The Changing Landscape of Sodium Needs in the Preterm Neonate for Optimizing Growth and Development
Abstract
1. Introduction
2. Risk Factors for Hyponatremia in Preterm Neonates
3. Hyponatremia and Growth Failure
4. Sodium Assessment and Supplementation in Preterm Neonates
| Algorithm 1. Algorithm for Sodium Supplementation in Preterm Infants based on available studies [13,29,36]. |
| Step 1. Suspect sodium deficiency in preterm infants especially if gestational age < 30–32 weeks and/or birth weight < 1500 g and postnatal age > 5–7 days |
| Step 2. Start with sodium intake consistent with gestational age and clinical stability |
Step 3. Measure spot urine sodium and serum sodium concentration at 1 week of postnatal age
|
| Step 4. If urine sodium is below target or serum Na ≤ 132 mEq/L, increase sodium intake by 4 mEq/kg/day above current intake |
Step 5. Recheck urine sodium every 1–2 weeks and monitor for weight gain velocity and weight Z-score, serum sodium, chloride, potassium, acid–base status and clinical status
|
Step 6. Continue ongoing monitoring and safety regarding serum sodium, excessive chloride load, hypertension or fluid retention.
|
5. Complications from Na Supplementation
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Na | Sodium |
| ADH | Antidiuretic Hormone |
| SIADH | Syndrome of Inappropriate Antidiuretic Hormone secretion |
| VLBW | Very low birth weight |
References
- Bie, P. Mechanisms of sodium balance: Total body sodium, surrogate variables, and renal sodium excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R945–R962. [Google Scholar] [CrossRef]
- Bernal, A.; Zafra, M.A.; Simón, M.J.; Mahía, J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023, 15, 395. [Google Scholar] [CrossRef] [PubMed]
- Segar, J.L. Renal adaptive changes and sodium handling in the fetal-to-newborn transition. Semin. Fetal Neonatal Med. 2017, 22, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Diller, N.; Osborn, D.A.; Birch, P. Higher versus lower sodium intake for preterm infants. Cochrane Database Syst. Rev. 2023. [Google Scholar] [CrossRef]
- Monnikendam, C.S.; Mu, T.S.; Aden, J.K.; Lefkowitz, W.; Carr, N.R.; Aune, C.N.; Ahmad, K.A. Dysnatremia in extremely low birth weight infants is associated with multiple adverse outcomes. J. Perinatol. 2019, 39, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Rees, L.; Brook, C.G.; Shaw, J.C.; Forsling, M.L. Hyponatraemia in the first week of life in preterm infants. Part I. Arginine vasopressin secretion. Arch. Dis. Child 1984, 59, 414–422. [Google Scholar] [CrossRef]
- Späth, C.; Sjöström, E.S.; Ahlsson, F.; Ågren, J.; Domellöf, M. Sodium supply influences plasma sodium concentration and the risks of hyper- and hyponatremia in extremely preterm infants. Pediatr. Res. 2017, 81, 455–460. [Google Scholar] [CrossRef]
- Eibensteiner, F.; Laml-Wallner, G.; Thanhaeuser, M.; Ristl, R.; Ely, S.; Jilma, B.; Berger, A.; Haiden, N. ELBW infants receive inadvertent sodium load above the recommended intake. Pediatr. Res. 2020, 88, 412–420. [Google Scholar] [CrossRef]
- Steflik, H.J.; Pearlman, S.A.; Gallagher, P.G.; Lakshminrusimha, S. A pinch of salt to enhance preemie growth? J. Perinatol. 2025, 45, 295–297. [Google Scholar] [CrossRef]
- Valentine, C.J.; Fernandez, S.; Rogers, L.K.; Gulati, P.; Hayes, J.; Lore, P.; Puthoff, T.; Dumm, M.; Jones, A.; Collins, K.; et al. Early amino-acid administration improves preterm infant weight. J. Perinatol. 2009, 29, 428–432. [Google Scholar] [CrossRef]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-Week Protein and Energy Intakes Are Associated With 18-Month Developmental Outcomes in Extremely Low Birth Weight Infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef]
