The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review
Abstract
:1. Introduction
2. Search Methodology
3. Results
3.1. Energy Content
3.2. Nitrogenous Compounds
3.2.1. Protein Content
3.2.2. Immunoglobulins (Igs)
3.2.3. Lactoferrin and Lysozyme
3.2.4. Other Enzymes
3.2.5. Cytokines
3.2.6. Growth Factors
3.2.7. Amino Acids
3.3. Hormones
3.4. Vitamins
3.5. Zinc
3.6. Lipids
3.7. Saccharides
3.8. Indicators of Thermal Treatment
3.9. Oxidative Stress Markers
3.10. Organic Acids
3.11. Recently Published Research
4. Discussion and Conclusions
Author Contributions
Conflicts of Interest
References
- American Academy of Paediatrics. Breastfeeding and use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar]
- Hamosh, M. Protective function of proteins and lipids in human milk. Biol. Neonate 1998, 74, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Victora, C.G.; World Health Organization. Long-Term Effects of Breastfeeding: A Systematic Review; WHO Library: Geneva, Switzerland, 2013. [Google Scholar]
- Newman, J. How breast milk protects newborns. Sci. Am. 1995, 273, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Italian Association of Human Milk Banks; Arslanoglu, S.; Bertino, E.; Tonetto, P.; De Nisi, G.; Ambruzzi, A.M.; Biasini, A.; Profeti, C.; Spreghini, M.R.; Moro, G.E. Guidelines for the establishment and operation of a donor human milk bank. J. Matern. Fetal Neonat. Med. 2010, 23, 1–20. [Google Scholar]
- Human Milk Banking Association of North America. Guidelines for the Establishment and Operation of a Donor Human Milk Bank; Human Milk Banking Association of North America: Raleigh, NC, USA, 2000. [Google Scholar]
- Boyd, C.A.; Quigley, M.A.; Brocklehurst, P. Donor breast milk versus infant formula for preterm infants: Systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonat. Ed. 2007, 92, F169–F175. [Google Scholar] [CrossRef] [PubMed]
- McGuire, W.; Anthony, M.Y. Donor human milk versus formula for preventing necrotising enterocolitis in preterm infants: Systematic review. Arch. Dis. Child. Fetal Neonat. Ed. 2003, 88, F11–F14. [Google Scholar] [CrossRef]
- Quigley, M.A.; Henderson, G.; Anthony, M.Y.; McGuire, W. Formula milk versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 2007, 4. [Google Scholar] [CrossRef]
- Rønnestad, A.; Abrahamsen, T.G.; Medbø, S.; Reigstad, H.; Lossius, K.; Kaaresen, P.I.; Egeland, T.; Engelund, I.E.; Irgens, L.M.; Markestad, T. Late onset septicemia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics 2005, 115, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Schanler, R.J.; Lau, C.; Hurst, N.M.; Smith, E.O. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics 2005, 116, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Tully, D.B.; Jones, F.; Tully, M.R. Donor milk: What’s in it and what’s not. J. Hum. Lact. 2001, 17, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Ogundele, M.O. Techniques for the storage of human breast milk: Implications for anti-microbial functions and safety of stored milk. Eur. J. Pediatr. 2000, 159, 793–797. [Google Scholar] [CrossRef] [PubMed]
- ESPGHAN Committee on Nutrition; Arslanoglu, S.; Corpeleijn, W.; Moro, G.; Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; et al. Donor human milk for preterm infants: Current evidence and research directions. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 535–542. [Google Scholar]
