Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study
Abstract
:1. Introduction
2. Results
2.1. Clinical Data
2.2. Nociception Specific Blink Reflex (nBR)
2.3. Nociception Specific Trigemino-Cervical Reflex (nTCR)
2.4. Pain-Related Evoked Potentials (PREP)
2.5. Somatosensory Evoked Potentials (SSEP)
2.6. Correlation Analyses
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Subjects
5.2. Procedure
5.3. Nociceptive Blink (nBR), Trigemino-Cervical Reflexes (nTCR) and Pain-Related Evoked Potentials (PREP) Recordings
5.3.1. Sensory Thresholds
5.3.2. Recordings
5.3.3. Habituation
5.4. Somatosensory Evoked Potentials (SSEPs)
5.5. Clinical Data
5.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’amico, D.; Usai, S.; Grazzi, L.; Rigamonti, A.; Solari, A.; Leone, M.; Bussone, G. Quality of life and disability in primary chronic daily headaches. Neurol. Sci. 2003, 24 (Suppl. 2), S97–S100. [Google Scholar] [CrossRef]
- Blumenfeld, A.M.; Varon, S.F.; Wilcox, T.K.; Buse, D.C.; Kawata, A.K.; Manack, A.; Goadsby, P.; Lipton, R.B. Disability, HRQoL and resource use among chronic and episodic migraineurs: Results from the International Burden of Migraine Study (IBMS). Cephalalgia 2010, 31, 301–315. [Google Scholar] [CrossRef]
- Buse, D.C.; Manack, A.N.; Fanning, K.M.; Serrano, D.; Reed, M.L.; Turkel, C.C.; Lipton, R.B. Chronic Migraine Prevalence, Disability, and Sociodemographic Factors: Results From the American Migraine Prevalence and Prevention Study. Headache 2012, 52, 1456–1470. [Google Scholar] [CrossRef]
- Munakata, J.; Hazard, E.; Serrano, D.; Klingman, D.; Rupnow, M.F.; Tierce, J.; Reed, M.; Lipton, R.B. Economic Burden of Transformed Migraine: Results From the American Migraine Prevalence and Prevention (AMPP) Study. Headache 2009, 49, 498–508. [Google Scholar] [CrossRef]
- Berra, E.; Sances, G.; De Icco, R.; Avenali, M.; Berlangieri, M.; De Paoli, I.; Bolla, M.; Allena, M.; Ghiotto, N.; Guaschino, E.; et al. Cost of Chronic and Episodic Migraine: A pilot study from a tertiary headache centre in northern Italy. J. Headache Pain 2015, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Linde, M.; Gustavsson, A.; Stovner, L.J.; Steiner, T.J.; Barré, J.; Katsarava, Z.; Lainez, J.M.; Lampl, C.; Lantéri-Minet, M.; Rastenyte, D.; et al. The cost of headache disorders in Europe: The Eurolight project. Eur. J. Neurol. 2011, 19, 703–711. [Google Scholar] [CrossRef]
- Straube, A.; Pfaffenrath, V.; Ladwig, K.-H.; Meisinger, C.; Hoffmann, W.; Fendrich, K.; Vennemann, M.; Berger, K. Prevalence of chronic migraine and medication overuse headache in Germany—The German DMKG headache study. Cephalalgia 2009, 30, 207–213. [Google Scholar] [CrossRef]
- Scher, A.I.; Stewart, W.F.; Liberman, J.; Lipton, R.B. Prevalence of Frequent Headache in a Population Sample. Headache 1998, 38, 497–506. [Google Scholar] [CrossRef]
- Katsarava, Z.; Schneeweiss, S.; Kurth, T.; Kroener, U.; Fritsche, G.; Eikermann, A.; Diener, H.-C.; Limmroth, V. Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology 2004, 62, 788–790. [Google Scholar] [CrossRef]
- Scher, I.A.; Stewart, F.W.; Ricci, A.J.; Lipton, B.R. Factors associated with the onset and remission of chronic daily headache in a population-based study. Pain 2003, 106, 81–89. [Google Scholar] [CrossRef]