- Araya, B.R.; Ziegler, A.A.; Grobe, C.C.; Grobe, J.L.; Segar, J.L. Sodium and Growth in Preterm Infants: A Review. Newborn 2023, 2, 142–147. [Google Scholar] [CrossRef]
- Stalter, E.J.; Verhofste, S.L.; Dagle, J.M.; Steinbach, E.J.; Ten Eyck, P.; Wendt, L.; Segar, J.L.; Harshman, L.A. Somatic growth outcomes in response to an individualized neonatal sodium supplementation protocol. J. Perinatol. 2025, 45, 305–311. [Google Scholar] [CrossRef]
- Griffin, I.J.; Tancredi, D.J.; Bertino, E.; Lee, H.C.; Profit, J. Postnatal growth failure in very low birthweight infants born between 2005 and 2012. Arch. Dis. Child Fetal. Neonatal. Ed. 2016, 101, F50–F55. [Google Scholar] [CrossRef]
- Kleinman, R.E.; Greer, F.R. Pediatric Nutrition, 8th ed.; American Academy of Pediatrics: Itasca, IL, USA, 2020. [Google Scholar]
- Al-Dahhan, J.; Haycock, G.B.; Chantler, C.; Stimmler, L. Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch. Dis. Child. 1983, 58, 335. [Google Scholar] [CrossRef]
- Baraton, L.; Ancel, P.Y.; Flamant, C.; Orsonneau, J.L.; Darmaun, D.; Rozé, J.C. Impact of Changes in Serum Sodium Levels on 2-Year Neurologic Outcomes for Very Preterm Neonates. Pediatrics 2009, 124, e655–e661. [Google Scholar] [CrossRef] [PubMed]
- Kloiber, L.L.; Winn, N.J.; Shaffer, S.G.; Hassanein, R.S. Late hyponatremia in very-low-birth-weight infants: Incidence and associated risk factors. J. Am. Diet. Assoc. 1996, 96, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.K. Prevalence and Risk Factors for Hyponatremia in Preterm Infants. Open Access Maced. J. Med. Sci. 2019, 7, 3201–3204. [Google Scholar] [CrossRef]
- Wu, Y.; Allegaert, K.; Flint, R.B.; Simons, S.H.P.; Krekels, E.H.J.; Knibbe, C.A.J.; Völler, S. Prediction of glomerular filtration rate maturation across preterm and term neonates and young infants using inulin as marker. AAPS J. 2022, 24, 38. [Google Scholar] [CrossRef]
- Aperia, A.; Broberger, O.; Herin, P.; Thodenius, K.; Zetterström, R. Postnatal control of water and electrolyte homeostasis in pre-term and full-term infants. Acta Paediatr. Scand. Suppl. 1983, 305, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, E.E.; O’Donnell, A.M.; Nelson, S.E.; Fomon, S.J. Body composition of the reference fetus. Growth 1976, 40, 329–341. [Google Scholar] [PubMed]
- Fusch, C.; Jochum, F. Water, Sodium, Potassium and Chloride. Nutr. Care Preterm Infants Sci. Basis Pract. Guidel. 2014, 110, 99–120. [Google Scholar] [CrossRef]
- Stritzke, A.; Thomas, S.; Amin, H.; Fusch, C.; Lodha, A. Renal consequences of preterm birth. Mol. Cell. Pediatr. 2017, 4, 2. [Google Scholar] [CrossRef]
- Aperia, A.; Broberger, O.; Elinder, G.; Herin, P.; Zetterström, R. Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr. Scand. 1981, 70, 183–187. [Google Scholar] [CrossRef]
- Coulthard, M.G.; Hey, E.N. Effect of varying water intake on renal function in healthy preterm babies. Arch. Dis. Child 1985, 60, 614–620. [Google Scholar] [CrossRef]
- Coulthard, M.G. Maturation of glomerular filtration in preterm and mature babies. Early Hum. Dev. 1985, 11, 281–292. [Google Scholar] [CrossRef]
- Gubhaju, L.; Sutherland, M.R.; Horne, R.S.; Medhurst, A.; Kent, A.L.; Ramsden, A.; Moore, L.; Singh, G.; Hoy, W.E.; Black, M.J. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am. J. Physiol. Renal. Physiol. 2014, 307, F149–F158. [Google Scholar] [CrossRef]