- Björksten, B.; Burman, L.G.; De Château, P.; Fredrikzon, B.; Gothefors, L.; Hernell, O. Collecting and banking human milk: To heat or not to heat. Br. Med. J. 1980, 281, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Ewaschuk, J.B.; Unger, S.; Harvey, S.; O’Connor, D.L.; Field, C.J. Effect of pasteurization on immune components of milk: Implications for feeding preterm infants. Appl. Physiol. Nutr. Metab. 2011, 36, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hanley, A.J.; Stone, D.; O’Connor, D.L. Effects of pasteurization on adiponectin and insulin concentrations in donor human milk. Pediatr. Res. 2011, 70, 278–281. [Google Scholar] [CrossRef] [PubMed]
- García-Lara, N.R.; Vieco, D.E.; De la Cruz-Bértolo, J.; Lora-Pablos, D.; Velasco, N.U.; Pallás-Alonso, C.R. Effect of Holder pasteurization and frozen storage on macronutrients and energy content of breast milk. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.A.; Soares, F.V.; Pimenta, H.P.; Abranches, A.D.; Moreira, M.E. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011, 87, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; de Albuquerque Diniz, E.M.; Barbosa, S.F.; Vaz, F.A. Immunologic factors in human milk: The effects of gestational age and pasteurization. J. Hum. Lact. 2005, 21, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Hamprecht, K.; Maschmann, J.; Müller, D.; Dietz, K.; Besenthal, I.; Goelz, R.; Middeldorp, J.M.; Speer, C.P.; Jahn, G. Cytomegalovirus (CMV) inactivation in breast milk: Reassessment of pasteurization and freeze-thawing. Pediatr. Res. 2004, 56, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, D.; Ferrer, E.; Gayá, J.; Jareño, E.; Miranda, M.; Muriach, M.; Romero, F.J. Available lysine content in human milk: Stability during manipulation prior to ingestion. Biofactors 2006, 26, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Góes, H.C.; Torres, A.G.; Donangelo, C.M.; Trugo, N.M. Nutrient composition of banked human milk in Brazil and influence of processing on zinc distribution in milk fractions. Nutrition 2002, 18, 590–594. [Google Scholar] [CrossRef]
- Ford, J.E.; Law, B.A.; Marshall, V.M.E.; Reiter, B. Influence of the heat treatment of human milk on some of its protective constituents. J. Pediatr. 1977, 90, 29–35. [Google Scholar] [CrossRef]
- Viazis, S.; Farkas, B.E.; Allen, J.C. Effects of high-pressure processing on immunoglobulin A and lysozyme activity in human milk. J. Hum. Lact. 2007, 23, 253–261. [Google Scholar] [CrossRef]
- Contador, R.; Delgado-Adámez, J.; Delgado, F.J.; Cava, R.; Ramírez, R. Effect of thermal pasteurisation or high pressure processing on immunoglobulin and leukocyte contents of human milk. Int. Dairy J. 2013, 32, 1–5. [Google Scholar] [CrossRef]
- Permanyer, M.; Castellote, C.; Ramírez-Santana, C.; Audí, C.; Pérez-Cano, F.J.; Castell, M.; López-Sabater, M.C.; Franch, A. Maintenance of breast milk immunoglobulin A after high-pressure processing. J. Dairy Sci. 2010, 93, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Liebhaber, M.; Lewiston, N.J.; Asquith, M.T.; Olds-Arroyo, L.; Sunshine, P. Alterations of lymphocytes and of antibody content of human milk after processing. J. Pediatr. 1977, 91, 897–900. [Google Scholar] [CrossRef]
- Goldsmith, S.J.; Dickson, J.S.; Barnhart, H.M.; Toledo, R.T.; Eiten-Miller, R.R. IgA, IgG, IgM and lactoferrin contents of human milk during early lactation and the effect of processing and storage. J. Food Prot. 1983, 1, 4–7. [Google Scholar]
- Evans, T.J.; Ryley, H.C.; Neale, L.M.; Dodge, J.A.; Lewarne, V.M. Effect of storage and heat on antimicrobial proteins in human milk. Arch. Dis. Child. 1978, 53, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Martos, I.; Montilla, A.; de Segura, A.G.; Escuder, D.; Bustos, G.; Pallás, C.; Rodríguez, J.M.; Corzo, N.; Fernández, L. Bacteriological, biochemical, and immunological modifications in human colostrum after Holder pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.G.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014, 151, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Baro, C.; Giribaldi, M.; Arslanoglu, S.; Giuffrida, M.G.; Dellavalle, G.; Conti, A.; Tonetto, P.; Biasini, A.; Coscia, A.; Fabris, C.; et al. Effect of two pasteurization methods on the protein content of human milk. Front. Biosci. 2001, 3, 818–829. [Google Scholar] [CrossRef]