- May, A.; Schulte, A.M.L.H. Chronic migraine: Risk factors, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 455–464. [Google Scholar] [CrossRef]
- Jabbari, B. Botulinum neurotoxins in the treatment of refractory pain. Nat. Clin. Pract. Neurol. 2008, 4, 676–685. [Google Scholar] [CrossRef]
- Aurora, S.K.; Winner, P.; Freeman, M.C.; Spierings, E.L.; Heiring, J.O.; DeGryse, R.E.; Turkel, C.C. OnabotulinumtoxinA for treatment of chronic migraine: Pooled analyses of the 56-Week PREEMPT clinical program. Headache 2011, 51, 1358–1373. [Google Scholar] [CrossRef]
- Aoki, K. Review of a Proposed Mechanism for the Antinociceptive Action of Botulinum Toxin Type A. Neurotoxicology 2005, 26, 785–793. [Google Scholar] [CrossRef]
- Cui, M.; Khanijou, S.; Rubino, J.; Aoki, K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004, 107, 125–133. [Google Scholar] [CrossRef]
- Durham, P.L.; Cady, R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache 2004, 44, 35–42. [Google Scholar] [CrossRef]
- Purkiss, J.; Welch, M.; Doward, S.; Foster, K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: Involvement of two distinct mechanisms. Biochem. Pharmacol. 2000, 59, 1403–1406. [Google Scholar] [CrossRef]
- Welch, M.J.; Purkiss, J.R.; Foster, K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 1999, 38, 245–258. [Google Scholar] [CrossRef]
- Ferrandiz-Huertas, C.; Mathivanan, S.; Wolf, C.J.; Devesa, I.; Ferrer-Montiel, A. Trafficking of ThermoTRP Channels. Membranes 2014, 4, 525–564. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, A.; Popat, R.; Yiangou, Y.; Cockayne, D.; Ford, A.; Davis, J.; Dasgupta, P.; Fowler, C.; Anand, P. Decreased sensory receptors p2x 3 and trpv1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 2005, 174, 977–983. [Google Scholar] [CrossRef]
- McMahon, H.T.; Foran, P.; Dolly, J.O.; Verhage, M.; Wiegant, V.M.; Nicholls, D.G. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J. Biol. Chem. 1992, 267, 21338–21343. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.J. Botulinum Toxin in the Treatment of Headache. Toxins 2020, 12, 803. [Google Scholar] [CrossRef]
- Kępczyńska, K.; Domitrz, I. Botulinum Toxin—A Current Place in the Treatment of Chronic Migraine and Other Primary Headaches. Toxins 2022, 14, 619. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Shibata, M.; Toriumi, H.; Iwashita, T.; Funakubo, M.; Sato, H.; Kuroi, T.; Ebine, T.; Koizumi, K.; Suzuki, N. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol. Dis. 2012, 48, 367–378. [Google Scholar] [CrossRef]
- Edvinsson, J.; Warfvinge, K.; Edvinsson, L. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: An organ culture study. J. Headache Pain 2015, 16, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diener, H.C.; Dodick, D.W.; Aurora, S.K.; Turkel, C.C.; DeGryse, R.E.; Lipton, R.B.; Brin, M.F. OnabotulinumtoxinA for treatment of chronic migraine: Results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia 2010, 30, 804–814. [Google Scholar] [CrossRef]
- Casillo, F.; Sebastianelli, G.; Di Renzo, A.; Cioffi, E.; Parisi, V.; Di Lorenzo, C.; Serrao, M.; Coppola, G. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses. Cephalalgia 2022. [Google Scholar] [CrossRef]
- Serrao, M.; Coppola, G.; Di Lorenzo, C.; Di Fabio, R.; Padua, L.; Sandrini, G.; Pierelli, F. Nociceptive trigeminocervical reflexes in healthy subjects. Clin. Neurophysiol. 2010, 121, 1563–1568. [Google Scholar] [CrossRef]
