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Abstract: For more than three decades, Botulinum neurotoxin (BoNT) has been used to treat
a variety of clinical conditions such as spastic or dystonic disorders by inducing a temporary
paralysis of the injected muscle as the desired clinical effect. BoNT is known to primarily act at the
neuromuscular junction resulting in a biochemical denervation of the treated muscle. However, recent
evidence suggests that BoNT’s pharmacological properties may not only be limited to local muscular
denervation at the injection site but may also include additional central effects. In this review, we
report and discuss the current evidence for BoNT’s central effects based on clinical observations,
neurophysiological investigations and neuroimaging studies in humans. Collectively, these data
strongly point to indirect mechanisms via changes to sensory afferents that may be primarily
responsible for the marked plastic effects of BoNT on the central nervous system. Importantly,
BoNT-related central effects and consecutive modulation and/or reorganization of the brain may
not solely be considered “side-effects” but rather an additional therapeutic impact responsible for a
number of clinical observations that cannot be explained by merely peripheral actions.
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Key Contribution: This manuscript highlights the evidence for (indirect) central effects of
botulinum neurotoxin injections based on clinical observations as well as neurophysiological and
imaging studies.

1. Introduction

Botulinum neurotoxin type A (BoNT) is used in a variety of clinical conditions such as spastic
or dystonic disorders [1]. BoNT reduces muscle hyperactivity via its action at the neuromuscular
junction. It does this by binding and internalization by the presynaptic cholinergic neuron. It cleaves
SNARE (soluble N-ethylmaleimide-sensitive-factor attachment receptor) complex proteins and blocks
acetylcholine release at the neuromuscular junction, thus resulting in a transient denervation and
weakening of muscle contractions responsible for excessive involuntary movements. Although
it is widely accepted that its therapeutic effects are restricted to the peripheral nervous system,
additional actions at distant sites and central effects are also presumed. These central effects may be
the consequence of hematogenic spread, a retrograde neural transport of BoNT to the central nervous
system (CNS) or an indirect action due to denervation and changes of afferent input resulting in the
plastic reorganization of the CNS [2].
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Several early animal studies provide evidence for a retrograde transport of BoNT, similar
to the well-known retrograde transport of tetanus toxin [3,4], but this has been highly debated.
Following intramuscular injection of radiolabeled BoNT in the cat gastrocnemius muscle, radioactivity
could be found successively in the sciatic nerve, the ipsilateral spinal ventral roots and the spinal
cord with a distal-proximal gradient [5]. In parallel, functional changes on parts of the soma
membrane of the alpha-motoneuron have been suggested in a follow-up neurophysiological study [6];
however, there was no proof for a distant active, catalytic effect of BoNT. In a more recent in vivo
rodent study, Antonucci and colleagues showed that BoNT acted at facial nucleus neurons after
injection in the whisker muscles [7]. Consistently, this and other groups were able to detect
cleaved SNAP25 (synaptosomal nerve-associated protein 25) at distant cells, upstream from the
initial uptake neurons, indicating catalytic action following retrograde interneuronal transport via
transcystosis [7–9]. Functional evidence for bilateral muscle relaxation was observed after unilateral
injection of commercially used BoNT in the rat paw. Here, BoNT arrived at the contralateral muscle to
almost similar extents via neural pathways and the hematogenic route, suggesting transport within
neuronal networks as an additional mechanism for BoNT’s action at distant sites [9].

In this review, we focus on the main human experimental and clinical studies providing
information on the central action of BoNT. Central effects are discussed based on clinical observations
as well as neurophysiological and imaging studies.

