Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen
Abstract
:1. Introduction
2. Results
2.1. Pretrial Tests
2.2. Main Trial
2.2.1. CASA Results
2.2.2. Results on Morphology, Viability, HOST, and Nuclear Integrity
2.2.3. Combined Effects of DON and ZEN
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Samples Origin and General Procedures
5.2. Pretrial
5.3. Main Trial
- Control group (semen without addition of DMSO or mycotoxins)
- DMSO group (0.7% v/v DMSO)
- DON group (addition of 50.6 μM (MiD) DON)
- ZEN group (addition of 62.8 μM (MiD)ZEN)
- DON + ZEN group (addition of MiD DON + MiD ZEN)
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santos Pereira, C.; Cunha, S.C.; Fernandes, J.O. Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, C.; Castagna, R.; Ferrante, I.; Frascella, F.; Marasso, S.L.; Ricci, A.; Canavese, G.; Lore, A.; Prelle, A.; Gullino, M.L.; et al. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens. Bioelectron. 2013, 40, 233–239. [Google Scholar] [CrossRef]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process Nutr. 2019, 1, 6. [Google Scholar] [CrossRef]
- Grenier, B.; Applegate, T.J. Modulation of Intestinal Function Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 0007–0009. [Google Scholar]
- Dänicke, S.; Winkler, J. Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem. Toxicol. 2015, 84, 225–249. [Google Scholar] [CrossRef]
- Kollarczik, B.; Gareis, M.; Hanelt, M. In vitro transformation of the Fusarium mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat. Toxins 1994, 2, 105–110. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Alexander, J.; Barregard, L.; Bignami, M.; Bruschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Scientific opinion on the risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, 4851. [Google Scholar] [CrossRef] [Green Version]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem. Toxicol. 2017, 106, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Brezina, U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem. Toxicol. 2013, 60, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Valenta, H.; Ganter, M.; Brosig, B.; Kersten, S.; Diesing, A.K.; Kahlert, S.; Panther, P.; Kluess, J.; Rothkötter, H.J. Lipopolysaccharides (LPS) modulate the metabolism of deoxynivalenol (DON) in the pig. Mycotox. Res. 2014, 30, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, G.S.; Pettersson, H.; Johnsen, K.; Lindberg, J.E. Transformation of trichothecenes in ileal digesta and faeces from pigs. Arch. Anim. Nutr. 2002, 56, 263–274. [Google Scholar] [CrossRef]
- Dänicke, S.; Hegewald, A.K.; Kahlert, S.; Kluess, J.; Rothkötter, H.J.; Breves, G.; Döll, S. Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral bloodmononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 andIPEC-J2, and on effects of DON and DONS on piglets. Food Chem. Toxicol. 2010, 48, 2154–2162. [Google Scholar] [CrossRef]
- Ancsin, Z.; Erdelyi, M.; Balogh, K.; Szabo-Fodor, J.; Mezes, M. Effect of garlic oil supplementation on the glutathione redox system of broiler chickens fed with T-2 toxin contaminated feed. World Mycotox. J. 2013, 6, 73–81. [Google Scholar] [CrossRef]
- Schelstraete, W.; Devreese, M.; Croubels, S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 2020, 137, 111140. [Google Scholar] [CrossRef]
- Goyarts, T.; Dänicke, S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett. 2006, 163, 171–182. [Google Scholar] [CrossRef]
- Deng, X.B.; Din, H.Z.; Huang, X.H.; Ma, Y.J.; Fan, X.I.; Yan, H.K.; Lu, P.C.; Li, W.C.; Zeng, Z.L. Tissue distribution of deoxynivalenol in piglets following intravenous administration. J. Integr. Agric. 2015, 14, 2058–2064. [Google Scholar] [CrossRef]
- Peltioniemi, O.A.; Kemp, B. Infertility in the Pig and the Control of Pig Herd Fertility. In Veterinary Reproduction and Obstetrics, 10th ed.; Noakes, E.D., Parkinson, T.J., England, G.C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 581–592. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Althouse, G.C.; Kauffold, J.; Rossow, S. Diseases of the Reproductive System. In Disease of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 371–392. [Google Scholar] [CrossRef]
- El Khoury, D.; Fayjaloun, S.; Nassar, M.; Sahakian, J.; Aad, P.Y. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins 2019, 11, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althouse, G.C. Applied Andrology in Swine. In Animal Andrology: Theories and Applications; Chenoweth, P.J., Lorton, S.P., Eds.; CABI: Oxfordshire, UK, 2014; pp. 404–417. [Google Scholar] [CrossRef]
- Ensley, S.M.; Radke, S.L. Mycotoxins in Grains and Feeds. In Disease of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 1055–1071. [Google Scholar] [CrossRef]
