Adherence to the Mediterranean Diet Is a Strong Predictor of Glycemic and Lipidemic Control in Adults with Type 2 Diabetes: An Observational Study from a Tertiary Hospital in Greece
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Approval
2.3. Data Collection
2.3.1. Sociodemographic and Lifestyle Characteristics
2.3.2. Anthropometric Measurements
2.3.3. Clinical and Biochemical Parameters
2.3.4. Dietary Assessment
2.4. Statistical Analysis
2.5. Data Availability
2.6. Use of Generative Artificial Intelligence
3. Results
3.1. Sample Characteristics
3.2. Adherence to the Mediterranean Diet
3.3. Association Between Mediterranean Diet Adherence and Glycemic Control
3.4. Association Between Mediterranean Diet Adherence and Lipid Profile
3.5. Νο Association Between Mediterranean Diet Adherence and BMI, Blood Pressure, Renal Function, or Aminotransferases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mourelatou, N.G.; Kounatidis, D.; Vallianou, N.G.; Daniele, G.; Dardano, A.; Rebelos, E. Current treatment for diabetes: A holistic approach. Hormones 2025, ahead of print. [Google Scholar] [CrossRef]
- International Diabetes Federation Europe. Greece. Available online: https://idf.org/europe/our-network/our-members/greece/ (accessed on 30 November 2025).
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Das, R.; Ether, S.; Saif-Ur-Rahman, K.M. Non-pharmacological interventions for the prevention of type 2 diabetes mellitus in low and middle-income countries: Protocol for a systematic review and meta-analysis of randomized controlled trials. Syst. Rev. 2020, 9, 288. [Google Scholar] [CrossRef]
- Gong, D.; Lai, W.F. Dietary patterns and type 2 diabetes: A narrative review. Nutrition 2025, 140, 112905. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of low-carbohydrate and low-fat diets: A randomized trial. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Becerra-Tomás, N.; Papandreou, C.; Bulló, M. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv. Nutr. 2019, 10, S320–S331. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.P. DASH Eating Plan: An Eating Pattern for Diabetes Management. Diabetes Spectr. 2017, 30, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Trajkovska Petkoska, A.; Ognenoska, V.; Trajkovska-Broach, A. Mediterranean Diet: From Ancient Traditions to Modern Science—A Sustainable Way Towards Better Health, Wellness, Longevity, and Personalized Nutrition. Sustainability 2025, 17, 4187. [Google Scholar] [CrossRef]
- Scaglione, S.; Di Chiara, T.; Daidone, M.; Tuttolomondo, A. Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk. Nutrients 2025, 17, 358. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; König, J.; Hoffmann, G. Adherence to a Mediterranean diet and risk of diabetes: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Ceriello, A.; Giugliano, D. Prevention and control of type 2 diabetes by Mediterranean diet: A systematic review. Diabetes Res. Clin. Pract. 2010, 89, 97–102. [Google Scholar] [CrossRef]
- Kechagia, I.; Tsiampalis, T.; Damigou, E.; Barkas, F.; Anastasiou, G.; Kravvariti, E.; Liberopoulos, E.; Sfikakis, P.P.; Chrysohoou, C.; Tsioufis, C.; et al. Long-Term Adherence to the Mediterranean Diet Reduces 20-Year Diabetes Incidence: The ATTICA Cohort Study (2002–2022). Metabolites 2024, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, J.J.; Haidar, S.A.; Blaak, E.E.; De Vries, N.K. Determinants of adherence to the Mediterranean diet among people with type 2 diabetes mellitus living in Mediterranean countries: A systematic review. Front. Nutr. 2025, 12, 1523995. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Zhao, Q.; Cui, W. Effects of 12 nutritional interventions on type 2 diabetes: A systematic review with network meta-analysis of randomized trials. Nutr. Metab. 2025, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Arós, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef]
- Zalewska, M.; Zujko, M.E.; Jamiołkowski, J.; Chlabicz, M.; Łapińska, M.; Kamiński, K.A. Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes-Results of the Bialystok PLUS Study. Nutrients 2025, 17, 2034. [Google Scholar] [CrossRef]