- Segar, D.E.; Segar, E.K.; Harshman, L.A.; Dagle, J.M.; Carlson, S.J.; Segar, J.L. Physiological Approach to Sodium Supplementation in Preterm Infants. Am. J. Perinatol. 2018, 35, 994–1000. [Google Scholar] [CrossRef]
- Bueva, A.; Guignard, J.P. Renal function in preterm neonates. Pediatr. Res. 1994, 36, 572–577. [Google Scholar] [CrossRef]
- Siegel, S.R.; Oh, W. Renal function as a marker of human fetal maturation. Acta Paediatr. Scand. 1976, 65, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Mannan, M.A.; Shahidulla, M.; Salam, F.; Alam, M.S.; Hossain, M.A.; Hossain, M. Postnatal development of renal function in preterm and term neonates. Mymensingh Med. J. 2012, 21, 103–108. [Google Scholar]
- Gates, A.; Marin, T.; De Leo, G.; Waller, J.L.; Stansfield, B.K. Nutrient composition of preterm mother’s milk and factors that influence nutrient content. Am. J. Clin. Nutr. 2021, 114, 1719–1728. [Google Scholar] [CrossRef]
- Ertl, T.; Sulyok, E.; Németh, M.; Tényi, I.; Csaba, I.F.; Varga, F. Hormonal control of sodium content in human milk. Acta Paediatr. Acad. Sci. Hung. 1982, 23, 309–318. [Google Scholar]
- Becker, G.E.; Smith, H.A.; Cooney, F. Methods of milk expression for lactating women. Cochrane Database Syst. Rev. 2016, 9, CD006170. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- Tudehope, D.I. Human Milk and the Nutritional Needs of Preterm Infants. J. Pediatr. 2013, 162, S17–S25. [Google Scholar] [CrossRef] [PubMed]
- Maas, C.; Wiechers, C.; Bernhard, W.; Poets, C.F.; Franz, A.R. Early feeding of fortified breast milk and in-hospital-growth in very premature infants: A retrospective cohort analysis. BMC Pediatr. 2013, 13, 178. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.T.; Friend, L.L.; Sisk, P.M. Fortified Donor Human Milk Frequently Does Not Meet Sodium Recommendations for the Preterm Infant. J. Pediatr. 2022, 244, 219–223. [Google Scholar] [CrossRef]
- Giapros, V.I.; Andronikou, S.; Cholevas, V.I.; Papadopoulou, Z.L. Renal function in premature infants during aminoglycoside therapy. Pediatr. Nephrol. 1995, 9, 163–166. [Google Scholar] [CrossRef]
- Giapros, V.I.; Andronikou, S.K.; Cholevas, V.I.; Papadopoulou, Z.L. Renal function and effect of aminoglycoside therapy during the first ten days of life. Pediatr. Nephrol. 2003, 18, 46–52. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, J.A.; Oh, S.; Choi, C.W.; Kim, E.-K.; Kim, H.-S.; Kim, B.I.; Choi, J.-H. Risk Factors for Late-onset Hyponatremia and Its Influence on Neonatal Outcomes in Preterm Infants. J. Korean Med. Sci. 2015, 30, 456–462. [Google Scholar] [CrossRef]
- Giapros, V.I.; Cholevas, V.I.; Andronikou, S.K. Acute effects of gentamicin on urinary electrolyte excretion in neonates. Pediatr. Nephrol. 2004, 19, 322–325. [Google Scholar] [CrossRef]
- Giapros, V.; Papadimitriou, P.; Challa, A.; Andronikou, S. The effect of intrauterine growth retardation on renal function in the first two months of life. Nephrol. Dial. Transplant. 2007, 22, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.; Petersen, D.; De Coppi, P.; Eaton, S. Effect of sodium deficiency on growth of surgical infants: A retrospective observational study. Pediatr. Surg. Int. 2014, 30, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Knepper, C.; Ellemunter, H.; Eder, J.; Niedermayr, K.; Haerter, B.; Hofer, P.; Scholl-Bürgi, S.; Müller, T.; Heinz-Erian, P. Low sodium status in cystic fibrosis-as assessed by calculating fractional Na+ excretion-is associated with decreased growth parameters. J. Cyst. Fibros. 2016, 15, 400–405. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Sammallahti, S.; Kajantie, E.; Matinolli, H.M.; Pyhälä, R.; Lahti, J.; Heinonen, K.; Lahti, M.; Pesonen, A.K.; Eriksson, J.G.; Hovi, P.; et al. Nutrition after preterm birth and adult neurocognitive outcomes. PLoS ONE 2017, 12, e0185632. [Google Scholar] [CrossRef]