- e Tommaso, M.; Santostasi, R.; Devitofrancesco, V.; Franco, G.; Vecchio, E.; Delussi, M.; Livrea, P.; Katzarava, Z. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation. Clin. Neurophysiol. 2011, 122, 2482–2487. [Google Scholar] [CrossRef]
- Pellizzari, R.; Rossetto, O.; Schiavo, G.; Montecucco, C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. B Biol. Sci. 1999, 354, 259–268. [Google Scholar] [CrossRef]
- Joussain, C.; Le Coz, O.; Pichugin, A.; Marconi, P.; Lim, F.; Sicurella, M.; Aranda Muñoz, A. Botulinum Neurotoxin Light Chains Expressed by Defective Herpes Simplex Virus Type-1 Vectors Cleave SNARE Proteins and Inhibit CGRP Release in Rat Sensory Neurons. Toxins 2019, 11, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernuda-Morollón, E.; Ramón, C.; Martínez-Camblor, P.; Serrano-Pertierra, E.; Larrosa, D.; Pascual, J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain 2015, 156, 820–824. [Google Scholar] [CrossRef]
- da Silva, L.B.; Karshenas, A.; Bach, F.W.; Rasmussen, S.; Arendt-Nielsen, L.; Gazerani, P. Blockade of Glutamate Release by Botulinum Neurotoxin Type A in Humans: A Dermal Microdialysis Study. Pain Res. Manag. 2014, 19, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Burstein, R.; Blumenfeld, A.M.; Silberstein, S.D.; Adams, A.M.; Brin, M.F. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. Headache 2020, 60, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Gfrerer, L.; Xu, W.; Austen, W.; Ashina, S.; Melo-Carrillo, A.; Longhi, M.S.; Adams, A.M.; Houle, T.; Brin, M.F.; Burstein, R. OnabotulinumtoxinA alters inflammatory gene expression and immune cells in chronic headache patients. Brain 2021, 145, 2436–2449. [Google Scholar] [CrossRef]
- Burstein, R.; Zhang, X.; Levy, D.; Aoki, K.R.; Brin, M.F. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia 2014, 34, 853–869. [Google Scholar] [CrossRef]
- Kosaras, B.; Jakubowski, M.; Kainz, V.; Burstein, R. Sensory innervation of the calvarial bones of the mouse. J. Comp. Neurol. 2009, 515, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Noseda, R.; Melo-Carrillo, A.; Nir, R.-R.; Strassman, A.M.; Burstein, R. Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. J. Neurosci. 2019, 39, 1867–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaube, H.; Katsarava, Z.; Käufer, T.; Diener, H.-C.; Ellrich, J. A new method to increase nociception specificity of the human blink reflex. Clin. Neurophysiol. 2000, 111, 413–416. [Google Scholar] [CrossRef]
- De Marinis, M.; Pujia, A.; Colaizzo, E.; Accornero, N. The blink reflex in “chronic migraine”. Clin. Neurophysiol. 2007, 118, 457–463. [Google Scholar] [CrossRef]
- Sohn, J.-H.; Kim, C.-H.; Choi, H.-C. Differences in central facilitation between episodic and chronic migraineurs in nociceptive-specific trigeminal pathways. J. Headache Pain 2016, 17, 35. [Google Scholar] [CrossRef] [Green Version]
- De Tommaso, M.; Brighina, F.; Delussi, M. Effects of Botulinum Toxin A on Allodynia in Chronic Migraine: An Observational Open-Label Two-Year Study. Eur. Neurol. 2019, 81, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Sava, S.L.; De Pasqua, V.; Magis, D.; Schoenen, J. Effects of Visual Cortex Activation on the Nociceptive Blink Reflex in Healthy Subjects. PLoS ONE 2014, 9, e100198. [Google Scholar] [CrossRef] [PubMed]
- Di Clemente, L.; Coppola, G.; Magis, D.; Fumal, A.; De Pasqua, V.; Di Piero, V.; Schoenen, J. Interictal habituation deficit of the nociceptive blink reflex: An endophenotypic marker for presymptomatic migraine? Brain 2007, 130, 765–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellrich, J. Brain Stem Reflexes: Probing Human Trigeminal Nociception. Physiology 2000, 15, 94–97. [Google Scholar] [CrossRef]
- Esteban, A. A neurophysiological approach to brainstem reflexes. Blink reflex. Neurophysiol. Clin. 1999, 29, 7–38. [Google Scholar] [CrossRef]
- Valls-Sole, J. Assessment of excitability in brainstem circuits mediating the blink reflex and the startle reaction. Clin. Neurophysiol. 2012, 123, 13–20. [Google Scholar] [CrossRef]
- Calabresi, P.; Cupini, L.M. Medication-overuse headache: Similarities with drug addiction. Trends Pharmacol. Sci. 2005, 26, 62–68. [Google Scholar] [CrossRef] [PubMed]
- de Tommaso, M.; Delussi, M.; Ricci, K.; Montemurno, A.; Carbone, I.; Vecchio, E. Effects of OnabotulintoxinA on Habituation of Laser Evoked Responses in Chronic Migraine. Toxins 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Drinovac, V.; Bach-Rojecky, L.; Matak, I.; Lacković, Z. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology 2013, 70, 331–337. [Google Scholar] [CrossRef]
- Drinovac, V.; Bach-Rojecky, L.; Lacković, Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J. Neural Transm. 2014, 121, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Matak, I.; Riederer, P.; Lacković, Z. Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem. Int. 2012, 61, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matak, I.; Bach-Rojecky, L.; Filipović, B.; Lacković, Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 2011, 186, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Matak, I.; Lacković, Z. Botulinum toxin A, brain and pain. Prog. Neurobiol. 2014, 119–120, 39–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, G.W.; Ovsepian, S.V.; Wang, J.; Aoki, K.R.; Dolly, J.O. Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem. J. 2011, 441, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.B.; Francis, J.; Brin, M.F.; Broide, R.S. Botulinum neurotoxin type A-cleaved SNAP25 is confined to primary motor neurons and localized on the plasma membrane following intramuscular toxin injection. Neuroscience 2017, 352, 155–169. [Google Scholar] [CrossRef]
- Weise, D.; Weise, C.M.; Naumann, M. Central Effects of Botulinum Neurotoxin—Evidence from Human Studies. Toxins 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Giffin, J.N.; Katsarava, Z.; Pfundstein, A.; Ellrich, J.; Kaube, H. The effect of multiple stimuli on the modulation of the ‘nociceptive’ blink reflex. Pain 2004, 108, 124–128. [Google Scholar] [CrossRef]
- Coppola, G.; Di Clemente, L.; Fumal, A.; Magis, D.; De Pasqua, V.; Pierelli, F.; Schoenen, J. Inhibition of the Nociceptive R2 Blink Reflex after Supraorbital or Index Finger Stimulation is Normal in Migraine Without Aura Between Attacks. Cephalalgia 2007, 27, 803–808. [Google Scholar] [CrossRef]