- Cortinovis, C.; Pizzo, F.; Spicer, L.J.; Caloni, F. Fusarium mycotoxins: Effects on reproductive function in domestic animals-A review. Theriogenology 2013, 80, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Lacalandra, G.M.; Filannino, A.; Garbetta, A.; Nicassio, M.; Dell’Aquila, M.E.; Visconti, A. Toxic effects induced by mycotoxin fumonisin B1 on equine spermatozoa: Assessment of viability, sperm chromatin structure stability, ROS production and motility. Toxicol. Vitr. 2010, 24, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef]
- Sprando, R.L.; Pestka, J.; Collins, T.F.X.; Rorie, J.; O’Donnell, M.; Hinton, D.; Chirtel, S. The Effect of Vomitoxin (Deoxnivalenol) on Testicular Morphology, Testicular Spermatid Counts and Epididymal Sperm Counts in IL-6KO [B6129-IL6 〈tmlKopf〉 (IL-6 gene deficient)] and WT [B6129F2 (wild type to B6129-IL6 with an intact IL-6 gene)] mice. Food Chem. Toxicol. 1999, 37, 1073–1079. [Google Scholar] [CrossRef]
- Sprando, R.L.; Collins, T.F.X.; Black, T.N.; Olejnik, N.; Rorie, J.I.; Eppley, R.M.; Ruggles, D.I. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. Food Chem. Toxicol. 2005, 43, 623–635. [Google Scholar] [CrossRef]
- Berger, T.; Esbenshade, K.L.; Diekman, M.A.; Hoagland, T.; Tuite, J. Influence of prepubertal consumption of zearalenone on sexual development of boars. J. Anim. Sci. 1981, 53, 1559–1564. [Google Scholar] [CrossRef]
- Christensen, C.M.; Mirocha, C.J.; Nelson, G.H.; Quast, J.F. Effect of young swine of consumption of rations containing corn invaded by Fusarium roseum. Appl. Microbiol. 1972, 23, 202. [Google Scholar] [CrossRef] [Green Version]
- Young, L.G.; King, G.J. Low concentrations of zearalenone in diets of boars for a prolonged period of time. J. Anim. Sci. 1986, 63, 1197–1200. [Google Scholar] [CrossRef] [Green Version]
- Benzoni, E.; Minervini, F.; Giannoccaro, A.; Fornelli, F.; Vigo, D.; Visconti, A. Influence of in vitro exposure to mycotoxin zearalenone and its derivatives on swine sperm quality. Reprod. Toxicol. 2008, 25, 461–467. [Google Scholar] [CrossRef]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Alexopoulos, C.; Boscos, C.M.; Kyriakis, S.C. In vitro effect of zearalenone and alpha-zearalenol on boar sperm characteristics and acrosome reaction. Reprod. Domest. Anim. 2006, 41, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Vainas, E.; Boscos, C.M.; Kyriakis, S.C.; Alexopoulos, C. Study on the in vitro effect of zearalenone and alpha-zearalenol on boar sperm-zona pellucida interaction by hemizona assay application. J. Appl. Toxicol. 2007, 27, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A.; Boscos, C.M.; Saratsi, A.; Alexopoulos, C. Evaluation of zearalenone and alpha zearalenol toxicity on boar sperm DNA integrity. J. Appl. Toxicol. 2008, 28, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Malekinejad, H.; Schoevers, E.J.; Daemen, I.J.J.M.; Zijlstra, C.; Colenbrander, B.; Fink-Gremmels, J.; Roelen, B.A.J. Exposure of oocytes to the fusarium toxins zearalenone and deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. Biol. Reprod. 2007, 77, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, H.K.; Alexander, J.; Barregard, L.; Bignami, M.; Bruschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Scientific Opinion on the risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, 4718. [Google Scholar] [CrossRef]
- Döll, S.; Dänicke, S. The Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) in animal feeding. Prev. Vet. Med. 2011, 102, 132–145. [Google Scholar] [CrossRef]
- Grenier, B.; Oswald, I. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycot. J. 2011, 4, 285–313. [Google Scholar] [CrossRef]
- Salahipour, M.H.; Hasanzadeh, S.; Malekinejad, H.; Razi, M.; Farrokhi-Ardebili, F. Deoxynivalenol reduces quality parameters and increases DNA damage in mice spermatozoa. Andrologia 2019, 51, e13238. [Google Scholar] [CrossRef]
- Gosálvez, J.; López-Fernández, C.; Fernández, J.L.; Gouraud, A.; Holt, W.V. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 2011, 78, 951–961. [Google Scholar] [CrossRef]