- Haycock, G.B. The influence of sodium on growth in infancy. Pediatr. Nephrol. 1993, 7, 871–875. [Google Scholar] [CrossRef] [PubMed]
- McCauley, H.A. Enteroendocrine Regulation of Nutrient Absorption. J. Nutr. 2020, 150, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Isemann, B.; Mueller, E.W.; Narendran, V.; Akinbi, H. Impact of Early Sodium Supplementation on Hyponatremia and Growth in Premature Infants: A Randomized Controlled Trial. J. Parenter. Enteral. Nutr. 2016, 40, 342–349. [Google Scholar] [CrossRef]
- Segar, J.L.; Grobe, C.C.; Grobe, J.L. Maturational changes in sodium metabolism in periviable infants. Pediatr. Nephrol. 2021, 36, 3693–3698. [Google Scholar] [CrossRef]
- Fine, B.P.; Ty, A.; Lestrange, N.; Levine, O.R. Sodium deprivation growth failure in the rat: Alterations in tissue composition and fluid spaces. J. Nutr. 1987, 117, 1623–1628. [Google Scholar] [CrossRef]
- Rohrscheib, M.; Sam, R.; Raj, D.S.; Argyropoulos, C.P.; Unruh, M.L.; Lew, S.Q.; Ing, T.S.; Levin, N.W.; Tzamaloukas, A.H. Edelman Revisited: Concepts, Achievements, and Challenges. Front. Med. 2021, 8, 808765. [Google Scholar] [CrossRef]
- Gattineni, J.; Baum, M. Developmental changes in renal tubular transport-an overview. Pediatr. Nephrol. 2015, 30, 2085–2098. [Google Scholar] [CrossRef]
- Al-Dahhan, J.; Haycock, G.B.; Nichol, B.; Chantler, C.; Stimmler, L. Sodium homeostasis in term and preterm neonates. III. Effect of salt supplementation. Arch. Dis. Child. 1984, 59, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Ekblad, H.; Kero, P.; Takala, J.; Korvenranta, H.; Välimäki, I. Water, Sodium and Acid-Base Balance in Premature Infants: Therapeutical Aspects. Acta Paediatr. 1987, 76, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, S.G.; Meade, V.M. Sodium balance and extracellular volume regulation in very low birth weight infants. J. Pediatr. 1989, 115, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Ayisi, R.K.; Mbiti, M.J.; Musoke, R.N.; Orinda, D.A. Sodium supplementation in very low birth weight infants fed on their own mothers milk I: Effects on sodium homeostasis. East Afr. Med. J. 1992, 69, 591–595. [Google Scholar]
- Vanpée, M.; Herin, P.; Broberger, U.; Aperia, A. Sodium supplementation optimizes weight gain in preterm infants. Acta Paediatr. 1995, 84, 1312–1314. [Google Scholar] [CrossRef]
- Hartnoll, G.; Bétrémieux, P.; Modi, N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2000, 82, F24–F28. [Google Scholar] [CrossRef]
- Sánchez, C.; Castillo, D.; Valdés, B.D.; Castañeda, F. Effect of High Sodium Intake (5 mEq/kg/day) in Preterm Newborns (<35 Weeks Gestation) During the Initial 24 Hours of Life: A Non-Blinded Randomized Clinical Trial. Indian Pediatr. 2023, 60, 146–148. [Google Scholar] [CrossRef]
- Amiti, A.; Balakrishnan, U.; Devi, U.; Amboiram, P.; Salahudeen, A.G. Effect of early sodium supplementation on weight gain of very preterm infants: A randomised controlled trial. BMJ Paediatr. Open 2025, 9, e003444. [Google Scholar] [CrossRef]
- Petersen, R.Y.; Clermont, D.; Williams, H.L.; Buchanan, P.; Hillman, N.H. Oral sodium supplementation on growth and hypertension in preterm infants: An observational cohort study. J. Perinatol. 2024, 44, 1515–1522. [Google Scholar] [CrossRef]