- Ayzenberg, I.; Obermann, M.; Nyhuis, P.; Gastpar, M.; Limmroth, V.; Diener, H.C.; Kaube, H.; Katsarava, Z. Central Sensitization of The Trigeminal and Somatic Nociceptive Systems in Medication Overuse Headache Mainly Involves Cerebral Supraspinal Structures. Cephalalgia 2006, 26, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Currà, A.; Di Lorenzo, C.; Parisi, V.; Gorini, M.; Sava, S.L.; Schoenen, J.; Pierelli, F. Abnormal cortical responses to somatosensory stimulation in medication-overuse headache. BMC Neurol. 2010, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Di Clemente, L.; Coppola, G.; Magis, D.; Gérardy, P.-Y.; Fumal, A.; De Pasqua, V.; Di Piero, V.; Schoenen, J. Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: Evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain 2009, 144, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
T0 | T1 | T3 | (S; p) | |
---|---|---|---|---|
Days with headache/month (N) | 30.0 20.0; 2300 | 14.0 10.0; 15.0 | 10.0 9.75; 14.25 | 24.15; <0.001 |
Headache severity (0–3) | 8.0 8.0; 10.0 | 8.0 6.0; 8.0 | 7.0 6.0; 8.0 | 13.65; 0.001 |
Tablets/month (N) | 50.0 30.0; 78.0 | 13.0 8.0; 20.0 | 10.0 5.0; 14.0 | 21.28; <0.001 |
T0 | T1 | T3 | (F or S; p) | |
---|---|---|---|---|
nBR Sensory threshold (mA) | 2.0 2.0; 3.45 | 2.55 2.0; 3.0 | 2.5 2.0; 3.5 | 1.02; 0.599 § |
nBR Pain threshold (mA) | 8.5 6.0; 11.0 | 9.0 7.0; 12.0 | 11.0 10.0; 15.0 | 3.23; 0.050 |
Ipsilateral 1st block AUC | 0.578 0.396; 0.701 | 0.456 0.300; 0.700 | 0.746 0.416; 1.254 | 6.00; 0.050 § |
Ipsilateral 2nd block AUC | 0.638 0.498; 1.513 | 0.496 0.322; 0.714 | 0.693 0.330; 1.336 | 4.93; 0.085 § |
Ipsilateral 3rd block AUC | 0.589 0.351; 1.199 | 0.420 0.300; 0.700 | 0.651 0.223; 1.111 | 3.00; 0.223 § |
Ipsilateral habituation slope 2nd block | 0.030 −0.013; 0.22 | −0.025 −0.02; 0.060 | −0.050 −0.09; 0.009 | 1.98; 0.151 |
Ipsilateral habituation slope 3rd block | −0.005 −0.085; 0.11 | −0.005 −0.04; 0.025 | −0.035 −0.05; 0.035 | 1.28; 0.528 § |
Contralateral 1st block AUC | 0.443 0.335; 0.584 | 0.471 0.351; 0.558 | 0.721 0.337; 1.358 | 5.31; 0.010 |
Contralateral 2nd block AUC | 0.422 0.362; 0.688 | 0.371 0.326; 0.640 | 0.606 0.295; 1.049 | 3.51; 0.040 |
Contralateral 3rd block AUC | 0.377 0.226; 0.501 | 0.375 0.228; 0.511 | 0.651 0.283; 1.073 | 3.46; 0.042 |
Contralateral habituation slope 2nd block | 0.070 −0.080; 0.180 | −0.030 −0.130; 0.030 | −0.080 −0.320; 0.030 | 6.03; 0.049 § |
Contralateral habituation slope 3rd block | −0.010 −0.050; 0.070 | -0.063 −0.084; −0.139 | −0.035 −0.141; −0.010 | 1.19; 0.316 |
T0 | T1 | T3 | Statistics | |
---|---|---|---|---|
nTCR onset (ms) | 71.05 58.73; 78.23 | 68.99 52.74; 76.50 | 71.05 62.94; 80.15 | 0.41; 0.664 |
nTCR duration (ms) | 102.59 87.85; 123.23 | 93.75 86.66; 102.18 | 91.98 83.22; 100.83 | 1.23; 0.303 |
nTCR grand-average AUC | 0.378 0.298; 0.968 | 0.272 0.217; 0.67 | 0.280 0.235; 0.993 | 2.60; 0.273 § |
nTCR 1st block AUC | 0.512 0.291; 1.368 | 0.406 0.269; 1.308 | 1.070 0.224; 1.401 | 2.22; 0.330 § |
nTCR 2nd block AUC | 0.475 0.335; 1.888 | 0.307 0.214; 0.925 | 0.340 0.193; 1.096 | 2.00; 0.368 § |
nTCR 3rd block AUC | 0.310 0.237; 0.819 | 0.218 0.185; 0.616 | 0.249 0.190; 0.888 | 0.50; 0.779 |
nTCR habituation slope 2nd block | 0.020 −0.100; 0.400 | −0.040 −0.105; 0.015 | −0.050 −0.170; 0.035 | 1.38; 0.500 § |
nTCR habituation slope 3rd block | 0.005 −0.145; 0.085 | −0.060 −0.128; 0.015 | −0.125 −0.205; 0.005 | 5.71; 0.028 § |
T0 | T1 | T3 | Statistics | |
---|---|---|---|---|
N latency (ms) | 130.0 120.00; 134.00 | 128.54 123.82; 133.00 | 128.27 124.71; 132.37 | 2.85; 0.240 § |