2. Clinical Evidence

Experience from clinical routine already suggests that BoNT-related muscle weakening may not
exclusively be the consequence of BoNT’s action at the neuromuscular junction, but also at the spinal
and supraspinal levels. In dystonia, clinical improvement without or with little weakness is frequently
observed, whereas other patients do not improve despite relevant muscle weakness [10,11], thus
only experiencing side effects without clinical benefit. Other patients with dystonia or spasticity may
request retreatment with BoNT, irrespective of residual neuromuscular blockade [12]. Conversely,
patients may benefit from BoNT treatment regardless of comparably little neuromuscular blockade [13].
Although acetylcholine release is blocked at the neuromuscular junction for around 12 weeks, some
patients experience disproportionate muscle weakness or clinical benefit for many months, exceeding
the average duration of peripheral chemo-denervation [14,15]. Accordingly, the peripheral paralyzing
effect cannot be the only effect of BoNT [16]. Furthermore, in our clinical practice, some patients,
particularly in dystonia, but also spastic syndromes, benefit considerably from BoNT treatment despite
the use of relatively small or even “homeopathic” doses. Some patients are also known as “golden
responders”, with long-lasting clinical benefits following a single or only few injections [17] which
can only be explained by an indirect central effect of BoNT. Another clinical observation is that BoNT
injections may improve muscle tone and function in non-treated body parts, especially in dystonia
and spasticity [18]. This has also been proven by numerous electrophysiological studies indicative of
BoNT-related effects within non-injected muscles [19–21]. In spastic syndromes, evidence for central
effects of BoNT comes from the fact that injection in one muscle may also act at the corresponding
antagonist muscle [22,23] or other non-injected muscles with consecutive clinical benefit [18,24].
Interestingly, the time course of pain relief differed from that of muscle relaxation in cervical dystonia
(CD) following BoNT injections. Improvement in pain occurred before motor improvement, and pain
relief was even longer lasting than muscle weakness [25]. These facts further suggest that pain relief
could be attributed to additional effects on sensory nerve fibers. Regardless, higher doses were needed
to successfully treat CD patients with dystonia-related pain, as compared to pain-free CD patients [26].
However, other authors suggested a muscular mechanism for the genesis of pain in CD [27]. Further
evidence for (rather indirect) central effects of BoNT stems from a behavioral study investigating
spatial discrimination thresholds in patients with CD before and following BoNT treatment. Here,
BoNT injections restored abnormally increased thresholds of spatial discrimination, a clinical marker
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of disorganized sensory cortical somatotopy in dystonia [28]. This suggests the modulation of afferent
inputs to the sensory cortex from muscle spindles [29].

In summary, there is unequivocal clinical evidence for an (indirect) central effect of BoNT, an
observation that is further underscored by numerous human electrophysiological studies.

3. Neurophysiological Evidence

A large number of clinical neurophysiological studies provide detailed evidence for distinct BoNT
effects within spinal cord circuitries, the brainstem and the sensorimotor cortex.

Trompetto et al. recognized that BoNT acts differently on extra- and intrafusal muscle spindles as
measured by maximal M-wave and maximal voluntary contraction (both affect extrafusal spindles
through synaptic blockade) as well as the tonic vibration reflex (an intrafusal effect through the
inhibition of the stretch reflex loop). In this study of patients with focal hand dystonia (FHD), BoNT
induced a persistent clinical benefit even though indicators of extrafusal chemodenervation had fully
recovered. This suggests that changes in Ia-afferences may have resulted in (indirect) central effects [30].
F-wave reductions have been reported in distant, non-injected muscles of patients with CD following
BoNT, an observation that was interpreted by the authors as a potential consequence of reduced
spinal motoneuronal excitability [31]. This was experimentally proven in another study that measured
recurrent inhibition in distant, non-injected muscles of patients treated for lower limb spasticity. Here,
Marchand-Pauvert and colleagues demonstrated the depression of recurrent inhibition from soleus
motor axons to motoneurons supplying the quadriceps muscle after BoNT injection in the soleus
muscles [32]. The authors concluded that BoNT affects spinal synaptic transmission via its effect on
cholinergic synapses of Renshaw cells in humans through retrograde transport.

Brainstem excitability can be experimentally studied using the blink reflex and its variations, or
brainstem auditory evoked potentials. Several studies did not reveal any modulation of hyperexcitable
brainstem pathways in patients with blepharospasm following BoNT injections into the orbicularis
oculi muscle [20,33,34]. Furthermore, BoNT did not affect brainstem auditory-evoked potentials in
patients with craniocervial dystonia and hemifacial spasm [35]. On the other hand, BoNT therapy led
to reductions in muscle activity of the injected thyroarytenoid muscle, together with the non-injected,
contralateral thyroarytenoid muscle in patients with spasmodic dysphonia. This was interpreted as
excitability changes at the brainstem level [36]. Another way to study brainstem circuit excitability
and plasticity is via a conditioning high-frequency stimulation protocol that may induce long-term
potentiation of the human blink reflex [37]. Here, the previously enhanced facilitation of the R2
response of the blink reflex in patients with blepharospasm was normalized by BoNT [38], again
suggestive of central effects of BoNT at the brainstem level. However, enhanced plasticity and its
normalization following BoNT was not confirmed in a subsequent study [39].

Modulation of Ia-afferences and the stretch reflex loop were considered responsible for the
increase in somatosensory evoked potentials following BoNT injection in patients with cerebral
palsy [40,41] (see also [42]). In a separate study, contrary effects of BoNT on the somatosensory cortex
were observed, as intramuscular injections of BoNT normalized previously abnormally enhanced
amplitudes of somatosensory-evoked potentials in patients with CD [43]. Whereas the previous
study suggested the normalization of increased excitability of the sensory cortex by BoNT, Gilio
and colleagues reported the normalization of both increased motor cortical excitability and reduced
intracortical inhibition following BoNT injection [44]. However, the observation of normalized motor
cortical excitability following BoNT therapy was not confirmed by subsequent studies [45,46]. Ways
to investigate sensorimotor interplay at the cortical level are called long-latency reflexes. Here, two
electromyographic responses at the thenar muscle are recorded following median nerve stimulation at
different latencies that may reflect the interaction of somatosensory input and motor cortical output at
the spinal level (stretch reflex) and via the cortex [47]. Following BoNT treatment, the second cortical
(but not the spinal) response was reduced on the affected side in both patients with FHD and CD. These
findings point to a modulatory BoNT effect on the afferent input that leads to changes in (previously
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abnormal) motor cortical overflow (see also [48]). Changes in motor cortical excitability, as probed
by measuring motor evoked potentials, can be induced experimentally by a protocol called paired
associative stimulation. This combines repetitive electrical stimulation of a hand nerve with subsequent
transcranial magnetic stimulation of the contralateral motor cortex [49]. Abnormally enhanced changes
in motor cortical excitability following this paired association stimulation protocol in dystonia [50,51]
were blocked by BoNT injections in CD patients [52]. This supports the idea of BoNT inducing changes
of the afferent input, which in turn results in the blockage of the (previously enhanced) plasticity of
the sensorimotor cortex in focal dystonia. Changes in motor cortical reorganization following BoNT
therapy have also been reported in other transcranial magnetic stimulation studies. These mapped the
topography of the primary motor cortex projections of upper limb muscles in patients with FHD, CD
and primary hand tremor [53–55]. However, in another study [28], the somatotopic finger and hand
muscle representations in the motor cortex were retained in FHD at rest. This implies that abnormal
motor organization may only arise during activation, when abnormal somatosensory representations
are functionally integrated.

4. Evidence from Neuroimaging

While numerous neurophysiological studies provide strong yet indirect evidence for the functional
central effects of BoNT, an increasing amount of human neuroimaging studies, predominantly in
patients with dystonia and spasticity, indicate distinct functional but also structural brain changes
induced by peripheral BoNT injections.

Early imaging studies made use of H2
15O positron emission tomography (PET) in order to

investigate possible changes in cortical activation patterns following BoNT therapy. In an early study
by Ceballos-Baumann and colleagues in patients with FHD, BoNT improved writing but failed to
improve the associated reductions of the regional cerebral blood flow (a marker of neuronal activity)
of the primary motor cortex [56]. On the other hand, BoNT treatment resulted in increased neuronal
activation of the parietal cortex and secondary motor areas, such as the caudal supplementary motor
area. This was interpreted as a change in movement strategy or associated cortical reorganization,
secondary to the deafferentation of alpha motor neurons. This interpretation was supported by another
study in spasmodic dysphonia patients. It revealed increased speech-related responses in sensory
cortical areas and in left hemisphere motor areas commonly associated with oral-laryngeal motor
control, following BoNT injections [57]. This study further indicated that BoNT treatment may lead
to a more efficient cortical processing of sensory information to relevant motor areas. In addition,
unilaterally injected BoNT reduced the primarily increased thalamic activation bilaterally in hemifacial
spasm. This suggests that BoNT induced changes of afferent input from the skin and muscle spindle,
as well as the antidromic conduction of the facial nerve and secondary alteration in the central nervous
system [58].

The largest neuroimaging evidence for the central effects of BoNT comes from functional magnetic
resonance imaging (fMRI) studies. Several studies reported a decreased, and in part more lateralized,
activation pattern in contra- and ipsilateral cortical motor areas following BoNT therapy in patients
with spastic hemiparesis due to stroke [59–61]. However, apart from the primary sensorimotor cortex,
changes of activation patterns were also found in other brain areas such as the cerebellum [60–63], the
supplementary motor area [60] and the parietal and occipital cortex [61,64]. These findings point to
BoNT-induced changes in cortical reorganization that may, in addition to the peripheral BoNT effect,
result in the relief of spasticity and a better motor function, possibly due to a more focused activation
of stroke-affected areas.

In dystonia, cerebral activation patterns are not confounded by stroke-related parenchymal injury.
Here, BoNT treatment was associated with widespread changes on fMRI-measured activation (i.e.,
BOLD signal) within several brain regions, such as the bilateral primary and secondary somatosensory
cortex, the bilateral supplementary motor area, the contralateral primary motor cortex and the
cerebellum in drug-naïve CD patients [65]. Hence, only the first BoNT injection session resulted
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in changes to sensorimotor activation patterns. Interestingly, no differences in activation patterns
between patients following BoNT treatment and healthy controls at baseline were observed. Several
previous studies investigating orofacial dystonia [66,67] or CD [68,69] showed significant changes
within the sensorimotor network in patients receiving long-term treatment with BoNT, in comparison
to healthy controls. Despite one study on patients with spasmodic dysphonia [70], changes in brain
activation pattern were also demonstrated four weeks after BoNT injections. In summary, these studies
underline the short- and long-term central effect of BoNT on the fMRI activation pattern in focal
dystonia. Furthermore, long-term effects of BoNT therapy have to be considered when comparing
brain activation patterns in patients with dystonia and healthy controls.

Resting-state fMRI allows the investigation of distinct brain networks and the interaction between
different brain areas at rest [71]. This possibly overcomes the fact that cortical activation in some
previous fMRI studies on dystonia may be confounded by (dystonic) movements. Interestingly,
impaired functional resting state connectivity within the sensorimotor and basal ganglia network
was found in focal hand dystonia [72–74], task-specific orofacial dystonia [75], blepharospasm [76]
and CD [77,78]. However, it remains unknown whether these alterations are primary or secondary,
perhaps compensatory phenomena. In some studies, BoNT treatment could at least in part
modulate disease-related altered functional connectivity patterns within specific brain regions in
focal dystonia [76–78] (see also [72]). This is probably again done by altering sensory input.