- Al-Dahhan, J.; Jannoun, L.; Haycock, G.B. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age. Arch. Dis. Child.-Fetal Neonatal Ed. 2002, 86, F120. [Google Scholar] [CrossRef]
- Ertl, T.; Hadzsiev, K.; Vincze, O.; Pytel, J.; Szabo, I.; Sulyok, E. Hyponatremia and Sensorineural Hearing Loss in Preterm Infants. Biol. Neonate 2001, 79, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; Hope, P.L.; Johnson, A. Neonatal risk factors for cerebral palsy in very preterm babies: Case-control study. BMJ 1997, 314, 404. [Google Scholar] [CrossRef]
- Unal, S.; Arhan, E.; Kara, N.; Uncu, N.; Aliefendioğlu, D. Breast-feeding-associated hypernatremia: Retrospective analysis of 169 term newborns. Pediatr. Int. 2008, 50, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.D.; Kuzmov, A.; Clausen, D.; Siu, A.; Robinson, C.A.; Kimler, K.; Meyers, R.; Shah, P. Osmolality of Commonly Used Oral Medications in the Neonatal Intensive Care Unit. J. Pediatr. Pharmacol. Ther. 2021, 26, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Latheef, F.; Wahlgren, H.; Lilja, H.E.; Diderholm, B.; Paulsson, M. The Risk of Necrotizing Enterocolitis following the Administration of Hyperosmolar Enteral Medications to Extremely Preterm Infants. Neonatology 2021, 118, 73–79. [Google Scholar] [CrossRef]
- Ali, A.; Ong, E.Y.; Sadu Singh, B.K.; Cheah, F.C. Comparison Between Sodium Acetate and Sodium Chloride in Parenteral Nutrition for Very Preterm Infants on the Acid-Base Status and Neonatal Outcomes. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 377–387. [Google Scholar] [CrossRef]
- Florez, I.D.; Sierra, J.; Pérez-Gaxiola, G. Balanced crystalloid solutions versus 0.9% saline for treating acute diarrhoea and severe dehydration in children. Cochrane Database Syst. Rev. 2023, 5, Cd013640. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.; Mandalia, R. Diuretics and the kidney. BJA Educ. 2022, 22, 216–223. [Google Scholar] [CrossRef] [PubMed]
| Risk Factor | Comment |
|---|---|
| Prematurity |
|
| Inadequate Na intake |
|
| Fluid overload or excessive free water administration |
|
| Intraventricular hemorrhage |
|
| Sepsis, respiratory distress syndrome, or asphyxia |
|
| Necrotizing enterocolitis |
|
| Medications or other metabolic disturbances (diuretics, indomethacin, aminoglycosides, vancomycin, low serum phosphate) |
|
| Study | Study Type | GA (Weeks) or Birth Weight (g) | Population (Supplemented vs. Controls) | Sodium Evaluation | Sodium Supplementation (mEq/kg/day) | Impact on Weight/Growth on Supplemented Neonates | Complications |
|---|---|---|---|---|---|---|---|
| Al-Dahhan et al., 1984 [56] | Observational | 27–34 | 22 vs. 24 | Urine, serum, stool | 4–5 (day 4–14) | Less weight loss; earlier regain | None |
| Ekblad et al., 1987 [57] | RCT | <34 | 10 vs. 10 | Serum | 4 | Similar early weight loss | None |
| Shaffer et al., 1989 [58] | RCT | 700–1500 g | 20 | Serum | 3 vs. 1 | No weight difference | None |
| Ayisi et al., 1992 [59] | RCT | 1001–1500 g | 41 vs. 25 | Serum, urine | 3 | Increased weight, length, head circumference growth | None |
| Vanpee et al., 1995 [60] | RCT | 29–34 | 10 vs. 10 | Urine | 4 (day 4–14) | Less weight loss | None |
| Hartnoll et al., 2000 [61] | RCT | 25–30 | 24 early vs. 22 delayed | Serum | 4 early vs. delayed | No difference in birth weight regain | Early supplementation increased oxygen need |
| Isemann et al., 2016 [51] | RCT | <32 | 27 vs. 26 | — | 4 (day 7–35) | Decreased growth failure | None |
| Segar et al., 2018 [29] | Observational (historical cohort) | 26–29 | 40 vs. 50 | Urine | 4; Additionally 2 if low urine Na | Increased weight Z-score | None |
| