.; Krska, T.; Gangl, J.; et al. Fullerol C60(OH)24 nanoparticles affect secondary metabolite profile of important foodborne mycotoxigenic fungi in vitro. Toxins 2020, 12, 213. [Google Scholar] [CrossRef]
- Kovač, M.; Bulaić, M.; Jakovljević, J.; Nevistić, A.; Rot, T.; Kovač, T.; Dodlek Šarkanj, I.; Šarkanj, B. Mycotoxins, pesticide residues, and heavy metals analysis of Croatian cereals. Microorganisms 2021, 9, 216. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Kos, J.; Radić, B.; Anić, M.; Radović, R.; Kudumija, N.; Vulić, A.; Đekić, S.; Pleadin, J. Impact of climate changes on the natural prevalence of Fusarium mycotoxins in maize harvested in Serbia and Croatia. Foods 2023, 12, 1002. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Staver, M.M.; Markov, K.; Frece, J.; Zadravec, M.; Jaki, V.; Krupić, I.; Vahčić, N. Mycotoxins in organic and conventional cereals and cereal products grown and marketed in Croatia. Mycotoxin Res. 2017, 33, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Annual and regional variations of aflatoxin B1 levels seen in grains and feed coming from Croatian dairy farms over a 5-year period. Food Control 2015, 47, 221–225. [Google Scholar] [CrossRef]
- Pleadin, J.; Kos, J.; Radić, B.; Vulić, A.; Kudumija, N.; Radović, R.; Janić Hajnal, E.; Mandič, A.; Anić, M. Aflatoxins in maize from Serbia and Croatia: Implications of climate change. Foods 2023, 12, 548. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Perši, N.; Škrivanko, M.; Capek, B.; Cvetnić, Ž. Aflatoxin B1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control 2014, 40, 286–291. [Google Scholar] [CrossRef]
- Bilandžić, N.; Božić, D.D.; Dokić, M.; Sedak, M.; Solomun Kolanović, B.; Varenina, I.; Tanković, S.; Cvetnić, Ž. Seasonal effect on aflatoxin M1 contamination in raw and UHT milk from Croatia. Food Control 2014, 40, 260–264. [Google Scholar] [CrossRef]
- Bilandžić, N.; Varenina, I.; Kolanović, B.S.; Božić, D.; Dokić, M.; Sedak, M.; Tanković, S.; Potočnjak, D.; Cvetnić, Ž. Monitoring of aflatoxin M1 in raw milk during four seasons in Croatia. Food Control 2015, 54, 331–337. [Google Scholar] [CrossRef]
- Bilandžić, N.; Božić, D.; Dokić, M.; Sedak, M.; Kolanović, B.S.; Varenina, I.; Cvetnić, Ž. Assessment of aflatoxin M1 contamination in the milk of four dairy species in Croatia. Food Control 2014, 43, 18–21. [Google Scholar] [CrossRef]
- Bilandžić, N.; Varga, I.; Varenina, I.; Kolanović, B.S.; Božić Luburić, Ð.; Ðokić, M.; Sedak, M.; Cvetnić, L.; Cvetnić, Ž. Seasonal occurrence of aflatoxin M1 in raw milk during a five-year period in Croatia: Dietary exposure and risk assessment. Foods 2022, 11, 1932. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Lešić, T.; Milićević, D.; Markov, K.; Šarkanj, B.; Vahčić, N.; Kmetič, I.; Zadravec, M. Pathways of mycotoxin occurrence in meat products: A review. Processes 2021, 9, 2122. [Google Scholar] [CrossRef]
- Pleadin, J.; Kudumija, N.; Kovačević, D.; Scortichini, G.; Milone, S.; Kmetič, I. Comparison of ochratoxin A levels in edible pig tissues and in biological fluids after exposure to a contaminated diet. Mycotoxin Res. 2016, 32, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, C.; Galaverna, G.; Bertuzzi, T.; Moseriti, A.; Pietri, A.; Dossena, A.; Marchelli, R. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010, 120, 978–983. [Google Scholar] [CrossRef]
- Meerpoel, C.; Vidal, A.; Tangni, E.K.; Huybrechts, B.; Couck, L.; De Rycke, R.; De Bels, L.; De Saeger, S.; Broeck, W.V.D.; Devreese, M.; et al. A study of carry-over and histopathological effects after chronic dietary intake of citrinin in pigs, broiler chickens and laying hens. Toxins 2020, 12, 719. [Google Scholar] [CrossRef]
- Lešić, T.; Vulić, A.; Vahčić, N.; Šarkanj, B.; Hengl, B.; Kos, I.; Polak, T.; Kudumija, N.; Pleadin, J. The occurrence of five unregulated mycotoxins most important for traditional dry-cured meat products. Toxins 2022, 14, 476. [Google Scholar] [CrossRef]
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.C.; Kudupoje, M.B.; Yiannikouris, A. Simultaneous multiple mycotoxin quantification in feed samples using three isotopically labeled internal standards applied for isotopic dilution and data normalization through ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2697–2713. [Google Scholar]
- Pascari, X.; Weigel, S.; Marin, S.; Sanchis, V.; Maul, R. Detection and quantification of zearalenone and its modified forms in enzymatically treated oat and wheat flour. J. Food Sci. Technol. 2023, 60, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Kovač, M.; Nevistić, A.; Kovač, T.; Babić, J.; Šarić, A.; Miličević, B.; Panjičko, M.; Šarkanj, B. Development and validation of an UHPLC-MS/MS method for the simultaneous determination of 11 EU-regulated mycotoxins in selected cereals. J. Fungi 2022, 8, 665. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Qiu, N.; Zhou, S.; Lyu, B.; Zhang, S.; Li, J.; Zhao, Y.; Wu, Y. Development of sensitive and reliable UPLC-MS/MS methods for food analysis of emerging mycotoxins in China total diet study. Toxins 2019, 11, 166. [Google Scholar] [CrossRef]
- Habler, K.; Gotthardt, M.; Schüler, J.; Rychlik, M. Multi-mycotoxin stable isotope dilution LC–MS/MS method for Fusarium toxins in beer. Food Chem. 2017, 218, 447–454. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Cramer, B.; DeRosa, M.C.; Dzuman, Z.; Kodikara, C.; Malone, R.; Maragos, C.; Suman, M.; Sumarah, M.W. Developments in analytical techniques for mycotoxin determination: An update for 2023–24. World Mycotoxin J. 2025, 18, 3–30. [Google Scholar] [CrossRef]
- Garrido-Rodríguez, D.; Andrade, M.J.; Delgado, J.; Cebrián, E.; Barranco-Chamorro, I. Discovering potential biomarkers for ochratoxin A production by Penicillium nordicum in dry-cured meat matrices through untargeted metabolomics. Food Control 2024, 161, 109526. [Google Scholar] [CrossRef]
- Teeter-Wood, K.R.; Kelman, M.J.; Teeter, D.P.; Sumarah, M.W. Prevalence of mycotoxins from silage in a small beef cattle feedlot over a storage season: A case study. Can. J. Plant Pathol. 2024, 46, 319–328. [Google Scholar] [CrossRef]
- Zhou, F.; Deng, H.; Emiezi Agarry, I.; Hu, J.; Xu, D.; Feng, H.; Kan, J.; Cai, T.; Chen, K. Determination of multiple mycotoxins in chili powder using cold-induced liquid–liquid extraction and Fe3O4@MWCNTs-NH2 coupled with UPLC-Q-TOF/MS. Food Chem. 2023, 423, 135654. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, G.; Fang, B.; Xiong, Q.; Duan, H.; Lai, W. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl. Mater. Interfaces 2019, 11, 31283–31290. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem. 2016, 213, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.B.; Kim, M.J.; Mun, H.; Kim, M.G. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens. Bioelectron. 2014, 62, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, K.; Sivaramakrishnan, U.; Zhang, X.; Belay, K.; Oakes, J.; Wei, X.; Li, S. Machine learning analysis of hyperspectral images of damaged wheat kernels. Sensors 2023, 23, 3523. [Google Scholar] [CrossRef]
- Teixidó-Orries, I.; Molino, F.; Gatius, F.; Sanchis, V.; Marín, S. Near-infrared hyperspectral imaging as a novel approach for T-2 and HT-2 toxins estimation in oat samples. Food Control 2023, 153, 109678. [Google Scholar] [CrossRef]
- Kim, Y.K.; Baek, I.; Lee, K.M.; Kim, G.; Kim, S.; Kim, S.Y.; Chan, D.; Herrman, T.J.; Kim, N.; Kim, M.S. Rapid detection of single- and co-contaminant aflatoxins and fumonisins in ground maize using hyperspectral imaging techniques. Toxins 2023, 15, 472. [Google Scholar] [CrossRef]
- Li, J.; Deng, J.; Bai, X.; da Graça Nseledge Monteiro, D.; Jiang, H. Quantitative analysis of aflatoxin B1 of peanut by optimized support vector machine models based on near-infrared spectral features. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 303, 122972. [Google Scholar] [CrossRef] [PubMed]
- European Commission. 2024 Annual Report—Alert & Cooperation Network. Available online: http://ec.europa.eu/dgs/health_food-safety/index_en.htm (accessed on 31 July 2025).
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated mycotoxin management system in the feed supply chain: Innovative approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef]
- Marshall, H.; Meneely, J.P.; Quinn, B.; Zhao, Y.; Bourke, P.; Gilmore, B.F.; Zhang, G.; Elliot, C.T. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends Food Sci. Technol. 2020, 106, 489–496. [Google Scholar] [CrossRef]
- Devika, O.S.; Singh, S.; Sarkar, D.; Barnwal, P.; Suman, J.; Rakshit, A. Seed priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Front. Sustain. Food Syst. 2021, 5, 663492. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Chang, J.; Luo, H.; Li, L.; Zhang, J.; Harvey, J.; Zhao, Y.; Zhang, G.; Liu, Y. Mycotoxin risk management in maize gluten meal. Crit. Rev. Food Sci. Nutr. 2024, 64, 7687–7706. [Google Scholar] [CrossRef]
- Bühler LumoVision: Saving Lives and Improving Livelihoods with Revolutionary Data-Driven Grain Sorting Technology. Available online: https://www.buhlergroup.com/content/buhlergroup/global/en/media/media-releases/buehler_lumovisionsavinglivesandimprovinglivelihoodswithrevoluti.html (accessed on 31 July 2025).
- TOMRA Sorting Machines for Pet Food and Rendering. Available online: https://www.tomra.com/en/solutions/food/proteins/petfood-and-rendering (accessed on 31 July 2025).
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Ðuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M.; Nicolau, M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control 2015, 53, 91–95. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.; da Silva, D.M.; Alvarenga Pereira, R.G.F.; Paiva, L.C.; Prado, G.; Batista, L.R. Effect of different roasting levels and particle sizes on ochratoxin A concentration in coffee beans. Food Control 2013, 34, 651–656. [Google Scholar] [CrossRef]
- Bittner, A.; Cramer, B.; Harrer, H.; Humpf, H.U. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A. Mycotoxin Res. 2015, 31, 83–90. [Google Scholar] [CrossRef]
- Conway, H.F.; Anderson, R.A.; Bagley, E.B. Detoxification of aflatoxins by roasting. J. Food Prot. 1978, 41, 23–29. [Google Scholar]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Humpf, H.U.; Voss, K.A. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol. Nutr. Food Res. 2004, 48, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, C.; Battilani, P. Fumonisins and their modified forms, a matter of concern in future scenario? World Mycotoxin J. 2016, 9, 727–739. [Google Scholar] [CrossRef]
- Ji, J.; Xie, W. Detoxification of aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020, 381, 120978. [Google Scholar] [CrossRef]
- Dänicke, S.; Kersten, S.; Valenta, H.; Breves, G. Inactivation of deoxynivalenol-contaminated cereal grains with sodium metabisulfite: A review of procedures and toxicological aspects. Mycotoxin Res. 2012, 28, 199–218. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Altug, T.; Yousef, A.E.; Marth, E.H. Degradation of aflatoxin B1 in dried figs by sodium bisulfite with or without heat, ultraviolet energy or hydrogen peroxide. J. Food Prot. 1990, 53, 571–576. [Google Scholar] [CrossRef]
- Abd Alla, E.S. Zearalenone: Incidence, toxigenic fungi and chemical decontamination in Egyptian cereals. Nahrung 1997, 41, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Zabeti, N.; Keyhanizadeh, A.K.; Faraji, A.R.; Soltani, M.; Saeedi, S.; Tehrani, E.; Hekmatian, Z. Activate hydrogen peroxide for facile and efficient removal of aflatoxin B1 by magnetic Pd-chitosan/rice husk-hercynite biocomposite and its impact on the quality of edible oil. Int. J. Biol. Macromol. 2024, 254, 1374–1389. [Google Scholar] [CrossRef]
- Zachetti, V.G.L.; Cendoya, E.; Nichea, M.J.; Chulze, S.N.; Ramirez, M.L. Preliminary study on the use of chitosan as an eco-friendly alternative to control Fusarium growth and mycotoxin production on maize and wheat. Pathogens 2019, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduces Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE 2019, 14, e0222402. [Google Scholar] [CrossRef]
- Sun, C.; Mao, C.; Zhou, Z.; Xiao, J.; Zhou, W.; Du, J.; Li, J. In vitro assessment of ozone-treated deoxynivalenol by measuring cytotoxicity and wheat quality. Toxins 2024, 16, 64. [Google Scholar] [CrossRef]
- Piemontese, L.; Messia, M.C.; Marconi, E.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Perrone, G.; Solfrizzo, M. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina. Food Addit. Contam. Part A 2018, 35, 760–771. [Google Scholar] [CrossRef]
- Li, M.; Guan, E.; Bian, K. Structure elucidation and toxicity analysis of the degradation products of deoxynivalenol by gaseous ozone. Toxins 2019, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Villanueva, G.E.; Luna-Moreno, D.; Núñez-Salas, R.E.; Rodríguez-Delgado, M.M.; Villarreal-Chiu, J.F. Inactivation of Aspergillus species and degradation of aflatoxins in water using photocatalysis and titanium dioxide. Processes 2024, 12, 2673. [Google Scholar] [CrossRef]
- Zhang, C.; Qu, Z.; Hou, J.; Yao, Y. Contamination and control of mycotoxins in grain and oil crops. Microorganisms 2024, 12, 567. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef]
- Elsanhoty, R.M.; Ramadan, M.F.; El-Gohery, S.S.; Abol-Ela, M.F.; Azeke, M.A. Ability of selected microorganisms for removing aflatoxins in vitro and fate of aflatoxins in contaminated wheat during baladi bread baking. Food Control 2013, 33, 287–292. [Google Scholar] [CrossRef]
- Barukčić, I.; Bilandžić, N.; Markov, K.; Jakopović, K.L.; Božanić, R. Reduction in aflatoxin M1 concentration during production and storage of selected fermented milks. Int. J. Dairy Technol. 2018, 71, 734–740. [Google Scholar] [CrossRef]
- Śliżewska, K.; Smulikowska, S. Detoxification of aflatoxin B1 and change in microflora pattern by probiotic in vitro fermentation of broiler feed. J. Anim. Feed Sci. 2011, 20, 300–309. [Google Scholar] [CrossRef]
- Saleemi, M.K.; Ashraf, K.; Gul, S.T.; Naseem, M.N.; Sajid, M.S.; Mohsin, M.; He, C.; Zubair, M.; Khan, A. Toxicopathological effects of feeding aflatoxins B1 in broilers and its amelioration with indigenous mycotoxin binder. Ecotoxicol. Environ. Saf. 2020, 187, 109812. [Google Scholar]
- Khan, A.; Aalim, M.M.; Khan, M.Z.; Saleemi, M.K.; He, C.; Khatoon, A.; Tehseen Gul, S. Amelioration of immunosuppressive effects of aflatoxin and ochratoxin A in White Leghorn layers with distillery yeast sludge. Toxin Rev. 2017, 36, 275–281. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yang, F.; Yang, P.L.; Liu, J.; Lv, Z.H. Microbial reduction of zearalenone by a newly isolated Lysinibacillus sp. ZJ-2016-1. World Mycotoxin J. 2018, 11, 571–578. [Google Scholar] [CrossRef]
- Gao, X.; Mu, P.; Wen, J.; Sun, Y.; Chen, Q.; Deng, Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem. Toxicol. 2018, 112, 310–319. [Google Scholar] [CrossRef]
- Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. Part A 2008, 25, 203–208. [Google Scholar] [CrossRef]
- Das, C.; Mishra, H.N. In vitro degradation of aflatoxin B1 by horseradish peroxidase. Food Chem. 2000, 68, 309–313. [Google Scholar] [CrossRef]
- Alberts, J.F.; Gelderblom, W.C.A.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef]
- Hu, H.N.; Jia, X.; Wang, Y.P.; Liang, Z.H. Removal of ochratoxin A by a carboxypeptidase and peptides present in liquid cultures of Bacillus subtilis CW14. World Mycotoxin J. 2018, 11, 559–570. [Google Scholar] [CrossRef]
- Rodriguez, H.; Reveron, I.; Doria, F.; Costantini, A.; Rivas, B.D.L.; Muňoz, R.; Garcia-Moruno, E. Degradation of ochratoxin A by Brevibacterium species. J. Agric. Food Chem. 2011, 59, 10755–10760. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef]
- Heinl, S.; Hartinger, D.; Thamhesl, M.; Vekiru, E.; Krska, R.; Schatzmayr, G.; Moll, W.-D.; Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 2010, 145, 120–129. [Google Scholar] [CrossRef]
- Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, P.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020, 6, e05291. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Tardif, C.; Rouger, C.; Atanasova, V.; Richard-Forget, F.; Waffo-Téguo, P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr. Rev. Food Sci. Food Saf. 2022, 21, 1161–1197. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mohdaly, A.A.A.; El-Nogoumy, B.A.; Ramadan, M.F.; Hassan, S.A.; Zeitoun, A.M. Detoxification of aflatoxin B1 and ochratoxin A using Salvia farinacea and Azadirachta indica water extract and application in meat products. Appl. Biochem. Biotechnol. 2021, 193, 3098–3120. [Google Scholar] [CrossRef] [PubMed]
- Telles, A.C.; Kupski, L.; Furlong, E.B. Phenolic compound in beans as protection against mycotoxins. Food Chem. 2017, 214, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.P.; Reynoso, C.M.; Céliz, G.; Díaz, M.; Resnik, S.L. Efficacy of flavanones obtained from citrus residues to prevent patulin contamination. Food Res. Int. 2012, 48, 930–934. [Google Scholar] [CrossRef]
- Kedia, A.; Dwivedy, A.K.; Jha, D.K.; Dubey, N.K. Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action. Protoplasma 2016, 253, 647–653. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem. Toxicol. 2020, 143, 111536. [Google Scholar] [CrossRef] [PubMed]
- Porosnicu, I.; Ariton, A.M.; Davidescu, M.A.; Madescu, B.M.; Bors, S.I. Plants and phytocompounds as natural defenders against mycotoxin contamination in agriculture. Sci. Pap. Anim. Sci. Biotechnol. 2025, 58, 131–138. [Google Scholar]
- Thipe, V.C.; Keyster, M.; Katti, K.V. Sustainable nanotechnology: Mycotoxin detection and protection. In Nanotechnology in the Life Sciences; Abd-Elsalam, K.A., Prasad, R., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 323–349. [Google Scholar]
- Thipe, V.C.; Bloebaum, P.; Khoobchandani, M.; Karikachery, A.R.; Katti, K.K.; Katti, K.V. Green nanotechnology: Nanoformulations against toxigenic fungi to limit mycotoxin production. In Nanomycotoxicology: Treating Mycotoxins in the Nano Way; Rai, M., Abd-Elsalam, K.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 155–188. [Google Scholar]
- Dileep Kumar, G.; Natarajan, N.; Nakkeeran, S. Antifungal activity of nanofungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina. Afr. J. Microbiol. Res. 2016, 10, 100–105. [Google Scholar] [CrossRef]
- Tarazona, A.; Gómez, J.V.; Mateo, E.M.; Jiménez, M.; Mateo, F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int. J. Food Microbiol. 2019, 306, 108259. [Google Scholar] [CrossRef]
- Temesgen, A.; Teshome, G. Major mycotoxins occurrence, prevention and control approaches. Biotechnol. Mol. Biol. Rev. 2018, 12, 1–11. [Google Scholar] [CrossRef]
- Arias, R.S.; Dang, P.M.; Sobolev, V.S. RNAi-mediated control of aflatoxins in peanut: Method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J. Vis. Exp. 2015, 106, 53398. [Google Scholar]
- Wang, M.; Weiberg, A.; Lin, F.M.; Thomma, B.P.H.J.; Huang, H.D.; Jin, H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef]
- Campo, S.; Peris-Peris, C.; Siré, C.; Moreno, A.B.; Donaire, L.; Zytnicki, M.; Notredame, C.; Llav, C.; San Segundo, B. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 gene involved in pathogen resistance. New Phytol. 2013, 199, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Bekalu, Z.E.; Madsen, C.K.; Dionisio, G.; Holme, I.B.; Jørgensen, L.N.; Fomsgaard, I.S.; Brinch-Pedersen, H. Overexpression of nepenthesin HvNEP-1 in barley endosperm reduces fusarium head blight and mycotoxin accumulation. Agronomy 2020, 10, 203. [Google Scholar] [CrossRef]
- Puchta, H. Applying CRISPR/Cas for genome engineering in plants: The best is yet to come. Curr. Opin. Plant Biol. 2017, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Li, H.P.; Zhang, J.B.; Shi, R.P.; Huang, T.; Fischer, R.; Liao, Y.C. Engineering fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol. Plant Microbe Interact. 2008, 21, 1242–1248. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, S.H.; Lee, J.K.; Choi, C.U.; Lee, H.S.; Kang, H.G.; Cha, S.-H. A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. J. Vet. Sci. 2012, 13, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Kiš, M.; Milošević, S.; Vulić, A.; Herceg, Z.; Vukušić, T.; Pleadin, J. Efficacy of low-pressure DBD plasma in the reduction of T-2 and HT-2 toxin in oat flour. Food Chem. 2020, 316, 126372. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, Y.; Zhang, J.; Guo, Y.; Ding, Y.; Lyu, F. Degradation efficiency and products of deoxynivalenol treated by cold plasma and its application in wheat. Food Control 2022, 136, 108874. [Google Scholar] [CrossRef]
- Oliveira, A.C.D.; Ali, S.; Corassin, C.H.; Ullah, S.; Pereira, K.N.; Walsh, J.L.; Hojnik, N.; Oliveira, C.A.F. Application of cold atmospheric plasma for decontamination of toxigenic fungi and mycotoxins: A systematic review. Front. Microbiol. 2025, 15, 1502915. [Google Scholar] [CrossRef]
- Chandravarnan, P.; Agyei, D.; Ali, A. Green and sustainable techniques for mycotoxin decontamination in rice: Microwave and UV technology. Food Control 2025, 175, 111316. [Google Scholar] [CrossRef]
- Wang, H.B.; Mo, Z.M.; Yuan, G.W.; Dai, X.D.; Zhou, S.Y.; Khoo, H.E.; Li, C. Degradation of aflatoxin B1 in peanut oil by ultraviolet-LED cold-light irradiation and structure elucidation of the degradation products. J. Oleo Sci. 2023, 72, 473–480. [Google Scholar] [CrossRef]
- Nguyen, T.; Palmer, J.; Loo, T.; Shilton, A.; Petcu, M.; Newson, H.L.; Flint, S. Investigation of UV light treatment (254 nm) on the reduction of aflatoxin M1 in skim milk and degradation products after treatment. Food Chem. 2022, 390, 133165. [Google Scholar] [CrossRef]
- Byun, K.H.; Park, S.Y.; Lee, D.U.; Chun, H.S.; Ha, S.D. Effect of UV-C irradiation on inactivation of Aspergillus flavus and Aspergillus parasiticus and quality parameters of roasted coffee bean (Coffea arabica L.). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 507–518. [Google Scholar] [CrossRef]
- Patil, H.; Shah, N.G.; Hajare, S.N.; Gautam, S.; Kumar, G. Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019, 12, 269–280. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Wang, S.X. Synergistic effects of microwave, ultraviolet and ozone combination on mold spores and aflatoxin. J. Northwest AF Univ. 2018, 46, 147–154. [Google Scholar]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef]
- Ben Amara, A.; Mehrez, A.; Ragoubi, C.; Romero-González, R.; Garrido Frenich, A.; Landoulsi, A.; Maatouk, I. Fungal mycotoxins reduction by gamma irradiation in naturally contaminated sorghum. J. Food Process. Preserv. 2022, 46, e16345. [Google Scholar] [CrossRef]
- Yun, H.; Kim, D.H.; Kim, J.O.; Lee, G.D.; Kwon, J.H. Gamma irradiation and subsequent storage reduce patulin content in apple juice. Food Sci. Preserv. 2024, 31, 499–505. [Google Scholar] [CrossRef]
- Yao, G.; Guo, Y.; Cheng, T.; Wang, Z.; Li, B.; Xia, C.; Jiang, J.; Zhang, Y.; Guo, Z.; Zhao, H. Effect of γ-irradiation on the physicochemical and functional properties of rice protein. Food Sci. Technol. 2022, 42, e12422. [Google Scholar] [CrossRef]
- Yousefi, M.; Mohammadi, M.A.; Khajavi, M.Z.; Ehsani, A.; Scholtz, V. Application of novel non-thermal physical technologies to degrade mycotoxins. J. Fungi 2021, 7, 395. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Qi, L.; Liu, Y.; Wang, R.; Yang, D.; Li, K.; Wang, L.; Li, Y.; Zhang, Y.; Chen, Z. Effects of electron beam irradiation on zearalenone and ochratoxin A in naturally contaminated corn and corn quality parameters. Toxins 2017, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, H.W.; Kießling, M.; Emire, S.A.; Teshome, P.G.; Töpfl, S.; Aganovic, K. Influence of electron beam treatment on naturally contaminated red pepper (Capsicum annuum L.) powder: Kinetics of microbial inactivation and physicochemical quality changes. Innov. Food Sci. Emerg. Technol. 2021, 67, 102588. [Google Scholar] [CrossRef]
- Zenklusen, M.H.; Coronel, M.B.; Castro, M.Á.; Alzamora, S.M.; González, H.H.L. Inactivation of Aspergillus carbonarius and Aspergillus flavus in malting barley by pulsed light and impact on germination capacity and microstructure. Innov. Food Sci. Emerg. Technol. 2018, 45, 161–168. [Google Scholar] [CrossRef]
- Wang, B.; Mahoney, N.E.; Pan, Z.; Khir, R.; Wu, B.; Ma, H.; Zhao, L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control 2016, 59, 461–467. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Cai, R.; Ge, Q.; Zhao, Z.; Yue, T.; Yuan, Y.; Gao, Z.; Wang, Z. Detoxification of ochratoxin A by pulsed light in grape juice and evaluation of its degradation products and safety. Innov. Food Sci. Emerg. Technol. 2022, 78, 103024. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B.; Yang, R.; Zhao, W. Recent developments in the preservation of raw fresh food by pulsed electric field. Food Rev. Int. 2022, 38, 247–265. [Google Scholar] [CrossRef]
- Gavahian, M.; Pallares, N.; Al Khawli, F.; Ferrer, E.; Barba, F.J. Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends Food Sci. Technol. 2020, 106, 209–218. [Google Scholar] [CrossRef]
- Evrendilek, A.G.; Bulut, N.; Atmaca, B.; Uzuner, S. Prediction of Aspergillus parasiticus inhibition and aflatoxin mitigation in red pepper flakes treated by pulsed electric field treatment using machine learning and neural networks. Food Res. Int. 2022, 162, 111954. [Google Scholar] [CrossRef]
- Bulut, N.; Atmaca, B.; Evrendilek, A.G.; Uzuner, S. Potential of pulsed electric field to control Aspergillus parasiticus, aflatoxin and mutagenicity levels: Sesame seed quality. J. Food Saf. 2020, 40, e12855. [Google Scholar] [CrossRef]
- Stranska, M.; Prusova, N.; Behner, A.; Dzuman, Z.; Lazarek, M.; Tobolkova, A.; Charpova, J.; Hajslova, J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control 2023, 145, 109440. [Google Scholar] [CrossRef]
- Pallarés, N.; Barba, F.J.; Berrada, H.; Tolosa, J.; Ferrer, E. Pulsed electric fields (PEF) to mitigate emerging mycotoxins in juices and smoothies. Appl. Sci. 2020, 10, 6989. [Google Scholar] [CrossRef]
- Mateo, F.; Mateo, E.M.; Tarazona, A.; García-Esparza, M.Á.; Soria, J.M.; Jiménez, M. New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods. Toxins 2025, 17, 231. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | Commodity Group | EU Threshold | Legislative Act | US FDA Threshold * |
---|---|---|---|---|
Aflatoxin B1 (AFB1) | Dried fruits, peanuts, tree nuts, cereals and products, dried spices | 2.0–12.0 µg/kg | Commission Regulation (EU) 2023/915 [17] | 20.0 µg/kg (total) |
Feed materials, complementary and complete feed | 0.005–0.2 mg/kg relative to a feed with a moisture content of 12% | Directive 2002/32/EC [19] | 0.02–0.3 mg/kg (total) | |
Aflatoxin total (B1, B2, G1, G2) (AFT, AFB1, AFB2, AFG1, AFG2) | Dried fruits, peanuts, tree nuts, cereals and products, dried spices | 4.0–15.0 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