Few studies exist that explicitly investigated structural changes of the brain due to BoNT therapy
in focal dystonia patients. Two studies found white matter abnormalities in the basal ganglia regions in
patients with CD and FHD, using diffusion tensor imaging [79,80]. These ultrastructural changes were
normalized four weeks following BoNT injections. This observation was interpreted as (preliminary)
evidence for activity-dependent brain white matter plasticity due to indirect effects on motor afferent
feedback to brain motor regions. These included the thalamus, the sensorimotor cortex and, indirectly,
the basal ganglia [79]. Widespread gray matter changes were found in different forms of focal dystonia
using different volumetric techniques (i.e., voxal-based morphometry, cortical thickness). These
changes occurred in the motor and premotor cortex, the cerebellum, the basal ganglia, the thalamus
and the parietal cortex [81–87]. Only a few studies investigated the short-term effect of BoNT [88–90].
Delnooz and colleagues reported an increase in gray matter volume (GMV) exclusively within the
right precentral sulcus following BoNT treatment in patients with CD. This indicated indirect central
consequences of modified peripheral sensory input [90]. In another study, BoNT therapy resulted in
substantial cortical thickness reductions within the primary motor cortex and the pre-supplementary
motor area in patients with blepharospasm, whereas in patients with hemifacial spasm no longitudinal
changes were found [89]. Hence, the latter study demonstrated not only BoNT-dependent structural
changes but also disease-dependent structural changes of cortical morphology. These findings suggest
that the peripheral BoNT effect may not be solely responsible for the (indirect) central effect of BoNT.
We recently compared the short- and long-term effect of BoNT in drug-naïve and BoNT-treated CD
patients, in order to differentiate disease- and therapy-specific gray matter changes (Figure 1, [88]).
Interestingly, both groups only differed in bilateral mesiotemporal GMV, suggesting long-term effects
of continuous BoNT therapy. Alternatively, disease duration may be responsible for these reductions
in hippocampal GMV, or may at least have confounded our findings.
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Figure 1. T-score maps showing a smaller gray matter volume in long-term BoNT-treated CD patients
compared to untreated CD patients. Results are illustrated at an exploratory threshold (voxel-wise
p < 0.005, cluster size >100 voxel; * p < 0.05, FWE whole brain corrected on the cluster level) with the
corresponding location within the MNI space indicated below.

5. Limitations

All the studies presented here used BoNT type A. Hence, no conclusions can be made regarding
other types of BoNT such as type B, which is also commercially used. However, as all types of BoNT
act at the cholinergic presynapse, blocking acetylcholine release at the neuromuscular junction, the
indirect central effect should not significantly differ between different types of BoNT. Furthermore,
patients were investigated in a clinical setting, not reporting or differentiating between dosage, injected
muscles or time since last BoNT injection. However, for baseline investigations, patients were studied
at least 12 weeks since their last BoNT treatment, when the clinical effect of BoNT should have been
minimized. They were usually investigated around 4 weeks following BoNT injections. However, as
reported in our last study [88], drug-naïve and BoNT-treated patients differed regarding gray matter
changes. This suggested that the short-term effects of BoNT may have been confounded by long-lasting
BoNT effects on the CNS in previous studies. Additionally, 12 weeks following the last BoNT injection
may not be enough to exclude remaining central BoNT effects, especially since we know that the effect
on the intrafusal muscle spindles may last longer than on the extrafusal muscles spindles [30].

6. Conclusions

BoNT primarily acts at the neuromuscular junction, resulting in a biochemical denervation and
muscle weakness of the injected muscle, a mechanism which undoubtedly constitutes the main action
and cause for the reliable clinical effect of BoNT in several neurological disorders. Nevertheless,
beside its peripheral action, strong clinical, neurophysiological and neuroimaging evidence exists
indicating additional BoNT-related central effects. It is somewhat limiting, however, that all these
latter investigations were not sufficiently capable to differentiate between direct actions of BoNT on
the CNS and indirect effects due to the modulation of the afferent sensory input to the spinal cord
and brain. However, the current literature suggests that indirect effects of BoNT on the brain may
be more prominent. Here, changes to the afferent input are thought to result in short- and long-term
plastic changes to the CNS, as assessed by functional and structural methods. This modulation or
reorganization of the brain may itself have an additional therapeutic effect. It may potentially be
responsible for the long-lasting clinical effect of BoNT or its effect in non-treated muscles. It will be
interesting to see whether other neurophysiological methods such as transcranial magnetic or direct
current stimulation will provide novel insight into BoNT’s plasticity effects and whether their clinical
application may help to improve and prolong the (positive) central plastic effects.
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