Effects of Acute and Moderate Caffeine Doses on Sport Climbing Performance: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Protocol
2.3.1. Body Composition, Dietary, and Physical Activity Habits
2.3.2. Supplementation Protocol
2.3.3. Warm-Up
2.3.4. Pull-Up Test
- Pull-up one-repetition maximum and muscular strength power test
- Pull-up muscular endurance test
2.3.5. Grip Test
- Grip endurance during dead-hang
- Maximum grip strength during dead-hang
- Grip rate of force development (RFD)
2.3.6. Questionnaires and Scales
2.4. Statistical Analysis
3. Results
3.1. Pull-Up Test
3.1.1. Pull-Up One-Repetition Maximum and Muscular Strength Power Test
3.1.2. Pull-Up Muscular Endurance Test
3.2. Grip Test
3.2.1. Grip Endurance in Dead-Hang
3.2.2. Maximum Grip Strength in Dead-Hang
3.2.3. Grip Rate of Force Development (RFD)
3.3. Questionnaires and Scales
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climbing Business Journal. Gyms and Trends 2023. 2023. Available online: https://www.climbingbusinessjournal.com/gyms-and-trends-2023/ (accessed on 12 September 2025).
- Turchetto, M.; Tomaselli, V.; Giorgi, F.; Leone, S.; Leo, I. Sport climbing competence is influenced by training frequency, experience, self-efficacy, flow, and emotional intelligence. Front. Psychol. 2025, 16, 1518495. [Google Scholar] [CrossRef]
- Diez-Fernández, P.; Ruibal-Lista, B.; Rico-Díaz, J.; Rodríguez-Fernández, J.E.; López-García, S. Performance Factors in Sport Climbing: A Systematic Review. Sustainability 2023, 15, 16687. [Google Scholar] [CrossRef]
- Mora-Fernandez, A.; Arguello-Arbe, A.; Tojeiro-Iglesias, A.; Latorre, J.A.; Conde-Pipo, J.; Mariscal-Arcas, M. Nutritional Assessment, Body Composition, and Low Energy Availability in Sport Climbing Athletes of Different Genders and Categories: A Cross-Sectional Study. Nutrients 2024, 16, 2974. [Google Scholar] [CrossRef] [PubMed]
- Bergua, P.; Montero-Marin, J.; Gomez-Bruton, A.; Casajús, J.A. Hanging ability in climbing: An approach by finger hangs on adjusted depth edges in advanced and elite sport climbers. Int. J. Perform. Anal. Sport 2018, 18, 437–450. [Google Scholar] [CrossRef]
- López-Rivera, E.; Gonzalez-Badillo, J.J. The effects of two maximum grip strength training methods using the same effort duration and different edge depth on grip endurance in elite climbers. Sports Technol. 2012, 5, 100–1010. [Google Scholar] [CrossRef]
- Smith, E.J.; Storey, R.; Ranchordas, M.K. Nutritional Considerations for Bouldering. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 314–324. [Google Scholar] [CrossRef]
- Michael, M.K.; Witard, O.C.; Joubert, L. Physiological demands and nutritional considerations for Olympic-style competitive rock climbing. Cogent Med. 2019, 6, 1667199. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; Fonseca, F.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrao, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [CrossRef]
- Montalvo-Alonso, J.J.; Ferragut, C.; Del Val-Manzano, M.; Valades, D.; Roberts, J.; Perez-Lopez, A. Sex Differences in the Ergogenic Response of Acute Caffeine Intake on Muscular Strength, Power and Endurance Performance in Resistance-Trained Individuals: A Randomized Controlled Trial. Nutrients 2024, 16, 1760. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Impaired calcium release during fatigue. J. Appl. Physiol. 2008, 104, 296–305. [Google Scholar] [CrossRef]
- Cabañes, A.; Salinero, J.J.; Del Coso, J. The ingestion of a caffeine-containing energy drink improves resistance capacity and sport rock climbing performance. Arch. Med. Deporte 2013, 30, 215–220. [Google Scholar]