P latency (ms) | 215.00 179.83; 239.39 | 212.85 180.42; 227.59 | 212.85 179.83; 221.00 | 0.22; 0.802 |
N-P 1st amplitude block (μV) | 38.64 29.39; 57.81 | 31.88 21.61; 46.64 | 29.80 21.19; 39.35 | 3.40; 0.043 |
N-P 2nd amplitude block (μV) | 43.89 32.86; 59.76 | 31.99 25.00; 43.89 | 31.00 20.79; 34.47 | 4.77; 0.014 |
N-P 3rd amplitude block (μV) | 39.16 19.08; 57.86 | 30.44 20.24; 45.95 | 25.38 19.30; 30.31 | 3.18; 0.053 |
PREP habituation slope 2nd block | 2.91 −0.103; 12.48 | −1.02 −0.823; 7.42 | −0.56 −5.02; 3.70 | 2.87; 0.069 |
PREP habituation slope 3rd block | 0.03 −3.58; 5.64 | −1.39 −2.71; 3.98 | −2.19 −5.06; 0.16 | 0.30; 0.746 |
T0 | T1 | T3 | (F, p) | |
---|---|---|---|---|
SSEP MT (mA) | 9.0 8.0; 11.0 | 9.0 8.0; 10.5 | 9.0 8.0; 10.5 | 3.59; 0.166 § |
N9 latency (ms) | 9.93 9.40; 10.19 | 9.81 9.40; 10.17 | 9.98 9.32; 10.64 | 0.06; 0.937 |
N13 latency (ms) | 13.45 12.81; 13.58 | 13.15 12.86; 13.57 | 13.15 12.97; 13.41 | 0.04; 0.959 |
N20 latency (ms) | 19.17 18.40; 19.80 | 18.98 18.50; 19.23 | 18.93 18.48; 19.39 | 0.00; 0.997 |
P25 latency (ms) | 24.17 22.55; 26.05 | 23.41 22.03; 26.05 | 24.53 22.99; 25.89 | 0.65; 0.525 |
N33 latency (ms) | 32.00 30.67; 34.40 | 32.47 30.58; 30.80 | 32.44 30.58; 33.00 | 0.01; 0.989 |
N9 amplitude (μV) | 2.81 1.44; 3.42 | 2.64 2.00; 3.37 | 2.43 2.00; 3.09 | 0.02; 0.984 |
N13 amplitude (μV) | 1.67 1.47; 1.83 | 1.85 1.50; 2.08 | 2.00 1.77; 2.52 | 4.35; 0.113 § |
N20-P25 amplitude (μV) | 1.76 1.45; 2.65 | 1.57 0.97; 2.35 | 1.57 1.05; 2.39 | 0.08; 0.921 |
P25-N33 amplitude (μV) | 1.10 0.99; 1.99 | 1.00 0.72; 1.94 | 1.22 0.80; 2.22 | 5.10; 0.078 § |
N20-P25 1st block amplitude (μV) | 2.79 2.08; 3.87 | 2.45 1.22; 3.70 | 2.30 1.46; 3.20 | 3.73; 0.155 § |
N20-P25 2nd block amplitude (μV) | 2.59 1.98; 2.98 | 2.08 1.43; 3.01 | 2.30 1.40; 3.30 | 0.51; 0.606 |
N20-P25 3rd block amplitude (μV) | 2.00 1.53; 2.69 | 1.93 1.65; 2.98 | 2.25 1.51; 3.00 | 0.15; 0.926 § |
Habituation slope 1–2 block | −0.11 −0.708; 0.388 | 0.10 −0.35; 0.25 | −0.11 −0.50; 0.20 | 0.45; 0.644 |
Habituation slope 1–3 block | −0.08 −0.455; 0.035 | -0.04 −0.26; 0.21 | 0.10 −0.25; 0.22 | 1.28; 0.289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastianelli, G.; Casillo, F.; Di Renzo, A.; Abagnale, C.; Cioffi, E.; Parisi, V.; Di Lorenzo, C.; Serrao, M.; Pierelli, F.; Schoenen, J.; et al. Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study. Toxins 2023, 15, 76. https://doi.org/10.3390/toxins15010076
Sebastianelli G, Casillo F, Di Renzo A, Abagnale C, Cioffi E, Parisi V, Di Lorenzo C, Serrao M, Pierelli F, Schoenen J, et al. Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study. Toxins. 2023; 15(1):76. https://doi.org/10.3390/toxins15010076
Chicago/Turabian StyleSebastianelli, Gabriele, Francesco Casillo, Antonio Di Renzo, Chiara Abagnale, Ettore Cioffi, Vincenzo Parisi, Cherubino Di Lorenzo, Mariano Serrao, Francesco Pierelli, Jean Schoenen, and et al. 2023. "Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study" Toxins 15, no. 1: 76. https://doi.org/10.3390/toxins15010076
APA StyleSebastianelli, G., Casillo, F., Di Renzo, A., Abagnale, C., Cioffi, E., Parisi, V., Di Lorenzo, C., Serrao, M., Pierelli, F., Schoenen, J., & Coppola, G. (2023). Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study. Toxins, 15(1), 76. https://doi.org/10.3390/toxins15010076