Aflatoxin M1 (AFM1) | Raw milk, heat-treated milk and milk for the manufacture of milk-based products | 0.050 µg/kg | Commission Regulation (EU) 2023/915 [17] | 0.5 µg/kg |
Ochratoxin A (OTA) | Dried fruits, dried herbs, cereals and products, coffee, dried spices, wine and fruit wine, licorice and products | 2.0–80 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
Feed materials (cereals and products) and compound feed for pigs, poultry, cats and dogs | 0.01–0.25 mg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2006/576/EC) [18] | ||
Patulin (PAT) | Fruit juices, spirit drinks, cider and other fermented products derived from apples, solid apple products | 25–50 µg/kg | Commission Regulation (EU) 2023/915 [17] | 50 µg/kg |
Deoxynivalenol (DON) | Unprocessed cereals, cereal milling products, bakery products, pasta | 250–1750 µg/kg | Commission Regulation (EU) 2023/915 [17] | 1000 µg/kg |
Feed materials (cereals and products, maize by-products), compound feed | 0.9–12 mg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2006/576/EC) [18] | 4–30 mg/kg | |
Zearalenone (ZEN) | Unprocessed cereals, milling products, bakery products, refined maize oil | 50–400 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
Feed materials (cereals and products, maize by-products), compound feed for piglets, gilts, puppies, kittens, dogs and cats, sows and fattening pigs, calves, dairy cattle, sheep and goats | 0.1–3 mg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2006/576/EC) [18] | ||
Fumonisin sum (B1, B2) (FUM, FB1, FB2) | Unprocessed maize, maize milling products, maize-based products | 800–4000 µg/kg | Commission Regulation (EU) 2023/915 [17] | 2000–4000 µg/kg (sum of B1, B2, B3) |
Feed materials (maize and products) and compound feed for pigs, horses, fish, poultry, calves, lams, ruminants | 5–60 mg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2006/576/EC) [18] | 5–60 mg/kg (sum of B1, B2, B3) | |
Citrinin (CIT) | Food supplements based on rice fermented with red yeast Monascus purpureus | 100 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
Ergot alkaloids (EAs) | Cereal milling products | 50–100 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
T-2 and HT-2 toxin (T-2, HT-2) | Unprocessed cereals, cereals for human consumption, cereal milling products, cereal bran, bakery products, pasta, cereal snacks, oat flakes, breakfast cereals | 20–1250 µg/kg | Commission Regulation (EU) 2023/915 [17] | |
Compound feed for cats | 0.05 mg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2006/576/EC) [18] | ||
Oat milling products and other cereal products, compound feed with the exception of feed for cats | 250–2000 µg/kg relative to a feed with a moisture content of 12% | Commission Recommendation (2013/165/EU) [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač Tomas, M.; Jurčević Šangut, I. New Insights into Mycotoxin Contamination, Detection, and Mitigation in Food and Feed Systems. Toxins 2025, 17, 515. https://doi.org/10.3390/toxins17100515
Kovač Tomas M, Jurčević Šangut I. New Insights into Mycotoxin Contamination, Detection, and Mitigation in Food and Feed Systems. Toxins. 2025; 17(10):515. https://doi.org/10.3390/toxins17100515
Chicago/Turabian StyleKovač Tomas, Marija, and Iva Jurčević Šangut. 2025. "New Insights into Mycotoxin Contamination, Detection, and Mitigation in Food and Feed Systems" Toxins 17, no. 10: 515. https://doi.org/10.3390/toxins17100515
APA StyleKovač Tomas, M., & Jurčević Šangut, I. (2025). New Insights into Mycotoxin Contamination, Detection, and Mitigation in Food and Feed Systems. Toxins, 17(10), 515. https://doi.org/10.3390/toxins17100515