- Czank, C.; Prime, D.K.; Hartmann, B.; Simmer, K.; Hartmann, P.E. Retention of the immunological proteins of pasteurized human milk in relation to pasteurizer design and practice. Pediatr. Res. 2009, 66, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Christen, L.; Lai, C.T.; Hartmann, B.; Hartmann, P.E.; Geddes, D.T. The effect of UV-C pasteurization on bacteriostatic properties and immunological proteins of donor human milk. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.H.; Fisher, C.; Bhattacharya, S.; Goddard, P.; Baum, J.D. Drip breast milk: Its composition, collection and pasteurization. Early Hum. Dev. 1977, 1, 227–245. [Google Scholar] [CrossRef]
- Henderson, T.R.; Fay, T.N.; Hamosh, M. Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J. Pediatr. 1998, 132, 876–878. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Unger, S.; O’Connor, D.L.; Stone, D.; Harvey, S.; Clandinin, M.T.; Field, C.J. Effect of pasteurization on selected immune components of donated human breast milk. J. Perinatol. 2011, 31, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Delgado, F.J.; Cava, R.; Delgado, J.; Ramírez, R. Tocopherols, fatty acids and cytokines content of Holder pasteurised and high-pressure processed human milk. Dairy Sci. Technol. 2014, 94, 145–156. [Google Scholar] [CrossRef]
- Untalan, P.B.; Keeney, S.E.; Palkowetz, K.H.; Rivera, A.; Goldman, A.S. Heat susceptibility of interleukin-10 and other cytokines in donor human milk. Breastfeed Med. 2009, 4, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Goelz, R.; Hihn, E.; Hamprecht, K.; Dietz, K.; Jahn, G.; Poets, C.; Elmlinger, M. Effects of different CMV heat- inactivation-methods on growth factors in human breast milk. Pediatr. Res. 2009, 65, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Carratù, B.; Ambruzzi, A.M.; Fedele, E.; Sanzini, E. Human Milk Banking: Influence of different pasteurization temperatures on levels of protein sulphur amino acids and some free amino acids. J. Food Sci. 2005, 70, c373–c375. [Google Scholar] [CrossRef]
- Valentine, C.J.; Morrow, B.S.; Fernandez, S.; Gulati, P.; Bartholomew, D.; Long, D.; Welty, S.E.; Morrow, A.L.; Rogers, L.K. Docosahexaenoic acid and amino acid contents in pasteurized donor milk are low for preterm infants. J. Pediatr. 2010, 157, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Van Zoeren-Grobben, D.; Schrijver, J.; Van den Berg, H.; Berger, H.M. Human milk vitamin content after pasteurisation, storage, or tube feeding. Arch. Dis. Child. 1987, 62, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.J.; Eitenmiller, I.R.R.; Toledo, R.T.; Barnhart, H.M. Effects of processing and storage on the water-soluble vitamin content of human milk. J. Food Sci. 1983, 48, 994–995. [Google Scholar] [CrossRef]
- Moltó-Puigmartí, C.; Permanyer, M.; Castellote, A.I.; López-Sabater, M.C. Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem. 2011, 124, 697–702. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Castellote, A.I.; Gayà, A.; López-Sabater, M.C. Effect of pasteurisation on ascorbic acid, dehydroascorbic acid, tocopherols and fatty acids in pooled mature human milk. Food Chem. 2008, 107, 434–438. [Google Scholar] [CrossRef]
- Oliveira, A.M.M.M.; Marinho, H.A. Determination of Vitamin A in the milk of donor mothers from the human milk bank in Manaus/AM. Effect of processing. Acta Amazon. 2010, 40, 59–64. [Google Scholar] [CrossRef]