- Derrick, S.A.; Nguyen, S.T.; Marthens, J.R.; Dambacher, L.L.; Sikalidis, A.K.; Reaves, S.K. A Mediterranean-Style Diet Improves the Parameters for the Management and Prevention of Type 2 Diabetes Mellitus. Medicina 2023, 59, 1882. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee for Diabetes. Cardiovascular disease and risk management: Standards of Care in Diabetes—2026. Diabetes Care 2026, 49, S216–S245. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Bamia, C.; Trichopoulos, D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 2009, 338, b2337. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Frank, G.; Pala, B.; Gualtieri, P.; Tocci, G.; La Placa, G.; Di Renzo, L. Adherence to Mediterranean Diet and Implications for Cardiovascular Risk Prevention. Nutrients 2025, 17, 1991. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Goday, A.; Ros, E.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; et al. The Mediterranean Diet decreases LDL atherogenicity in high cardiovascular risk people: A randomized controlled trial. Mol. Nutr. Food Res. 2017, 61, 1601015. [Google Scholar] [CrossRef]
- Kounatidis, D.; Tentolouris, N.; Vallianou, N.G.; Mourouzis, I.; Karampela, I.; Stratigou, T.; Rebelos, E.; Kouveletsou, M.; Stamatopoulos, V.; Tsaroucha, E.; et al. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024, 14, 388. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Zhong, V.W.; Lamichhane, A.P.; Crandell, J.L.; Couch, S.C.; Liese, A.D.; The, N.S.; Tzeel, B.A.; Dabelea, D.; Lawrence, J.M.; Marcovina, S.M.; et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: The SEARCH Nutrition Ancillary Study. Eur. J. Clin. Nutr. 2016, 70, 802–807. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxid. Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Movahed, A.; Nabipour, I.; Louis, X.L.; Thandapilly, S.J.; Yu, L.; Kalantarhormozi, M.; Rekabpour, S.J.; Netticadan, T. Antihyperglycemic effects of short-term resveratrol supplementation in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. Evid.-Based Complement. Alternat. Med. 2013, 2013, 851267. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Evangelopoulos, A.; Tzivaki, I.; Daskalopoulou, S.; Adamou, A.; Michalaki Zafeiri, G.C.; Karampela, I.; Dalamaga, M.; Kounatidis, D. Ultra-Processed Foods and Type 2 Diabetes Mellitus: What Is the Evidence So Far? Biomolecules 2025, 15, 307. [Google Scholar] [CrossRef]
- Sarsangi, P.; Salehi-Abargouei, A.; Ebrahimpour-Koujan, S.; Esmaillzadeh, A. Association between Adherence to the Mediterranean Diet and Risk of Type 2 Diabetes: An Updated Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2022, 13, 1787–1798. [Google Scholar]
- Gorini, F.; Tonacci, A. The Complex Gene-Carbohydrate Interaction in Type 2 Diabetes: Between Current Knowledge and Future Perspectives. Nutrients 2025, 17, 2350. [Google Scholar]
- Popkin, B.M. Nutrition transition and the global diabetes pidemic. Curr. Diab. Rep. 2015, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Boujelbane, M.A.; Ammar, A.; Salem, A.; Kerkeni, M.; Trabelsi, K.; Bouaziz, B.; Masmoudi, L.; Heydenreich, J.; Schallhorn, C.; Müller, G.; et al. Regional variations in Mediterranean diet adherence: A sociodemographic and lifestyle analysis across Mediterranean and non-Mediterranean regions within the MEDIET4ALL project. Front. Public Health 2025, 13, 1596681. [Google Scholar] [CrossRef]
- Ma, H.; Lin, Y.-H.; Dai, L.-Z.; Lin, C.-S.; Huang, Y.; Liu, S.-Y. Efficacy and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: A systematic review and network meta-analysis. BMJ Open 2023, 13, e061807. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.; Allebeck, P.; Hallqvist, J.; Moradi, T.; Sidorchuk, A. Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 804–818. [Google Scholar] [CrossRef]
- Pouwer, F.; Kupper, N.; Adriaanse, M.C. Does emotional stress cause type 2 diabetes mellitus? A review from the European Depression in Diabetes (EDID) Research Consortium. Discov. Med. 2010, 9, 112–118. [Google Scholar]
- Alrasheeday, A.M.; Alshammari, H.S.; Alshammari, B.; Alkubati, S.A.; Llego, J.H.; Alshammari, A.D.; Alshammari, M.H.; Almohammed, R.A.; Alsheeb, S.M.S.; Alshammari, F. Perceived Barriers to Healthy Lifestyle Adherence and Associated Factors Among Patients with Type 2 Diabetes Mellitus: Implications for Improved Self-Care. Patient Prefer. Adherence 2024, 18, 2425–2439. [Google Scholar] [CrossRef] [PubMed]

| Low MDS Group N = 54 | High MDS Group N = 46 | p Value | |
|---|---|---|---|
| Age (years) | 61 ± 11 | 64 ± 9 | 0.08 |
| Weight (kg) | 93.5 ± 23.8 | 90.6 ± 25.1 | 0.5 |
| Physical activity (METs-min/week) | 642 ± 834 | 575 ± 784 | 0.6 |
| BMI (kg/m2) | 31.9 ± 7.1 | 31.5 ± 7.0 | 0.8 |
| HbA1c (%) | 7.2 ± 1.1 | 6.1 ± 0.6 | <0.0001 |
| FPG (mg/dL) | 121 ± 17 | 110 ± 22 | 0.001 |
| Urea (mg/dL) | 38 ± 10 | 39 ± 11 | 0.7 |
| Creatinine (mg/dL) | 0.8 ± 0.2 | 0.8 ± 0.3 | 0.8 |
| eGFR (mL/min/1.73 m2) | 97 ± 18 | 91 ± 18 | 0.6 |
| TC (mg/dL) | 180 ± 26 | 167 ± 30 | 0.04 |
| Triglycerides (mg/dL) | 138 ± 34 | 113 ± 38 | 0.004 |
| HDL-C (mg/dL) | 44 ± 8 | 49 ± 11 | 0.049 |
| LDL-C (mg/dL) | 99 ± 20 | 86 ± 25 | 0.008 |
| AST (U/L) | 23 ± 10 | 21 ± 9 | 0.5 |
| ALT (U/L) | 23 ± 10 | 21 ± 7 | 0.4 |
| Na+ (mEq/L) | 138 ± 4 | 138 ± 4 | >0.9 |
| K+ (mEq/L) | 4.0 ± 0.3 | 4.0 ± 0.3 | 0.4 |
| SBP (mmHg) | 132 ± 10 | 131 ± 10 | 0.6 |
| DBP (mmHg) | 84 ± 6 | 84 ± 9 | >0.9 |
| W/H ratio | 0.96 ± 0.12 | 0.96 ± 0.13 | 0.9 |
| Low MDS Group N = 54 | High MDS Group N = 46 | p Value | |
|---|---|---|---|
| Metformin only (N) | 11 | 11 | 0.7 |
| Metformin and SGLT2-i (N) | 8 | 4 | 0.3 |
| Metformin and DPP4-i (N) | 2 | 3 | 0.5 |
| Metformin and GLP-1 RA (N) | 4 | 1 | 0.2 |
| Metformin and basal-bolus (N) | 1 | 0 | 0.4 |
| Metformin, DPP4-i and SGLT2-i (N) | 3 | 3 | 0.8 |
| DPP4-i (N) | 1 | 2 | 0.5 |
| Basal insulin only (N) | 1 | 0 | 0.4 |
| Basal insulin and metformin (N) | 0 | 1 | 0.3 |
| Basal insulin and DPP4-i (N) | 2 | 1 | 0.7 |
| Basal insulin and GLP-1 RA (N) | 1 | 3 | 0.2 |
| Basal insulin, metformin, SGLT2-i (N) | 2 | 2 | 0.9 |
| Basal insulin, GLP-1 RA, SGLT2-i (N) | 1 | 2 | 0.5 |
| Basal insulin, metformin, DPP4-i (N) | 1 | 0 | 0.4 |
| Metformin, SGLT2-i, GLP-1 RA (N) | 4 | 5 | 0.5 |
| Basal insulin, metformin, SGLT2-i, GLP-1 RA (N) | 6 | 4 | 0.7 |
| Basal insulin, metformin, GLP-1 RA, TZD (N) | 1 | 0 | 0.4 |
| Basal-bolus insulin, metformin, SGLT2-i, GLP-1 RA (N) | 2 | 2 | 0.9 |
| SGLT2-i and GLP-1 RA (N) | 1 | 1 | 0.9 |
| SU, metformin, DPP4-i, SGLT2-i (N) | 2 | 1 | 0.6 |
| ≥3 drugs (N) | 24 | 22 | 0.74 |
| ≥4 drugs (N) | 10 | 7 | 0.66 |
| Insulin treatment (N) | 18 | 16 | 0.88 |
| Lipid-lowering treatment | |||
| Treatment with low-intensity statin only (N) | 8 | 7 | 0.96 |
| Treatment with high-intensity statin only (N) | 13 | 18 | 0.10 |
| Treatment with low-intensity statin and ezetimibe (N) | 7 | 5 | 0.75 |
| Treatment with high-intensity statin and ezetimibe (N) | 0 | 4 | 0.03 |
| Treatment with ezetimibe only (N) | 0 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vavitis, A.; Anastasiou, I.A.; Kounatidis, D.; Rebelos, E.; Tentolouris, N. Adherence to the Mediterranean Diet Is a Strong Predictor of Glycemic and Lipidemic Control in Adults with Type 2 Diabetes: An Observational Study from a Tertiary Hospital in Greece. Nutrients 2026, 18, 285. https://doi.org/10.3390/nu18020285
Vavitis A, Anastasiou IA, Kounatidis D, Rebelos E, Tentolouris N. Adherence to the Mediterranean Diet Is a Strong Predictor of Glycemic and Lipidemic Control in Adults with Type 2 Diabetes: An Observational Study from a Tertiary Hospital in Greece. Nutrients. 2026; 18(2):285. https://doi.org/10.3390/nu18020285
Chicago/Turabian StyleVavitis, Aristeidis, Ioanna A. Anastasiou, Dimitris Kounatidis, Eleni Rebelos, and Nikolaos Tentolouris. 2026. "Adherence to the Mediterranean Diet Is a Strong Predictor of Glycemic and Lipidemic Control in Adults with Type 2 Diabetes: An Observational Study from a Tertiary Hospital in Greece" Nutrients 18, no. 2: 285. https://doi.org/10.3390/nu18020285
APA StyleVavitis, A., Anastasiou, I. A., Kounatidis, D., Rebelos, E., & Tentolouris, N. (2026). Adherence to the Mediterranean Diet Is a Strong Predictor of Glycemic and Lipidemic Control in Adults with Type 2 Diabetes: An Observational Study from a Tertiary Hospital in Greece. Nutrients, 18(2), 285. https://doi.org/10.3390/nu18020285

