New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Setup of the UPLC-MS/MS
2.2. Calibration Study
2.2.1. Linearity and Goodness of the Fit
2.2.2. Sensitivity
2.2.3. Matrix Effects
2.3. Accuracy Study
2.3.1. Precision
2.3.2. Recovery
2.4. Robustness
2.5. Application to Real Samples: Edible Vegetables Exposed to MC and CYN-Producing Extracts
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Toxin Extraction from Lettuce Leaves and SPE
4.3. Chromatographic Conditions
4.4. Analytical Criteria for Method Validation
4.5. Exposure of Edible Vegetables Under Laboratory Conditions and Analysis of Toxins by the Validated Method
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corbel, S.; Mougin, C.; Bouaïcha, N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 2014, 96, 1–15. Available online: https://www.sciencedirect.com/science/article/pii/S0045653513010400 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Rodriguez, I.; Fraga, M.; Alfonso, A.; Guillebault, D.; Medlin, L.; Baudart, J.; Jacob, P.; Helmi, K.; Meyer, T.; Breitenbach, U.; et al. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. Environ. Toxicol. Chem. 2017, 36, 645–654. Available online: https://setac.onlinelibrary.wiley.com/doi/epdf/10.1002/etc.3577 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Zervou, S.K.; Christophoridis, C.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J. Hazard. Mater. 2017, 323, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-W.; Zhan, X.-J.; Xiang, L.; Deng, Z.-S.; Huang, B.-H.; Wen, H.-F.; Sun, T.-F.; Cai, Q.-Y.; Lin, H.; Mo, C.-H. Analysis of trace microcystins in vegetables using matrix solid-phase dispersion followed by high performance liquid chromatography triple-quadrupole mass spectrometry detection. J. Agric. Food Chem. 2014, 62, 11831–11839. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25393522 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Puddick, J.; Prinsep, M.R.; Wood, S.A.; Cary, S.C.; Hamilton, D.P.; Holland, P.T. Further characterization of glycine-containing microcystins from the McMurdo dry valleys of Antarctica. Toxins 2015, 7, 493–515. Available online: https://www.mdpi.com/2072-6651/7/2/493 (accessed on 6 September 2018). [CrossRef] [PubMed] [Green Version]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017, 91, 1049–1130. Available online: https://link.springer.com/article/10.1007/s00204-016-1913-6 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Ohtani, I.; Moore, R.E.; Runnegar, M.T.C. Cylindrospermopsin: A potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 1992, 114, 7941–7942. Available online: https://pubs.acs.org/doi/abs/10.1021/ja00046a067 (accessed on 6 September 2018). [CrossRef]
- Gutiérrez-Praena, D.; Jos, A.; Pichardo, S.; Moreno, I.M.; Cameán, A.M. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: A review. Food Chem. Toxicol. 2013, 53, 139–152. Available online: https://www.sciencedirect.com/science/article/pii/S0278691512008083 (accessed on 6 September 2018). [CrossRef]
- Silva, P.; Vasconcelos, V. Allelopathic effect of Cylindrospermopsis raciborskii extracts on the germination and growth of several plant species. Chem. Ecol. 2010, 26, 263–271. Available online: https://doi.org/10.1080/02757540.2010.495060 (accessed on 6 September 2018). [CrossRef]
- Prieto, A.; Campos, A.; Cameán, A.; Vasconcelos, V. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicol. Environ. Saf. 2011, 74, 1973–1980. Available online: https://www.sciencedirect.com/science/article/pii/S0147651311001734 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Kittler, K.; Schreiner, M.; Krumbein, A.; Manzei, S.; Koch, M.; Rohn, S.; Maul, R. Uptake of the cyanobacterial toxin cylindrospermopsin in Brassica vegetables. Food Chem. 2012, 133, 875–879. Available online: https://www.sciencedirect.com/science/article/pii/S0308814612001598 (accessed on 6 September 2018). [CrossRef]