- Ribeiro, K.D.; Melo, I.L.; Pristo, A.Z.; Dimenstein, R. The effect of processing on the Vitamin A content of human milk. J. Pediatr. 2005, 81, 61–64. [Google Scholar] [CrossRef]
- Fidler, N.; Sauerwald, T.U.; Demmelmair, H.; Koletzko, B. Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. Adv. Exp. Med. Biol. 2001, 501, 485–495. [Google Scholar] [PubMed]
- Lepri, L.; Del Bubba, M.; Maggini, R.; Donzelli, G.P.; Galvan, P. Effect of pasteurization and storage on some components of pooled human milk. J. Chromatogr. B Biomed. Sci. Appl. 1997, 704, 1–10. [Google Scholar] [CrossRef]
- Borgo, L.A.; Cohelho Araujo, W.M.; Conceição, M.H.; Sabioni Resck, I.; Mendonça, M.A. Are fat acids of human milk impacted by pasteurization and freezing? Nutr. Hosp. 2015, 31, 1386–1393. [Google Scholar]
- Wardell, J.M.; Hill, C.M.; D’Souza, S.W. Effect of pasteurization and of freezing and thawing human milk on its triglyceride content. Acta Paediatr. Scand. 1981, 70, 467–471. [Google Scholar] [CrossRef] [PubMed]
- De Segura, A.G.; Escuder, D.; Montilla, A.; Bustos, G.; Pallás, C.; Fernández, L.; Corzo, N.; Rodríguez, J.M. Heating-induced bacteriological and biochemical modifications in human donor milk after Holder pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Bertino, E.; Coppa, G.V.; Giuliani, F.; Coscia, A.; Gabrielli, O.; Sabatino, G.; Sgarrella, M.; Testa, T.; Zampini, L.; Fabris, C. Effects of Holder pasteurization on human milk oligosaccharides. Int. J. Immunopathol. Pharmacol. 2008, 21, 381–385. [Google Scholar] [PubMed]
- Coscia, A.; Peila, C.; Bertino, E.; Coppa, G.V.; Moro, G.E.; Gabrielli, O.; Zampini, L.; Galeazzi, T.; Maccari, F.; Volpi, N. Effect of Holder pasteurisation on human milk glycosaminoglycans. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Contador, R.; Delgado, F.J.; García-Parra, J.; Garrido, M.; Ramírez, R. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food Chem. 2015, 180, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, D.; Miranda, M.; Muriach, M.; Almansa, I.; Jareno, E.; Romero, F.J. Antioxidant capacity of human milk: Effect of thermal conditions for the pasteurization. Acta Paediatr. 2008, 97, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Kitts, D.D. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J. Clin. Biochem. Nutr. 2011, 49, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J.; García-Gómez, D.; Ramírez-Bernabé, R.; Carabias-Martínez, R. Analysis of free nucleotide monophosphates in human milk and effect of pasteurisation or high-pressure processing on their contents by capillary electrophoresis coupled to mass spectrometry. Food Chem. 2015, 174, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [PubMed]
- Ochoa, T.J.; Cleary, T.G. Effect of lactoferrin on enteric pathogens. Biochimie 2009, 91, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Mayayo, C.; Monteserrat, M.; Ramos, S.J.; Martínez-Lorenzo, C.; Calvo, M.; Sánchez, L.; Péreza, M.D. Kinetic parameters for high-pressure-induced denaturation of lactoferrin in human milk. Int. Dairy J. 2014, 39, 246–252. [Google Scholar] [CrossRef]
- Hamosh, M. Digestion of the premature infant: The effect of the human milk. Sem. Perinatol. 1994, 18, 485–494. [Google Scholar]
- Macdonald, L.E.; Brett, J.; Kelton, D.; Majowicz, S.E.; Snedeker, K.; Sargeant, J.M. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 2011, 74, 1814–1832. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S. Glycobiology of human milk. Biochemistry 2013, 78, 771–785. [Google Scholar] [CrossRef] [PubMed]
Ref * | Preterm/Term | Phase of Lactation | Expression Method | Status | Pre-Pasteurization Storage | Pasteurization Equipment | Sample Size | Analytical Method ° |
---|---|---|---|---|---|---|---|---|
[17] | N/A | Mature | N/A | Frozen | −20 °C up to 6 months; thawing in a water bath at 37.5 °C | Sterifeed: pre-heated water bath (63.2 °C); 62.5 °C for 30′; cooling in cold water bath | 17 pools—4 donors each | Adiponectine: RIA |
Insulin: electrochemiluminescence immunoassay | ||||||||
Total fat: creamatocrit | ||||||||
Total protein: BCA | ||||||||
Total energy: bomb calorimetry | ||||||||
Glucose: enzymatic method | ||||||||
[18] | Preterm and Term | Mature | Hand or electric/manual pump | Frozen | −20 °C until processing; thawing and heating to 40 °C using a thermostatic bath | 62.5 °C for 30′; cooling to <4 °C in stirred thermostatic baths | 34 samples—28 donors | Infrared Analyzer (MIRIS) |
[19] | N/A | N/A | Hand or electric/manual pump | Fresh | No | 62.5 °C for 30′ | 57 samples | Infrared Analyzer (Milko-scan Minor) |
[20] | Preterm and Term | Colostrum | Hand | Fresh | No | 62.5 °C for 30′ | 36 samples: <32 weeks; 32 samples: 32–36 weeks; 33 samples: >36 weeks | Total protein: refraction index |
Lysozyme: lysoplate method | ||||||||
Immunoglobulins: RIA | ||||||||
[21] | Term | N/A | N/A | Fresh | No | LABU-Muttermilch pasteurizer: 62.5 °C for 30′ | 4 Samples—2 CMV-positive and 2 CMV-negative donors | Total protein, alkaline phosphatase and lipase activity: Hitachi 917 Automatic Analyzer |
Folic acid, Vitamin B12: chemiluminescence immunoassays | ||||||||
sIgA and lysozyme: RIA | ||||||||
[22] | N/A | Mature | Electric pump | Fresh | No | VLM exchangeable HBV-Q-16-16: 63 °C for 30' | 30 samples—30 donors | Lysine content: fluorimetry |
Total protein: Lowry method | ||||||||
[23] | Term | Mature | Hand or electric/manual pump. Occasional drip milk | Frozen | −20 °C up to 15 days; thawing in a microwave oven | 62.5 °C for 30′; cooling by ice-cold water for 10′ | 15 samples from individual mother or pool (5 donors) | Total fat: crematocrit |
Total protein: Lowry method | ||||||||
Lactose: picric acid method | ||||||||
Vitamin A: HPLC | ||||||||
Zinc: Atomic absorption spectrometry | ||||||||
[24] | N/A | Mature | N/A | Fresh | Refrigeration at 4 °C for 1 to 2 days; centrifugation at 2 °C for 1 h; −30 °C until testing | 62.5 °C for 30′ | 1 pool—25 donors | Immunoglobulins and lactoferrin: RIA |
Vitamins: labeled cyanocobalamin, separation of free and protein-bound vitamins by gel filtration | ||||||||
[25] | N/A | N/A | N/A | Frozen | −40 °C until analysis | 62.5 °C for 30′ | 1 pool—10 donors | Total protein: BCA |
Immunoglobulins: ELISA | ||||||||
Lysozyme activity: Micrococcus lysodeikticus turbidimetric assay | ||||||||
[26] | N/A | Mature | N/A | Fresh | Refrigeration | 62.5° C for 30′ in stirred water bath | 2 pools—5 and 6 donors | Immunoglobulins: ELISA |
[27] | Term | Mature | Electric pump | Fresh | –80 °C until the analysis | 62.5 °C for 30′ | 10 samples—10 donors | Immunoglobulins: ELISA |
[28] | N/A | Mature | N/A | Fresh | No | 63 °C for 30′ | 23 samples | Immunoglobulins: RIA |
[29] | Term | Colostrum, transitional and mature | Manual or pump | Fresh | Refrigeration in ice | 62.5 °C for 30′ | 5 samples—89 donors | Immunoglobulins: RIA |
Lactoferrin: Laurell method | ||||||||
[30] | N/A | N/A | Overflow milk | Fresh | Refrigeration up to 48 h | 62.5 °C for 30′ | 16 samples | Electroimmunoassay against monospecific antiserum |
[31] | N/A | Colostrum and mature | HMB protocol | Fresh | N/A | 62.5 °C for 30′ | 10 colostrum and 8 mature milk | Furosine: HPLC |
Carbohydrates: gas chromatography | ||||||||
Cytokines: ELISA | ||||||||
Immunoglobulins: ELISA | ||||||||
[32] | N/A | Colostrum | Hand or electric pump | Fresh | −20 °C until analysis | 62.5 °C for 30′ | 1 pool—11 donors | Immunoglobulins: ELISA |
Lysozyme activity: Micrococcus lysodeikticus turbidimetric assay | ||||||||
Lactoperoxidase activity: ABTS assay | ||||||||
[33] | Term | Transitional | Electric pump | Fresh | No | Metallarredinox: 62.5 °C for 30′ | 1 pool—4 donors | IgA, lactoferrin: SDS-PAGE, Western Blot and mass spectrometry |
Lipase activity: p-nitrophenol assay | ||||||||
Available lysine: OPA method | ||||||||
[34] | N/A | N/A | N/A | Fresh | N/A | 3 devices: Sterifeed–Saurin–Carag: 62.5 °C for 30′ | 10 samples for Sterifeed; 6 samples for Saurin; 6 samples for Carag | Lysozyme, sIgA and lactoferrin: ELISA |
[35] | N/A | N/A | N/A | Frozen | −20 °C until analysis | 62.5 °C for 30′ | 10 samples—10 donors | Lysozyme, sIgA and lactoferrin: ELISA |
[36] | N/A | N/A | Drip milk | Fresh | No | Semi-automated Holder pasteurizer | 1 pool—20 donors | IgA: electroimmunoassay |
Lysozyme activity: Micrococcus lysodeikticus turbidimetric assay | ||||||||
[37] | N/A | Mature | Electric pump | Frozen and fresh | –70 °C; thawing in cool water | 62.5 °C for 30′ in stirred water bath | 6 samples: 3 pools from HMB and 3 samples from 3 donors | Total fat: gravimetry |
Fatty acids: gas chromatography | ||||||||
Lipase activity: triglyceride emulsion | ||||||||
Amylase: ELISA | ||||||||
[38] | N/A | Mature | N/A | Frozen | 4 °C overnight; thawing at 37 °C in water bath, gently mixed | Sterifeed: pre-heated water bath (63.2 °C); 62.5 °C for 30′; cooling in cold water bath | 17 pools—4 donors each | Cytokines and growth factors: ELISA |
Fatty acids: gas chromatography | ||||||||
[39] | N/A | Mature | N/A | Fresh | Refrigeration until analysis | 62.5 °C for 30′ in water bath under constant agitation | 1 pool—6 donors | Tocopherol: HPLC |
Fatty acids: gas chromatography | ||||||||
Cytokines: ELISA | ||||||||
[40] | Term | Mature | Hand or electric pump | Fresh | No | 62.5 °C for 30′ | 17 samples | Cytokines and growth factors: ELISA |
[41] | Preterm and Term | Transitional and mature | N/A | Frozen | −20 °C until analysis | LABU-Muttermilch pasteurizer: 63 °C for 30′ | 51 samples—28 donors | IGF and IGFBP: RIA |
EGF: ELISA | ||||||||
[42] | Term | Mature | N/A | Fresh | No | 62.5 °C for 30′ | 13 samples—13 donors | Free amino acids: HPLC |
[43] | Preterm and Term | Colostrum, transitional and mature | N/A | Frozen | Thawed overnight | ACE pasteurizer: 62.5 °C for 30′ | 39 samples—3–4 donors each | Fatty acids: gas chromatography |
Free amino acids: Amino acid Analyzer | ||||||||
[44] | Term | Mature | Manual pump | Frozen | Refrigeration max 4 h; −20 °C up to 3 weeks | 62.5 °C for 30′ | 5 samples—9 pools | Vitamins: HPLC |
[45] | Term | Mature | Hand or pump | Fresh | Refrigeration | 62.5 °C for 30′ | 5 each—89 donors | Vitamins: HPLC |
[46] | N/A | Mature | Electric pump | Frozen | −80 °C until analysis | 62.5 °C for 30′ | 10 samples—10 donors | Vitamin C, Tocopherols: HPLC |
Fatty acids: gas chromatography | ||||||||
[47] | N/A | Mature | Manual pump | Fresh | No | 62.5 °C for 30′ | 1 pool—10 donors | Vitamin C, Tocopherols: HPLC |
Fatty acids: gas chromatography | ||||||||
[48] | N/A | N/A | N/A | Frozen | Frozen | 63 °C for 30′ | 50 samples—50 donors | Vitamin A, beta catotene: HPLC |
[49] | N/A | Colostrum, transitional and mature | N/A | Frozen | Thawing in ice-filled plastic container for 15′ | 63 °C for 30′ | 60 samples | Vitamin A: gas chromatography |
[50] | Preterm and Term | Transitional | Electric pump | Fresh | No | 62.5 °C for 30′; cooling in running water | 12 samples—12 donors | Fat content: gravimetry |
Fatty acids: gas chromatography | ||||||||
[51] | Term | N/A | Hand | Fresh | No | 62.5 °C for 30′ | 1 pool—16 donors | Fatty acids: gas chromatography |
L-lactate in milk: enzymatic biosensor | ||||||||
[52] | N/A | N/A | N/A | Fresh | No | 63 °C for 30′ | 3 samples—3 donors | Total fat and fatty acids: gas chromatography, Infrared spectroscopy and NMR |
[53] | N/A | Transitional | N/A | Fresh | No | 62.5 °C for 30′; cooling in running water | 7 samples—1 donor | Fatty acids: gas chromatography |
[54] | N/A | N/A | Electric/manual pump | Fresh | N/A | 62.5 °C for 30′; cooling in stirred ice-cold water bath | 21 samples—21 donors | Furosine: HPLC |
[55] | Preterm | N/A | Electric pump | Fresh | No | Sterifeed: 62.5 °C for 30′ | 10 samples—10 donors | Oligosaccharides: HPLC |
[56] | Preterm | N/A | Electric pump | Fresh | No | Sterifeed: 62.5 °C for 30’ | 9 samples—9 donors | Glycosaminoglycans: HPLC |
Carbohydrates: gas chromatography | ||||||||
[57] | N/A | Mature | N/A | Fresh | Refrigeration | 62.5 °C for 30′ in stirred water bath | 1 pool—8 donors | Volatile compounds: gas chromatography—mass spectrometry |
[58] | Term | N/A | Electric pump | Fresh | No | 62.5 °C for 30′ | 31 samples—31 donors | MDA and GSH: HPLC |
GPx activity: Lawrence and Burk method | ||||||||
ToAC: commercial kit | ||||||||
[59] | N/A | Mature | Hand | Frozen | −80 °C up to 2 weeks | 62.5 °C for 30′ | 30 samples—10 donors | Total fat : creamatocrit |
Fatty acids and volatiles: gas chromatography | ||||||||
MDA: TBARS | ||||||||
Tocopherols and ascorbic acid: HPLC | ||||||||
ToAC: ORAC | ||||||||
[60] | N/A | Mature | Hand | Frozen | −40 °C in HMB; −18 °C in lab | 62.5 °C for 30′ | 1 pool—5 donors | Free nucleotide monophosphates: capillary electrophoresis—mass spectrometry |
Components | Reference |
---|---|
Total Nitrogen Content | [18] |
Cytokines | |
IL2, IL4, IL5, IL13 | [31,38] |
IL12p70 | [31,38,39] |
IL17 | [31,39] |
Growth Factors | |
EGF | [40,41] |
TGFβ1 | [40] |
TGFβ2 | [31] |
MCP-1 | [31] |
Amino acids | |
Free amino acids | [43] |
Taurine, methionine, cystine, glutamate | [42,43] |
Vitamins | |
D, E, B2 | [44] |
B5, Biotin, B3 | [45] |
B12 | [21,24,44,45] |
Zinc | [23] |
Lipids | |
Polyunsaturated fatty acid n3 | |
20:5 | [37,50] |
22:5 | [38,47,50] |
22:6 | [37,39,43,47,50] |
Polyunsaturated fatty acid n6 | |
18:2 | [37,38,39,43,47,50,51,52,53] |
18:3 | [39,43,47,50] |
20:2 | [47,50] |
20:3 | [39,47,50] |
20:4 | [37,38,39,43,47] |
22:4 | [37,47,50] |
22:5 | [38,47] |
Monounsaturated fatty acid | |
14:1 | [37,39,43,47,50] |
15:1 | [47,50,52] |
16:1 | [37,38,39,43,47,50,51,52,53] |
17:1; 22:1 | [47,50] |
20:1 | [39,47,50] |
24:1 | [37,47,50] |
Saturated fatty acid | |
10:0, 16:0 | [37,38,39,43,47,50,51,52] |
15:0 | [39,47,50,51] |
17:0 | [39,47,50] |
20:0 | [39,47,50,52] |
21:0 | [47] |
22:0 | [47,50] |
24:0 | [37,50] |
Saccharides | |
Oligosaccharides | [55] |
Glycosaminoglycans | [56] |
Myoinositol | [31,54] |
Lactose | [18,19,23,31,54] |
Oxidative Stress Markers | |
Malondialdehyde | [58,59] |
ORAC and Hexanal | [59] |
Components | Effect of HoP | References |
---|---|---|
Immunoglobulins | ||
IgG4 | Reduction (% not reported) | [31] |
Enzymes | ||
Lipase | Complete loss | [21,33,37] |
Alkaline phosphatase | Complete loss | [21] |
Amylase | Reduction (15%) | [37] |
Cytokines | ||
IL7 | Increase (% not reported) | [31] |
MIP-1β | Reduction (% not reported) | [31] |
MCAF/MCP-1 | Reduction (% not reported) | [39] |
Growth Factors | ||
IGF1, IGF2, IGFBP2, IGFBP3 | Reduction (% not reported) | [41] |
EPO | Reduction (% not reported) | [40] |
HB-EGF, HGF | Reduction (% not reported) | [38] |
GM-CSF | Increase (% not reported) | [31] |
Hormones | ||
Insulin, Adiponectin | Reduction (% not reported) | [17] |
Free amino acids | ||
Arginine, leucine | Increase | [43] |
Aspartate | Reduction (% not reported) | [43] |
Glutamine | Increase (% not reported) | [42] |