- Chmielewska, A.; Regulska-Ilow, B. Evaluation of Supplement Use in Sport Climbers at Different Climbing Levels. Nutrients 2022, 15, 100. [Google Scholar] [CrossRef]
- Peoples, G.E.; Parker, S.; Anthony, R.; Craddock, J. Rock climbers’ self-reported dietary practices and supplement use in the context of supporting climbing performance. J. Sport Exerc. Sci. 2021, 5, 130–138. [Google Scholar] [CrossRef]
- Grgic, J. Effects of caffeine on isometric handgrip strength: A meta-analysis. Clin. Nutr. ESPEN 2022, 47, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, Z.; Zhou, H.; Wang, L.; Li, X.; Lv, Y.; Sun, T.; Yu, L. Effects of Acute Ingestion of Caffeine Capsules on Muscle Strength and Muscle Endurance: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1146. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Effects of caffeine on rate of force development: A meta-analysis. Scand. J. Med. Sci. Sports 2022, 32, 644–653. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.; et al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sports Technol. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the Ergogenic Effect of Caffeine in Athletes Who Regularly Consume Caffeine: Is. It Due to the Disparity in the Criteria That Defines Habitual Caffeine Intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- de Salles, B.F.; Simao, R.; Miranda, F.; da Silva Novaes, J.; Lemos, A.; Willardson, J.M. Rest interval between sets in strength training. Sports Med. 2009, 39, 765–777. [Google Scholar] [CrossRef]
- Hermans, E.; Saeterbakken, A.H.; Vereide, V.; Nord, I.S.O.; Stien, N.; Andersen, V. The Effects of 10 Weeks Hangboard Training on Climbing Specific Maximal Strength, Explosive Strength, and Finger Endurance. Front. Sports Act. Living 2022, 4, 888158. [Google Scholar] [CrossRef]
- Sanchez-Moreno, M.; Rodriguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef]
- López-Rivera, E.; González-Badillo, J.J. Comparison of the Effects of Three Hangboard Strength and Endurance Training Programs on Grip Endurance in Sport Climbers. J. Hum. Kinet. 2019, 66, 183–193. [Google Scholar] [CrossRef]
- Schoffl, I.; Oppelt, K.; Jungert, J.; Schweizer, A.; Neuhuber, W.; Schoffl, V. The influence of the crimp and slope grip position on the finger pulley system. J. Biomech. 2009, 42, 2183–2187. [Google Scholar] [CrossRef]
- Michailov, M.L.; Balas, J.; Tanev, S.K.; Andonov, H.S.; Kodejska, J.; Brown, L. Reliability and Validity of Finger Strength and Endurance Measurements in Rock Climbing. Res. Q. Exerc. Sport. 2018, 89, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, A.; Padilla-Crespo, A.; Bustamante-Sánchez, A. Comparative Analysis of Two Grip Strength Training Protocols in Experienced Climbers. Apunt. Educ. Fis. Deporte 2025, 161, 32–40. [Google Scholar] [CrossRef]
- Padilla-Crespo, A.; Clemente-Suarez, V.J.; Bustamante-Sanchez, A. Psychophysiological Response Differences Between Advanced and Beginner Climbers and Fatigue Management. J. Funct. Morphol. Kinesiol. 2025, 10, 50. [Google Scholar] [CrossRef]
- Stien, N.; Saeterbakken, A.H.; Hermans, E.; Vereide, V.A.; Olsen, E.; Andersen, V. Comparison of climbing-specific strength and endurance between lead and boulder climbers. PLoS ONE 2019, 14, e0222529. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. Eur. J. Sport Sci. 2021, 21, 1165–1175. [Google Scholar] [CrossRef]
- Miller, L.S.; Lombardo, T.W.; Fowler, S.C. Caffeine, but not time of day, increases whole-arm physiological tremor in non-smoking moderate users. Clin. Exp. Pharmacol. Physiol. 1998, 25, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.; Cupido, C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J. Appl. Physiol. 2000, 89, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Alonso, J.J.; Del Val-Manzano, M.; Cerezo-Tellez, E.; Ferragut, C.; Valades, D.; Rodriguez-Falces, J.; Perez-Lopez, A. Acute caffeine intake improves muscular strength, power, and endurance performance, reversing the time-of-day effect regardless of muscle activation level in resistance-trained males: A randomized controlled trial. Eur. J. Appl. Physiol. 2025, 125, 3259–3272. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo effects of caffeine on short-term resistance exercise to failure. Int. J. Sports Physiol. Perform. 2009, 4, 244–253. [Google Scholar] [CrossRef]


| N | 13 | ||
|---|---|---|---|
| Age (years) | 28.2 | ± | 8.60 |
| Body composition | |||
| Body mass (kg) | 67.1 | ± | 8.30 |
| Fat mass (kg) | 6.50 | ± | 3.20 |
| Fat-free mass (kg) | 60.6 | ± | 6.20 |
| Dietary habits | |||
| Energy intake (kcal/day) | 1710 | ± | 493 |
| Protein (g/kg/day) | 1.23 | ± | 0.39 |
| Carbohydrate (g/kg/day) | 2.76 | ± | 0.99 |
| Fat (g/kg/day) | 1.02 | ± | 0.38 |
| Physical activity and training habits | |||
| METs (MET-min/week) | 10,282 | ± | 1438 |
| Sedentary time (h/day) | 7.95 | ± | 2.53 |
| Training sessions (days/week) | 2.77 | ± | 0.93 |
| Duration of training sessions (min/session) | 133 | ± | 43.2 |
| Training time dedicated to bouldering (min/week) | 91.9 | ± | 65.4 |
| Training time dedicated to climbing gym (min/week) | 238 | ± | 187 |
| Athletic performance in climbing | |||
| Best redpoint grade * | 17 | ± | 2.82 |
| Climbing experience (years) | 6.25 | ± | 4.29 |
| Self-identified discipline (number of boulderers) | 6 | ± | 1 |
| Preferred climbing style (on-sight, n) | 7 (54%) | ||
| Preferred terrain (vertical, n) | 8 (61%) | ||
| Regular competition participants (n) | 3 (23%) | ||
| PLA | CAF | CAF-PLA | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | p | g | 95% CI | ||
| Muscular strength and power | |||||||||||||
| 60% 1RM | Vmean (m/s) | 0.725 | ± | 0.125 | 0.727 | ± | 0.164 | 0.002 | ± | 0.089 | 0.922 | 0.013 | −0.192–0.196 |
| Vpeak (m/s) | 1.15 | ± | 0.21 | 1.13 | ± | 0.22 | −0.01 | ± | 0.151 | 0.741 | 0.086 | −0.343–0.315 | |
| Wmean (W) | 507 | ± | 119 | 504 | ± | 140 | −2.98 | ± | 85.0 | 0.901 | 0.022 | −188–182 | |
| Wpeak (W) | 942 | ± | 284 | 921 | ± | 334 | −21.2 | ± | 214 | 0.728 | 0.063 | −487–445 | |
| 80% 1RM | Vmean (m/s) | 0.526 | ± | 0.045 | 0.537 | ± | 0.078 | 0.011 | ± | 0.063 | 0.531 | 0.162 | −0.126–0.148 |
| Vpeak (m/s) | 0.805 | ± | 0.093 | 0.841 | ± | 0.110 | 0.036 | ± | 0.123 | 0.313 | 0.331 | −0.232–0.304 | |
| Wmean (W) | 422 | ± | 79.0 | 437 | ± | 98.1 | 15.2 | ± | 63.5 | 0.405 | 0.158 | −123–154 | |
| Wpeak (W) | 689 | ± | 129 | 744 | ± | 165 | 55.2 | ± | 132 | 0.157 | 0.348 | −232–343 | |
| 90% 1RM | Vmean (m/s) | 0.380 | ± | 0.046 | 0.388 | ± | 0.053 | 0.008 | ± | 0.039 | 0.503 | 0.151 | −0.077–0.093 |
| Vpeak (m/s) | 0.578 | ± | 0.074 | 0.574 | ± | 0.078 | −0.01 | ± | 0.061 | 0.832 | 0.049 | −0.137–0.129 | |
| Wmean (W) | 339 | ± | 59.8 | 346 | ± | 60.0 | 6.79 | ± | 34.1 | 0.486 | 0.109 | −67.5–81.1 | |
| Wpeak (W) | 541 | ± | 115 | 531 | ± | 99.9 | −9.73 | ± | 64.2 | 0.595 | 0.131 | −150–130 | |
| 95% 1RM | Vmean (m/s) | 0.292 | ± | 0.039 | 0.302 | ± | 0.052 | 0.010 | ± | 0.054 | 0.520 | 0.204 | −0.128–0.108 |
| Vpeak (m/s) | 0.459 | ± | 0.067 | 0.464 | ± | 0.073 | 0.004 | ± | 0.077 | 0.849 | 0.067 | −0.164–0.172 | |
| Wmean (W) | 275 | ± | 52.2 | 284 | ± | 53.7 | 10.1 | ± | 52.0 | 0.513 | 0.159 | −123–103 | |
| Wpeak (W) | 447 | ± | 96.7 | 454 | ± | 73.3 | 4.56 | ± | 85.1 | 0.856 | 0.076 | −181–190 | |
| 100% 1RM | Vmean (m/s) | 0.213 | ± | 0.043 | 0.226 | ± | 0.053 | 0.013 | ± | 0.049 | 0.178 | 0.252 | −0.094–0.120 |
| Vpeak (m/s) | 0.374 | ± | 0.063 | 0.368 | ± | 0.099 | −0.01 | ± | 0.082 | 0.394 | 0.068 | −0.185–0.173 | |
| Wmean (W) | 214 | ± | 61.5 | 227 | ± | 67.8 | 12.9 | ± | 44.2 | 0.157 | 0.188 | −83.4–109 | |
| Wpeak (W) | 394 | ± | 134 | 389 | ± | 164 | −4.88 | ± | 93.9 | 0.427 | 0.031 | −209–200 | |
| Muscular endurance | |||||||||||||
| Rep (n) | 16.3 | ± | 7.60 | 16.8 | ± | 7.68 | 0.538 | ± | 1.76 | 0.292 | 0.061 | −3.30–4.37 | |
| Vmean (m/s) | 0.484 | ± | 0.104 | 0.487 | ± | 0.116 | 0.003 | ± | 0.051 | 0.813 | 0.025 | −0.108–0.114 | |
| Vpeak (m/s) | 0.773 | ± | 0.169 | 0.782 | ± | 0.189 | 0.008 | ± | 0.073 | 0.688 | 0.047 | −0.151–0.167 | |
| Wmean (W) | 324 | ± | 90.1 | 323 | ± | 82.1 | −0.96 | ± | 36.8 | 0.926 | 0.011 | −81.1–79.2 | |
| Wpeak (W) | 600 | ± | 231 | 591 | ± | 204 | 8.67 | ± | 109 | 0.779 | 0.040 | −229–246 | |
| PLA | CAF | CAF-PLA | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | p | g | 95% CI | |
| Grip endurance in dead-hang | ||||||||||||
| Time (s) | 43.0 | ± | 17.9 | 39.8 | ± | 17.2 | −3.18 | ± | 11.1 | 0.162 | 0.171 | −27.4–21.0 |
| Maximum GS in dead-hang | ||||||||||||
| Weight (kg) | 95.0 | ± | 16.4 | 97.3 | ± | 19.4 | 2.31 | ± | 4.97 | 0.060 | 0.120 | −8.52–13.1 |
| Grip rate of force development | ||||||||||||
| GS DH (N) | 417 | ± | 93 | 431 | ± | 100 | 14.1 | ± | 4.1 | 0.120 | 0.136 | −75.4–104 |
| GS NDH (N) | 403 | ± | 76 | 405 | ± | 92 | 1.49 | ± | 3.4 | 0.439 | 0.022 | −72.8–75.8 |
| RFD DH (N/s) | 721 | ± | 230 | 704 | ± | 196 | −16.2 | ± | 3.8 | 0.382 | 0.059 | −855–823 |
| RFD NDH (N/s) | 667 | ± | 150 | 646 | ± | 169 | −21.5 | ± | 7.8 | 0.169 | 0.123 | −191–148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ruiz-López, A.; Montalvo-Alonso, J.J.; Martín-Rivas, I.; del Val-Manzano, M.; Ferragut, C.; Valadés, D.; Barrios-Egea, M.; Gonzalo-Encabo, P.; Pérez-López, A. Effects of Acute and Moderate Caffeine Doses on Sport Climbing Performance: A Randomized Controlled Trial. Nutrients 2026, 18, 284. https://doi.org/10.3390/nu18020284
Ruiz-López A, Montalvo-Alonso JJ, Martín-Rivas I, del Val-Manzano M, Ferragut C, Valadés D, Barrios-Egea M, Gonzalo-Encabo P, Pérez-López A. Effects of Acute and Moderate Caffeine Doses on Sport Climbing Performance: A Randomized Controlled Trial. Nutrients. 2026; 18(2):284. https://doi.org/10.3390/nu18020284
Chicago/Turabian StyleRuiz-López, Alejandra, Juan Jesús Montalvo-Alonso, Iván Martín-Rivas, Marta del Val-Manzano, Carmen Ferragut, David Valadés, Marta Barrios-Egea, Paola Gonzalo-Encabo, and Alberto Pérez-López. 2026. "Effects of Acute and Moderate Caffeine Doses on Sport Climbing Performance: A Randomized Controlled Trial" Nutrients 18, no. 2: 284. https://doi.org/10.3390/nu18020284
APA StyleRuiz-López, A., Montalvo-Alonso, J. J., Martín-Rivas, I., del Val-Manzano, M., Ferragut, C., Valadés, D., Barrios-Egea, M., Gonzalo-Encabo, P., & Pérez-López, A. (2026). Effects of Acute and Moderate Caffeine Doses on Sport Climbing Performance: A Randomized Controlled Trial. Nutrients, 18(2), 284. https://doi.org/10.3390/nu18020284