- Balhorn, R. The protamine family of sperm nuclear proteins. Genome Biol. 2007, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Obremski, K.; Gajęcka, M.; Gajęcki, M.T.; Zielonka, Ł. Changes in the Subpopulations of Porcine Peripheral Blood Lymphocytes Induced by Exposure to Low Doses of Zearalenone (ZEN) and Deoxynivalenol (DON). Molecules 2016, 21, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.H.; Deng, H.D.; Wang, Y.C.; Deng, J.L.; Zuo, Z.C.; Wang, Y.; Peng, X.; Cui, H.M.; Fang, J.; Yu, S.M.; et al. The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets. Environ. Toxicol. Pharmacol. 2016, 41, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Groten, J.P.; Tajima, O.; Feron, V.J.; Schoen, E.D. Statistically designed experiments to screen chemical mixtures for possible interactions. Environ. Health Perspect. 1998, 106, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Tajima, O.; Schoen, E.D.; Feron, V.J.; Groten, J.P. Statistically designed experiments in a tiered approach to screen mixtures of Fusarium mycotoxins for possible interactions. Food Chem. Toxicol. 2002, 40, 685–695. [Google Scholar] [CrossRef]
- Bensassi, F.; Gallerne, C.; Sharaf el Dein, O.; Hajlaoui, M.R.; Lemaire, C.; Bacha, H. In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014, 84, 1–6. [Google Scholar] [CrossRef]
- Kouadio, J.H.; Dano, S.D.; Moukha, S.; Mobio, T.A.; Creppy, E.E. Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon 2007, 49, 306–317. [Google Scholar] [CrossRef]
- Rodriguez, A.L. Fresh Boar Semen: Quality Control and Production. Ph.D. Thesis, Ghent University, Ghent, Belgium, 29 March 2012. [Google Scholar]
- Karunakaran, M.; Chakurkar, E.B.; Ratnakaran, U.; Naik, P.K.; Mondal, M.; Mondal, A.; Singh, N.P. Characteristics of boar semen preserved at liquid state. J. Appl. Anim. Res. 2017, 45, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, B.; Huang, K.; He, X.; Luo, Y.; Liang, R.; Luo, H.; Shen, X.L.; Xu, W. Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014, 324, 55–67. [Google Scholar] [CrossRef]
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef]
- Vyt, P.; Maes, D.; Quinten, C.; Rijsselaere, T.; Deley, W.; Aarts, M.; de Kruif, A.; Van Soom, A. Detailed motility evaluation of boar semen and its predictive value for reproductive performance in sows. Vlaams Diergeneeskd. Tijdschr. 2008, 77, 291–298. [Google Scholar]
- Maes, D.; Lopez, R.A.; Rijsselaere, T.; Vyt, P.; Van Soom, A. Artificial insemination in pigs. In Artificial Insemination in Farm Animals; Manafi, M., Ed.; Tech: Rijeka, Croatia, 2011; pp. 79–94. [Google Scholar] [CrossRef] [Green Version]
- Tardif, S.; Laforest, J.P.; Cormier, N.; Bailey, J.L. The importance of porcine sperm parameters on fertility in vivo. Theriogenology 1999, 52, 447–459. [Google Scholar] [CrossRef]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, R.; Kim, H.; Lee, K.H.; Cui, X.S.; Kim, N.H.; Kim, S.H.; Lee, I.J.; Uhm, S.J.; Yoon, M.J.; et al. Pig Spermatozoa Defect in Acrosome Formation Caused Poor Motion Parameters and Fertilization Failure through Artificial Insemination and In vitro Fertilization. Asian-Australas. J. Anim. Sci. 2014, 27, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Llano, B.; Lorenzo, J.L.; Yenes, P.; Trejo, A.; García-Casado, P.A. Short hypoosmotic swelling test for the prediction of boar sperm fertility. Theriogenology 2001, 156, 387–398. [Google Scholar] [CrossRef]
- Gadea, J.; Matas, C. Sperm factors related to in vitro penetration of porcine oocytes. Theriogenology 2000, 54, 1343–1357. [Google Scholar] [CrossRef]
- Sambuu, R.; Takagi, M.; Namula, Z.; Otoi, T.; Shiga, S.; Rodrigues dos Santos, R.; Fink-Gremmels, J. Effects of exposure to zearalenone on porcine oocytes and sperm during maturation and fertilization in vitro. J. Reprod. Dev. 2011, 57, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Sambuu, R.; Takagi, M.; Namula, Z.; Nii, M.; Taniguchi, M.; Uno, S.; Kokushi, E.; Tshering, C.; dos Santos, R.R.; Fink-Gremmels, J.; et al. Effects of long-term in vitro exposure of ejaculated boar sperm to zearalenone and α-zearalenol in sperm liquid storage medium. Anim. Sci. J. 2013, 84, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, Y.; Shao, S.; Cai, Z.; Feng, L.; Pan, H.; Wang, Z. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2007, 1143, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Herrman, T.J.; Dai, S.Y. Rapid determination of fumonisins in corn-based products by liquid chromatography/tandem mass spectrometry. J AOAC Int. 2010, 93, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Directive (EC) 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union 2002, 32, 1–22. [Google Scholar]
- Vazquez, J.M.; Martinez, E.A.; Martinez, P.; Garcia-Artiga, C.; Roca, J. Hypoosmotic swelling of boar spermatozoa compared to other methods for analysing the sperm membrane. Theriogenology 1997, 47, 913–922. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 407–466. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, Statistics for Biology and Health; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013, Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 2 March 2020).