- Hereman, T.C.; Bittencourt-Oliveira, M.C. Bioaccumulation of Microcystins in lettuce. J. Phycol. 2012, 48, 1535–1537. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/jpy.12006 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Romero-Oliva, C.S.; Contardo-Jara, V.; Block, T.; Pflugmacher, S. Accumulation of microcystin congeners in different aquatic plants and crops—A case study from lake Amatitlán, Guatemala. Ecotoxicol. Environ. Saf. 2014, 102, 121–128. Available online: https://www.sciencedirect.com/science/article/pii/S0147651314000359 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Bittencourt-Oliveira, M.C.; Cordeiro-Araújo, M.K.; Chia, M.A.; Arruda-Neto, J.D.; de Oliveira, E.T.; dos Santos, F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol. Environ. Saf. 2016, 128, 83–90. Available online: https://www.sciencedirect.com/science/article/pii/S0147651316300446 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Cordeiro-Araújo, M.K.; Chia, M.A.; Arruda-Neto, J.D.T.; Tornisielo, V.L.; Vilca, F.Z.; Bittencourt-Oliveira, M.C. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment. Sci. Total Environ. 2016, 566, 1379–1386. Available online: https://www.sciencedirect.com/science/article/pii/S0048969716311421 (accessed on 6 September 2018). [CrossRef]
- Guzmán-Guillén, R.; Maisanaba, S.; Prieto Ortega, A.I.; Valderrama-Fernández, R.; Jos, A.; Cameán, A.M. Changes on cylindrospermopsin concentration and characterization of decomposition products in fish muscle (Oreochromis niloticus) by boiling and steaming. Food Control 2017, 77, 210–220. [Google Scholar] [CrossRef]
- Saker, M.L.; Eaglesham, G.K. The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon 1999, 37, 1065–1077. [Google Scholar] [CrossRef]
- Shaw, G.R.; Seawright, A.A.; Moore, M.A.; Lam, P.K.S. Cylindrospermopsin, a cyanobacterial alkaloid: Evaluation of its toxicological activity. Ther. Drug Monit. 2000, 22, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Rucker, J.; Stuken, A.; Nixdorf, B.; Fastner, J.; Chorus, I.; Wiedner, C. Concentration of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 2007, 50, 800–809. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17804031 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Messineo, V.; Bogialli, S.; Melchiorre, S.; Sechi, N.; Lugliè, A.; Casiddu, P.; Mariani, M.A.; Padedda, B.M.; Di Corcia, A.; Mazza, R.; et al. Cyanobacterial toxins in Italian freshwaters. Limnologica 2009, 39, 95–106. Available online: https://www.sciencedirect.com/science/article/pii/S0075951108000662 (accessed on 6 September 2018). [CrossRef] [Green Version]
- Cartmell, C.; Evans, D.M.; Elwood, J.M.L.; Fituri, H.S.; Murphy, P.J.; Caspari, T.; Poniedzialek, B.; Rzymski, P. Synthetic analogues of cyanobacterial alkaloid cylindrospermopsin and their toxicological activity. Toxicol. In Vitro 2017, 44, 172–181. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28705760 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Crush, J.R.; Briggs, L.R.; Sprosen, J.M.; Nichols, S.N. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ. Toxicol. 2008, 23, 246–252. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18214908 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Drobac, D.; Tokodi, N.; Kiprovski, B.; Malenčić, D.; Važić, T.; Nybom, S.; Meriluoto, J.; Svirčev, Z. Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of Capsicum annuum. J. Toxicol. Environ. Health (Part A) 2017, 80, 145–154. Available online: https://www.tandfonline.com/doi/full/10.1080/15287394.2016.1259527 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Cordeiro-Araújo, M.K.; Chia, M.A.; Bittencourt-Oliveira, M.C. Potential human health risk assessment of cylindrospermopsin accumulation and depuration in lettuce and arugula. Harm. Algae 2017, 68, 217–223. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27267723 (accessed on 6 September 2018). [CrossRef]
- World Health Organization. Cyanobacterial Toxins: Microcystin-LR in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality. 2003. Available online: http://www.who.int/water_sanitation_health/dwq/chemicals/cyanobactoxins.pdf (accessed on 6 September 2018).
- Humpage, A.R.; Falconer, I.R. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 2003, 18, 94–103. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12635097 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Flores, C.; Caixach, J. An integrated strategy for rapid and accurate determination of free and cell-bound microcystins and related peptides in natural blooms by liquid chromatography-electrospray-high resolution mass spectrometry and matrix-assisted laser desorption/ionization ionizationtime-of-flight/time-of-flight mass spectrometry using both positive and negative ionization modes. J. Chromatogr. A 2015, 1407, 76–89. Available online: https://www.sciencedirect.com/science/article/pii/S0021967315008699 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Cameán, A.; Moreno, I.M.; Ruiz, M.J.; Picó, Y. Determination of microcystins in natural blooms and cyanobacterial strains cultures by matrix solid-phase dispersion and liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2004, 380, 537–544. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15365676 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Moreno, I.M.; Molina, R.; Jos, Á.; Picó, Y.; Cameán, A.M. Determination of microcystins in fish by solvent extraction and liquid chromatography. J. Chromatogr. A 1080, 1080, 199–203. Available online: https://www.sciencedirect.com/science/article/pii/S0021967305010228 (accessed on 6 September 2018). [CrossRef]
- Ruiz, M.J.; Cameán, A.M.; Moreno, I.M.; Picó, Y. Determination of microcystins in biological samples by matrix solid-phase dispersion (MSDP) and liquid chromatography-mass spectrometry (LC-MS). J. Chromatogr. A 2005, 1073, 257–262. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15909527 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Geis-Asteggiante, L.; Lehotay, S.J.; Fortis, L.L.; Paoli, G.; Wijey, C.; Heinzen, H. Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA. Anal. Bioanal. Chem. 2011, 401, 2617–2630. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21881880 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Corbel, S.; Mougin, C.; Nélieu, S.; Delarue, G.; Bouaïcha, N. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR (14C-MC-LR). Sci. Total Environ. 2016, 541, 1052–1058. Available online: https://www.sciencedirect.com/science/article/pii/S0048969715308214 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Greer, B.; McNamee, S.E.; Boots, B.; Cimarelli, L.; Guillebault, D.; Helmi, K.; Marcheggiani, S.; Panaiotov, S.; Breitenbach, U.; Akçaalan, R.; et al. A validated UPLC-MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. Harm. Algae 2016, 55, 31–40. Available online: https://www.sciencedirect.com/science/article/pii/S156898831530086X (accessed on 6 September 2018). [CrossRef] [PubMed]
- Pekar, H.; Westerberga, E.; Brunoa, O.; Laanec, A.; Perssond, K.M.; Sundstromf, L.F.; Thim, A.M. Fast, rugged and sensitive ultra-high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water- First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J. Chromatogr. A 2016, 1429, 265–276. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26755412 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Prieto, A.I.; Guzmán-Guillén, R.; Valderrama-Fernández, R.; Jos, A.; Cameán, A.M. Influence of Cooking (Microwaving and Broiling) on Cylindrospermopsin Concentration in Muscle of Nile Tilapia (Oreochromis niloticus) and Characterization of Decomposition Products. Toxins 2017, 9, 177–190. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28587145 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Theunis, M.; Naessens, T.; Verhoeven, V.; Hermans, N.; Apers, S. Development and validation of a robust high-performance liquid chromatographic method for the analysis of monacolins in red yeast rice. Food Chem. 2017, 234, 33–37. Available online: https://www.sciencedirect.com/science/article/pii/S0308814617307148 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Turner, A.D.; Waack, J.; Lewis, A.; Edwards, C.; Lawton, L. Development and single-laboratory validation of a UHPLC-MS/MS method for quantitation of microcystins and nodularin in natural water, cyanobacteria, shellfish and algal supplement tablet powders. J. Chromatogr. B 2018, 1074, 111–123. Available online: https://www.sciencedirect.com/science/article/pii/S157002321731869X (accessed on 6 September 2018). [CrossRef] [PubMed]
- Guzmán-Guillén, R.; Prieto, A.I.; Gónzalez, A.G.; Soria-Díaz, M.E.; Cameán, A.M. Cylindrospermopsin determination in water by LC-MS/MS: Optimization and validation of the method and application to real samples. Environ. Toxicol. Chem. 2012, 31, 2233–2238. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22825923 (accessed on 6 September 2018). [CrossRef]
- Guzmán-Guillén, R.; Moreno, I.M.; Prieto, A.I.; Soria-Díaz, M.E.; Vasconcelos, V.M.; Cameán, A.M. CYN determination in tissues from fresh water fish by LC–MS/MS: Validation and application in tissues from subchronically exposed tilapia (Oreochromis niloticus). Talanta 2015, 131, 452–459. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25281126 (accessed on 6 September 2018). [CrossRef]
- Prieto, A.I.; Guzmán-Guillén, R.; Díez-Quijada, L.; Campos, A.; Vasconcelos, V.; Jos, Á.; Cameán, A.M. Validation of a method for cylindrospermopsin determination in vegetables: Application to real samples such as lettuce (Lactuca sativa L.). Toxins 2018, 10, 1–15. Available online: http://www.readcube.com/articles/10.3390/toxins10020063 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Testai, E.; Buratti, F.M.; Funari, E.; Manganelli, M.; Vichi, S.; Arnich, N.; Biré, R.; Fessard, V.; Sialehaamoa, A. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ. 2016, 13, 1–309. Available online: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2016.EN-998 (accessed on 6 September 2018). [CrossRef]
- Yen, H.K.; Lin, T.F.; Liao, P.C. Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon 2011, 58, 209–218. Available online: https://www.sciencedirect.com/science/article/pii/S0041010111001905 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Zamyadi, A.; MacLeod, S.L.; Fan, Y.; McQuaid, N.; Dorner, S.; Sauvé, S.; Prévost, M. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Res. 2012, 46, 1511–1523. Available online: https://www.sciencedirect.com/science/article/pii/S0043135411006841 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Oehrle, S.A.; Southwell, B.; Westrick, J. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry. Toxicon 2010, 55, 965–972. Available online: https://www.ncbi.nlm.nih.gov/pubmed/19878689 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Szlag, D.C.; Sinclair, J.L.; Southwell, B.; Westrick, J.A. Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins 2015, 7, 2198–2220. Available online: https://www.mdpi.com/2072-6651/7/6/2198 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Trifirò, G.; Barbaro, E.; Gambaro, A.; Vita, V.; Clausi, M.T.; Franchino, C.; Palumbo, M.P.; Floridi, F.; De Pace, R. Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops. Anal. Bioanal. Chem. 2016, 408, 7699–7708. Available online: https://link.springer.com/article/10.1007/s00216-016-9867-3 (accessed on 6 September 2018). [CrossRef] [PubMed] [Green Version]
- Qian, Z.-Y.; Li, Z.-G.; Ma, J.; Gong, T.-T.; Xian, Q.-M. Analysis of trace microcystins in vegetables using matrix solid-phase dispersion followed by high performance liquid chromatography triple-quadrupole mass spectrometry detection. Talanta 2017, 173, 101–106. Available online: https://www.sciencedirect.com/science/article/pii/S0039914017306070 (accessed on 6 September 2018). [CrossRef] [PubMed]
- González, A.G.; Herrador, M.A. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal. Chem. 2007, 26, 227–238. Available online: https://www.sciencedirect.com/science/article/pii/S0165993607000118 (accessed on 6 September 2018). [CrossRef]
- González, A.G.; Herrador, M.A.; Asuero, A.G. Intra-laboratory assessment of method accuracy (trueness and precision) by using validation standards. Talanta 2010, 82, 1995–1998. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20875607 (accessed on 6 September 2018). [CrossRef]
- AOAC International; AOAC Official Methods of Analysis. Guidelines for Standard Method Performance Requirements; Appendix F; AOAC International: Rockville, MD, USA, 2016; Available online: http://www.eoma.aoac.org/app_f.pdf (accessed on 6 September 2018).
- Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics. Available online: www.eurachem.org (accessed on 2 October 2018).
- Yuan, M.; Namikoshi, M.; Otsuki, A.; Rinehart, K.L.; Sivonen, K.; Watanabe, M.F. Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide Microcystins by electrospray ionization mass spectrometry. J. Mass Spectrom. 1999, 34, 33–43. Available online: https://www.ncbi.nlm.nih.gov/pubmed/10028690 (accessed on 6 September 2018). [CrossRef]
- Dell’Aversano, C.; Eaglesham, G.K.; Quilliam, M.A. Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography–mass spectrometry. J. Chromatogr. A 2004, 1028, 155–164. Available online: http://www.ncbi.nlm.nih.gov/pubmed/14969289 (accessed on 6 September 2018). [CrossRef]
- Huber, L. Validation and Qualification in Analytical Laboratories; Interpharm: East Englewood, CO, USA, 1998; pp. 1–288. [Google Scholar]
- Manubolu, M.; Lee, J.; Riedi, K.M.; Kua, Z.X.; Collart, L.P.; Collart, S.P.; Ludsin, S.A. Optimization of extraction Methods for quantification of microcystin-LR and microcystin-RR in fish, vegetables, and soil matrices using UPLC-MS/MS. Harm. Algae 2018, 76, 47–57. Available online: https://www.sciencedirect.com/science/article/pii/S1568988318300593 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. Available online: https://www.degruyter.com/view/j/pac.2002.74.issue-5/pac200274050835/pac200274050835.xml (accessed on 6 September 2018). [CrossRef] [Green Version]
- Taverniers, I.; Van Bockstaele, E.; De Loose, M. Trends in quality in the analytical laboratory, II: Analytical method validation and quality assurance. Trends Anal. Chem. 2004, 23, 535–552. Available online: https://www.sciencedirect.com/science/article/pii/S0165993604030031 (accessed on 6 September 2018). [CrossRef]
- ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, ICH Working Group, November 2005. Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 6 September 2018).
- Youden, W.J. Statistical Techniques for Collaborative Tests; Association of Official Analytical Chemists: Washington, DC, USA, 1967; pp. 1–64. [Google Scholar]
- Jensen, M.H.; Malter, A.J. Chapter 7: Water Supply, Water Quality and Mineral Nutrition. In Protected Agriculture: A Global Review, 1st ed.; The World Bank: Washington, DC, USA, 1995; pp. 65–69. [Google Scholar]
- Freitas, M.; Azevedo, J.; Pinto, E.; Neves, J.; Campos, A.; Vasconcelos, V. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Banker, R.; Carmeli, S.; Hadas, O.; Teltsch, B.; Porat, R.; Sukenik, A. Identification of cylindrospermopsin in Aphanizomenon ovalisporum (cyanophyceae) isolated from Lake Kinneret, Israel. J. Phycol. 1997, 33, 613–616. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0022-3646.1997.00613.x (accessed on 6 September 2018). [CrossRef]
- Campos, A.; Araújo, P.; Pinheiro, C.; Azevedo, J.; Osório, H.; Vasconcelos, V. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol. Environ. Saf. 2013, 94, 45–53. Available online: https://www.ncbi.nlm.nih.gov/pubmed/23726538 (accessed on 6 September 2018). [CrossRef] [PubMed]