Vitamins | ||
Ascorbic + Dehydroascorbic | Reduction (12%) | [47] |
Ascorbic Acid | Reduction (16.2%–26%) | [46,47] |
B6 | Reduction (15%) | [44,46] |
Oxidative Stress Markers | ||
Glutathione, Glutathione peroxidase activity, Total antioxidant capacity | Reduction (% not reported) | [58] |
Lactulose | Increase (% not reported)/(Not detected in all samples) | [31,54] |
Nucleotide monophosphate content | Increase (% not reported) | [60] |
Components | Effects of HoP | References |
---|---|---|
Total Protein Content | Reduction (% not reported) | Significant: [17,19,20] |
Not significant: [21,22,23,37] | ||
Immunoglobulins | ||
IgA | Reduction (20%–62%) | Significant: [25,28,29,31,32] |
Not significant: [20,24,26,27,30,35] | ||
sIgA | Reduction (20%–50%) | Significant: [35] |
Not significant: [21,34] | ||
IgM | Reduction (50%–100%) | Significant: [28,29,31,32] |
Not significant: [20,24,26] | ||
IgG | Reduction (23%–100%) | Significant: [32] |
Not significant: [20,24,26,28,29,30] | ||
Lactoferrin | Reduction (35%–90%) | Significant: [35] |
Not significant: [24,29,30,33,34] | ||
Lysozyme | ||
concentration | Reduction (20%–69%) | Significant: [34] (Sterifeed and Carag), [35] |
Not significant: [20,21,30,34] (Saurin) | ||
activity | Reduction (% not reported) | Significant: [25,32] |
Not significant: [24] | ||
Cytokines | ||
IL1beta, IL6 | Reduction (% not reported) | Significant: [39] |
Not significant: [31] | ||
IL8 | Increase (% not reported) | Significant: [38,39,40] |
Not significant [31] | ||
IL10 | Reduction (% not reported) | Significant: [38,39] |
Not significant: [31] | ||
TNF alfa | Reduction (% not reported) | Significant: [38,39] |
Not significant: [31] | ||
INF gamma | Reduction (% not reported) | Significant: [38] |
Not significant: [31,39] | ||
Vitamins | ||
A | Increase (% not reported)/reduction (34%) | Significant: [49] |
Not significant: [23,44,48] | ||
Folacin | Reduction (10%–30%) | Significant: [44] |
Not significant: [21,24,29] | ||
C | Reduction (19.9%–36%) | Significant: [44,46] |
Not significant: [29] | ||
alfa- and gamma-Tocopherol | Reduction (12%–47%) | Significant: [39,47] |
Not significant: [46] | ||
delta-Tocopherol | Reduction (% not reported) | Significant: [39] |
Not significant: [46] | ||
Total fat content | Reduction (% not reported)/Increase (% not reported) | Significant: [17,18,19] |
Not significant: [23,37,50,51] | ||
Polyunsaturated fatty acid n3 | ||
18:3 | Reduction (% not reported) | Significant: [53] |
Not significant: [38,39,47,50] | ||
Monounsaturated fatty acid | ||
18:1 | Increase/reduction (% not reported) | Significant: [38] |
Not significant: [39,47,50,53] | ||
Saturated fatty acid | ||
14:0 | Increase/reduction (% not reported) | Significant: [38] |
Not significant: [37,39,43,47,50,52,53] | ||
12:0 | Increase/reduction (% not reported) | Significant: [38,43] |
Not significant: [37,39,47,50,51,52] | ||
18:0 | Increase/reduction (% not reported) | Significant: [38] |
Not significant: (2015) [37,39,43,47,50,51,52] | ||
Glucose | Reduction/Increase (% not reported) | Significant: [17] (increase), [54] (reduction) |
Not significant: [31] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. https://doi.org/10.3390/nu8080477
Peila C, Moro GE, Bertino E, Cavallarin L, Giribaldi M, Giuliani F, Cresi F, Coscia A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients. 2016; 8(8):477. https://doi.org/10.3390/nu8080477
Chicago/Turabian StylePeila, Chiara, Guido E. Moro, Enrico Bertino, Laura Cavallarin, Marzia Giribaldi, Francesca Giuliani, Francesco Cresi, and Alessandra Coscia. 2016. "The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review" Nutrients 8, no. 8: 477. https://doi.org/10.3390/nu8080477