- Kuznetsova, A.; Brockhoff, P.; Christensen, R. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h | p * (DMSO vs. Mycotoxin(s) Treatment) |
---|---|---|---|---|---|---|
Immotile Spermatozoa (%) | ||||||
DMSO | 2.76 ± 1.72 | 4.01 ± 3.11 | 5.48 ± 3.08 | 8.67 ± 4.18) | 10.70 ± 5.34 | |
DON | 3.95 ± 2.43 | 6.11 ± 2.94 | 8.32 ± 3.84 | 12.09 ± 5.28 | 17.63 ± 10.90 | 0.001 |
ZEN | 13.87 ± 10.98 | 21.95 ± 16.75 | 31.11 ± 19.02 | 32.37 ± 20.55 | 38.83 ± 18.69 | <0.001 |
DON + ZEN | 19.22 ± 9.55 | 19.17 ± 11.82 | 25.77 ± 8.16 | 34.13 ± 14.27 | 35.98 ± 15.51 | <0.001 |
Non-progressive Motile Spermatozoa (%) | ||||||
DMSO | 19.35 ± 3.82 | 22.37 ± 6.03 | 21.67 ± 4.25 | 20.60 ± 3.52 | 21.19 ± 4.55 | |
DON | 19.88 ± 2.18 | 24.18 ± 6.13 | 24.79 ± 2.83 | 24.76 ± 4.10 | 25.33 ± 8.43 | 0.001 |
ZEN | 34.02 ± 5.94 | 34.20 ± 11.17 | 33.81 ± 9.21 | 36.40 ± 11.52 | 33.21 ± 11.33 | <0.001 |
DON + ZEN | 41.31 ± 9.91 | 39.64 ± 12.04 | 44.07 ± 8.32 | 39.87 ± 10.90 | 38.50 ± 8.87 | <0.001 |
Progressive Motile Spermatozoa (%) | ||||||
DMSO | 77.88 ± 4.68 | 73.62 ± 7.13 | 72.85 ± 6.53 | 70.73 ± 6.12 | 68.11 ± 6.64 | |
DON | 76.17 ± 3.53 | 69.71 ± 8.28 | 66.89 ± 5.70 | 63.14 ± 7.65 | 57.04 ± 16.61 | 0.056 |
ZEN | 52.11 ± 14.24 | 43.85 ± 21.09 | 35.08 ± 18.95 | 31.24 ± 19.52 | 27.95 ± 17.81 | <0.001 |
DON + ZEN | 39.48 ± 18.70 | 41.19 ± 20.20 | 30.16 ± 11.62 | 26.00 ± 14.57 | 25.52 ± 16.43 | <0.001 |
Rapid (%) | ||||||
DMSO | 73.75 a ± 15.03 | 61.51 a ± 18.80 | 53.72 a ± 17.03 | 47.18 a ± 15.10 | 43.65 a ± 12.82 | |
DON | 74.02 a ± 15.48 | 53.86 a ± 18.39 | 44.95 a ± 16.06 | 39.33 a ± 12.86 | 33.47 a ± 13.16 | 4 h: 0.063 ** |
ZEN | 42.00 b ± 13.66 | 31.43 b ± 20.68 | 22.99 b ± 15.56 | 20.84 b ± 16.26 | 19.80 b ± 14.31 | Each time point: <0.001 ** |
DON + ZEN | 28.24 c ± 16.05 | 31.40 b ± 21.67 | 16.93 b ± 10.90 | 15.65 b ± 11.15 | 15.01 b ± 10.61 | Each time point: <0.001 ** |
Medium (%) | ||||||
DMSO | 17.36 a ± 9.5 | 24.35 a ± 9.86 | 27.91 ac ± 7.59 | 31.87 a ± 6.6 | 31.44 a ± 8.14 | |
DON | 15.79 a ± 8.07 | 26.68 a ± 9.47 | 31.26 a ± 7.88 | 31.78 a ± 5.01 | 32.31 a ± 8.29 | |
ZEN | 23.17 a ± 5.97 | 22.34 a ± 6.51 | 18.96 c ± 7.92 | 20.00 b ± 7.76 | 18.14 b ± 7.53 | 0 h: 0.08, 2 h: 0.008, 3 h, 4 h: <0.001 ** |
DON + ZEN | 22.17 a ± 6.96 | 21.02 a ± 4.85 | 21.89 bc ± 6.24 | 19.11 b ± 6.87 | 21.37 b ± 8.13 | 2 h: 0.07, 3 h & 4 h: <0.001 ** |
Slow (%) | ||||||
DMSO | 6.12 a ± 4.89 | 10.14 a ± 7.40 | 12.88 a ± 7.43 | 12.27 a ± 5.19 | 12.21 a ± 3.07 | |
DON | 6.24 a ± 5.91 | 13.34 a ± 8.03 | 15.47 a ± 6.50 | 16.79 a ± 5.82 | 16.59 ab ± 4.12 | 1 h: 0.062 ** |
ZEN | 20.95 b ± 7.15 | 24.28 b ± 9.38 | 26.94 b ± 9.64 | 26.79 b ± 10.37 | 23.22 bc ± 8.20 | 0 h, 1 h, 2 h, 3 h: <0.001 ** 4 h: 0.006 |
DON + ZEN | 30.37 b ± 11.70 | 28.41 b ± 11.62 | 35.40 b ± 7.18 | 31.11 b ± 8.79 | 27.63 c ± 6.77 | Each time point: <0.001 ** |
VCL (Curvilinear Velocity; μm/s) | ||||||
DMSO | 74.36 a ± 19.10 | 61.90 a ± 15.31 | 59.21 a ± 21.78 | 51.08 a ± 9.86 | 48.12 a ± 5.88 | |
DON | 74.01 a ± 16.57 | 57.27 a ± 13.69 | 51.44 a ± 10.90 | 45.22 a ± 8.12 | 41.88 ab ± 7.99 | 2 h: 0.098 ** |
ZEN | 50.09 b ± 10.69 | 43.02 b ± 13.77 | 37.74 b ± 10.65 | 35.72 b ± 12.42 | 35.55 bc ± 9.96 | 0 h, 1 h, 2 h: <0.001, 3 h: 0.001, 4 h: 0.008 ** |
DON + ZEN | 39.96 c ± 11.87 | 44.38 b ± 18.49 | 33.92 b ± 9.59 | 32.63 b ± 9.19 | 32.43 c ± 7.46 | 0 h, 1 h, 2 h, 3 h: <0.001 ** 4 h: 0.001 |
VSL (Straight-line Velocity; μm/s) | ||||||
DMSO | 32.46 ± 3.55 | 32.46 ± 2.60 | 33.58 ± 5.71 | 30.83 ± 3.81 | 28.81 ± 5.08 | |
DON | 32.71 ± 2.16 | 30.57 ± 3.31 | 29.35 ± 2.18 | 27.18 ± 5.29 | 24.58 ± 7.46 | |
ZEN | 18.57 ± 4.82 | 19.05 ± 8.91 | 15.74 ± 7.74 | 14.46 ± 10.03 | 12.33 ± 8.90 | <0.001 |
DON + ZEN | 14.43 ± 7.52 | 19.12 ± 12.25 | 13.60 ± 6.22 | 12.74 ± 9.04 | 10.47 ± 6.45 | <0.001 |
VAP (Average Path Velocity; μm/s) | ||||||
DMSO | 45.19 ± 5.96 | 42.18 ± 4.42 | 42.59 ± 9.02 | 38.36 ± 4.73 | 36.21 ± 5.14 | |
DON | 45.78 ± 4.66 | 38.91 ± 4.03 | 37.43 ± 3.34 | 33.81 ± 6.08 | 30.72 ± 7.81 | 0.089 |
ZEN | 28.19 ± 6.32 | 26.33 ± 10.39 | 22.06 ± 8.19 | 20.60 ± 10.84 | 18.20 ± 9.10 | <0.001 |
DON + ZEN | 22.07 ± 9.57 | 26.90 ± 14.05 | 19.70 ± 6.74 | 18.53 ± 9.47 | 16.31 ± 6.85 | <0.001 |
LIN (Linearity; %) | ||||||
DMSO | 45.62 a ± 9.8 | 54.94 a ± 12.1 | 60.16 a ± 12.73 | 62.08 a ± 12.03 | 60.21 a ± 10.48 | |
DON | 46.15 a ± 10.14 | 56.25 a ± 14.69 | 59.59 a ± 14.06 | 61.21 a ± 12.35 | 59.49 a ± 17.55 | |
ZEN | 37.39 b ± 7.47 | 43.35 b ± 14.24 | 41.06 b ± 15.28 | 38.43 b ± 20.01 | 33.68 b ± 18.74 | 0 h: 0.028, 1 h: 0.002, 2 h,3 h, 4 h: <0.001 ** |
DON + ZEN | 34.16 b ± 10.36 | 41.30 b ± 14.47 | 40.52 b ± 17.56 | 37.21 b ± 19.45 | 31.98 b ± 17.6 | 0 h: 0.002, 1 h,2 h,3 h, 4 h: <0.001 ** |
STR (Straightness; %) | ||||||
DMSO | 72.08 a ± 4.07 | 77.20 a ± 3.64 | 79.37 a ± 4.25 | 80.45 a ± 3.62 | 79.16 a ± 3.79 | |
DON | 71.76 a ± 4.06 | 78.64 a ± 4.72 | 78.66 a ± 5.06 | 80.29 a ± 3.92 | 78.85 a ± 7.96 | |
ZEN | 65.50 b ± 4.16 | 70.09 b ± 8.27 | 68.12 b ± 12.13 | 63.74 b ± 16.32 | 62.87 b ± 12.78 | 0 h: 0.033, 1 h: 0.022, 3 h, 4 h: <0.001 ** |
DON + ZEN | 62.61 b ± 7.70 | 67.64 b ± 10.08 | 66.23 b ± 12.06 | 63.12 b ± 14.46 | 59.75 b ± 14.63 | 0 h & 1 h: 0.002, 2 h,3 h, 4 h: <0.001 ** |
Wobble (WOB; %) | ||||||