- Pinheiro, C.; Azevedo, J.; Campos, A.; Loureiro, S. Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR on selected marine and freshwater phytoplankton species. Hydrobiologia 2013, 705, 27–42. Available online: https://link.springer.com/article/10.1007/s10750-012-1372-x (accessed on 6 September 2018). [CrossRef]
- Welker, M.; Bickel, H.; Fastner, J. HPLC-DAD detection of cylindrospermopsin-Opportunities and limits. Water Res. 2002, 36, 4659–4663. Available online: https://www.sciencedirect.com/science/article/pii/S004313540200194X (accessed on 6 September 2018). [CrossRef]
Validation Parameters | |||||||
---|---|---|---|---|---|---|---|
Toxin Concentration Level (µg L−1) | SW | SB | SIP | RSDIP (%) | LOD (ng g−1 f.w. 1) | LOQ (ng g−1 f.w. 1) | |
MC-LR | 5 | 0.20 | 1.10 | 0.66 | 21.68 | 0.06 | 0.16 |
20 | 2.06 | 2.20 | 2.11 | 13.21 | |||
50 | 4.62 | 8.85 | 6.35 | 15.12 | |||
MC-RR | 5 | 0.14 | 0.21 | 0.17 | 8.31 | 0.23 | 0.50 |
20 | 1.38 | 2.36 | 1.77 | 9.54 | |||
50 | 3.30 | 8.47 | 5.58 | 12.58 | |||
MC-YR | 5 | 0.23 | 0.74 | 0.46 | 19.86 | 0.42 | 0.91 |
20 | 1.32 | 1.79 | 1.49 | 11.14 | |||
50 | 2.67 | 4.93 | 3.59 | 9.64 | |||
CYN | 5 | 0.28 | 0.65 | 0.44 | 19.30 | 0.07 | 0.19 |
20 | 0.82 | 1.20 | 0.96 | 6.92 | |||
50 | 1.65 | 5.85 | 3.64 | 11.62 |
Combined Variables | Toxins | t Values | ||
---|---|---|---|---|
F1 | High (+) | 15 min | MC-LR | 1.793 |
MC-RR | 0.232 | |||
Low (−) | 10 min | MC-YR | 1.996 | |
CYN | 1.241 | |||
F2 | High (+) | 15 min | MC-LR | 0.059 |
MC-RR | 0.381 | |||
Low (−) | 10 min | MC-YR | 0.042 | |
CYN | 0.358 | |||
F3 | High (+) | 1 min and 15 s | MC-LR | 0.346 |
MC-RR | 0.234 | |||
Low (−) | 1 min | MC-YR | 1.055 | |
CYN | 2.231 |
Combination Possibilities | F1 | F2 | F3 |
---|---|---|---|
C1 (+++) | 15 min | 15 min | 1 min |
C2 (++−) | 15 min | 15 min | 1 min 15 s |
C3 (+−+) | 15 min | 10 min | 1 min |
C4 (+−−) | 15 min | 10 min | 1 min 15 s |
C5 (−++) | 10 min | 15 min | 1 min |
C6 (−+−) | 10 min | 15 min | 1 min 15 s |
C7 (−−+) | 10 min | 10 min | 1 min |
C8 (−−−) | 10 min | 10 min | 1 min 15 s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Quijada, L.; Guzmán-Guillén, R.; Prieto Ortega, A.I.; Llana-Ruíz-Cabello, M.; Campos, A.; Vasconcelos, V.; Jos, Á.; Cameán, A.M. New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins 2018, 10, 406. https://doi.org/10.3390/toxins10100406
Díez-Quijada L, Guzmán-Guillén R, Prieto Ortega AI, Llana-Ruíz-Cabello M, Campos A, Vasconcelos V, Jos Á, Cameán AM. New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins. 2018; 10(10):406. https://doi.org/10.3390/toxins10100406
Chicago/Turabian StyleDíez-Quijada, Leticia, Remedios Guzmán-Guillén, Ana I. Prieto Ortega, María Llana-Ruíz-Cabello, Alexandre Campos, Vítor Vasconcelos, Ángeles Jos, and Ana M. Cameán. 2018. "New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS" Toxins 10, no. 10: 406. https://doi.org/10.3390/toxins10100406
APA StyleDíez-Quijada, L., Guzmán-Guillén, R., Prieto Ortega, A. I., Llana-Ruíz-Cabello, M., Campos, A., Vasconcelos, V., Jos, Á., & Cameán, A. M. (2018). New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins, 10(10), 406. https://doi.org/10.3390/toxins10100406