DMSO | 62.92 a ± 10.79 | 70.66 a ± 12.26 | 75.26 a ± 12.23 | 76.72 a ± 11.6 | 75.68 a ± 10.18 | |
DON | 63.89 a ± 10.78 | 70.79 a ± 14.43 | 75.06 a ± 13.11 | 75.75 a ± 12.13 | 74.03 a ± 16.52 | |
ZEN | 56.70 a ± 7.84 | 60.55 b ± 13.47 | 58.34 b ± 13.92 | 56.44 b ± 18.55 | 50.45 b ± 17.86 | 0 h: 0.057, 1 h: 0.002, 2 h,3 h, 4 h: <0.001 ** |
DON + ZEN | 53.49 b ± 10.45 | 59.39 b ± 13.52 | 58.69 b ± 16.25 | 55.43 b ± 17.88 | 50.09 b ± 16.84 | 0 h: 0.004, 1 h: 0.001, 2 h,3 h, 4 h: <0.001 ** |
ALH (Amplitude of Lateral Head Displacement; μm) | ||||||
DMSO | 1.89 a ± 0.26 | 1.64 a ± 0.2 | 1.60 a ± 0.4 | 1.41 a ± 0.14 | 1.39 a ± 0.07 | |
DON | 1.90 a ± 0.24 | 1.58 a ± 0.2 | 1.48 a ± 0.17 | 1.32 a ± 0.17 | 1.26 a ± 0.18 | |
ZEN | 1.74 a ± 0.12 | 1.51 a ± 0.19 | 1.51 a ± 0.14 | 1.40 a ± 0.09 | 1.43 a ± 0.19 | 0 h: 0.074 ** |
DON + ZEN | 1.59 b ± 0.24 | 1.57 a ± 0.18 | 1.42 b ± 0.17 | 1.41 a ± 0.13 | 1.36 a ± 0.17 | 0 h: <0.001, 2 h: 0.033 ** |
BCF (Beat/Cross Frequency; Hz) | ||||||
DMSO | 13.13 ± 2.81 | 11.80 ± 2.41 | 10.60 ± 2.25 | 10.50 ± 1.79 | 10.32 ± 1.83 | |
DON | 12.70 ± 2.03 | 11.14 ± 2.37 | 10.05 ± 1.87 | 9.73 ± 1.47 | 9.36 ± 1.72 | |
ZEN | 9.72 ± 1.58 | 9.04 ± 2.60 | 9.17 ± 2.63 | 7.95 ± 3.51 | 7.64 ± 2.19 | 0.001 |
DON + ZEN | 7.93 ± 2.08 | 8.3 ± 11.97 | 8.00 ± 2.97 | 7.13 ± 2.39 | 6.05 ± 2.53 | <0.001 |
Hyperactive (%) | ||||||
DMSO | 0.031 a ± 0.02 | 0.022 a ± 0.017 | 0.022 a ± 0.033 | 0.007 a ± 0.008 | 0.005 a ± 0.005 | |
DON | 0.031 a ± 0.019 | 0.018 ab ± 0.014 | 0.010 b ± 0.010 | 0.006 a ± 0.006 | 0.004 a ± 0.004 | 2 h: 0.024 ** |
ZEN | 0.010 b ± 0.005 | 0.011 b ± 0.013 | 0.005 b ± 0.007 | 0.003 a ± 0.004 | 0.001 a ± 0.001 | 0 h: 0.000, 1 h: 0.036, 2 h: 0.001 ** |
DON + ZEN | 0.009 b ± 0.011 | 0.016 ab ± 0.02 | 0.004 b ± 0.007 | 0.002 a± 0.003 | 0.001 a ± 0.001 | 0 h: 0.000, 2 h: 0.001 ** |
Morphology (% Spermatozoa with Head Abnormalities) | ||||||
---|---|---|---|---|---|---|
Treatments # | 0 h | 1 h | 2 h | 3 h | 4 h | p * (DMSO vs. Mycotoxin(s) Treatment) |
DMSO | 9.70 ± 4.69 | 13.30 ± 5.76 | 16.10 ± 5.57 | 21.10 ± 6.57 | 22.40 ± 7.63 | |
DON | 11.00 ± 6.43 | 13.10 ± 5.65 | 20.80 ± 7.81 | 23.85 ± 9.46 | 24.15 ± 10.23 | |
ZEN | 25.60 ± 17.48 | 32.00 ± 19.58 | 35.30 ± 21.88 | 36.60 ± 22.19 | 40.60 ± 22.16 | 0.002 |
DON + ZEN | 31.20 ± 21.81 | 35.10 ± 18.82 | 43.40 ± 20.44 | 43.80 ± 23.99 | 46.70 ± 22.88 | <0.001 |
Viability (% Live Spermatozoa) | ||||||
DMSO | 81.70 a ± 7.18 | 78.30 a ± 6.63 | 76.00 a ± 9.12 | 71.00 a ± 16.58 | 67.80 a ± 18.70 | |
DON | 80.30 a ± 8.45 | 76.80 a ± 8.30 | 71.50 a ± 10.87 | 65.90 a ± 12.15 | 59.70 b ± 15.38 | 4 h: 0.041 ** |
ZEN | 66.60 b ± 11.34 | 50.20 b ± 12.97 | 37.80 b ± 13.22 | 34.60 b ± 12.77 | 30.80 c ± 12.21 | Each time point: <0.001 ** |
DON + ZEN | 54.10 c ± 14.69 | 37.00 c ± 9.67 | 27.70 c ± 9.38 | 24.10 c ± 11.13 | 21.80 d ± 10.26 | Each time point: <0.001 ** |
Hypoosmotic Swelling Test (HOST, % Spermatozoa with Swollen Tails) | ||||||
0 h | 1 h | 4 h | p * (DMSO vs. Mycotoxin(s) Treatment) | |||
DMSO | 22.90 ± 9.81 | 14.90 ± 4.98 | 8.30 ± 2.95 | |||
DON | 19.80 ± 7.38 | 12.25 ±2.49 | 8.05 ±3.00 | 0.047 | ||
ZEN | 14.40 ± 5.62 | 8.50 ± 3.41 | 4.40 ± 3.81 | <0.001 | ||
DON + ZEN | 12.60 ± 4.95 | 8.00 ± 4.55 | 3.60 ± 3.63 | <0.001 |
CASA Parameters | Mean Values Comparisons and Alterations # | Combined Effect and Type of Interaction (0–4 h of Incubation) |
Immotile | DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. No treatment × time interaction. | Less than additive |
Non progressive | DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. No treatment × time interaction. | Less than additive |
Progressive motile | DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. No treatment × time interaction. | Less than additive |
Rapid | Treatment × time interaction was observed. All time points: DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. DON + ZEN vs. ZEN: 0 h: p < 0.05; 1–4 h: p > 0.05. | 0 h: Potentiation (synergism type 1) effect (DON + ZEN vs. ZEN: p < 0.05) 1–4 h: Less than additive |
Medium | Treatment × time interaction was observed. DON vs. ZEN: 0 h and 2–4 h p < 0.05; 1 h: p > 0.05. All time points DON + ZEN vs. ZEN: p > 0.05. DON + ZEN vs. DON: 0 h and 1 h: p > 0.05; 2–4 h: p < 0.05. | 0 h and 1 h: No interaction 2–4 h: Less than additive (type II) |
Slow | Treatment × time interaction was observed. All time points DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05. DON vs. ZEN: 0–3 h: p < 0.05; 4 h: p > 0.05. | Less than additive |
VCL | Treatment × time interaction was observed. DON + ZEN vs. ZEN: 0 h: p < 0.05; 1–4 h: p > 0.05. All time points: DON + ZEN vs DON: p < 0.05. DON vs ZEN: 0–3 h: p < 0.05; 4 h: p > 0.05. | 0 h: Potentiating interaction (synergism type 1) 1–4 h: Less than additive |
VSL | Similar to parameter “Immotile” | Less than additive |
VAP | Similar to parameter “Immotile” | Less than additive |
Linearity | Treatment × time interaction was observed. All time points: DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. | Less than additive |
Straightness | Treatment × time interaction was observed. All time points: DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. | Less than additive |
ALH | Treatment × time interaction was observed. 0 h and 2 h: DON + ZEN vs. DON: p < 0.05; DON + ZEN vs. ZEN: p > 0.05; DON vs. ZEN: p > 0.05. 1 h, 3 h, 4 h: No significant effect of all treatments on the parameter. | 0 h and 2 h: Less than additive 1 h, 3 h, and 4 h: No interaction |
BCF* | Similar to parameter “Immotile” | Less than additive |
Wobble | Treatment × time interaction was observed. All time points: DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. | Less than additive |
Hyperactive | Treatment × time interaction was observed. All time points: DON + ZEN vs. ZEN: p > 0.05; DON + ZEN vs. DON: 0 h: p < 0.05; 1–4 h: p > 0.05. DON vs. ZEN: 0 h: p < 0.05; 1–2 h: p > 0.05; 3–4 h: No significant effect of all treatments on the parameter. | 0 h and 2 h: Less than additive 1 h, 3 h, and 4 h: No interaction |
Morphology, Viability, HOST, and DNA Integrity Tests | ||
Morphology/Head incidents | DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. No treatment × time interaction. | Less than additive |
Viability/Live spermatozoa | Treatment × time interaction was observed. All time points: DON + ZEN vs. ZEN: p < 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. | Synergistic effect (type 1) |
Sperm membrane functional status/HOST | All time points: DON + ZEN vs. ZEN: p > 0.05 and DON + ZEN vs. DON: p < 0.05 and DON vs. ZEN: p < 0.05. No treatment × time interaction. | Less than additive |
Sperm nuclear chromatin integrity | – | No interaction |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassis, P.D.; Tsakmakidis, I.A.; Nagl, V.; Reisinger, N.; Tzika, E.; Gruber-Dorninger, C.; Michos, I.; Mittas, N.; Basioura, A.; Schatzmayr, D. Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen. Toxins 2020, 12, 495. https://doi.org/10.3390/toxins12080495
Tassis PD, Tsakmakidis IA, Nagl V, Reisinger N, Tzika E, Gruber-Dorninger C, Michos I, Mittas N, Basioura A, Schatzmayr D. Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen. Toxins. 2020; 12(8):495. https://doi.org/10.3390/toxins12080495
Chicago/Turabian StyleTassis, Panagiotis D., Ioannis A. Tsakmakidis, Veronika Nagl, Nicole Reisinger, Eleni Tzika, Christiane Gruber-Dorninger, Ilias Michos, Nikolaos Mittas, Athina Basioura, and Dian Schatzmayr. 2020. "Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen" Toxins 12, no. 8: 495. https://doi.org/10.3390/toxins12080495
APA StyleTassis, P. D., Tsakmakidis, I. A., Nagl, V., Reisinger, N., Tzika, E., Gruber-Dorninger, C., Michos, I., Mittas, N., Basioura, A., & Schatzmayr, D. (2020). Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen. Toxins, 12(8), 495. https://doi.org/10.3390/toxins12080495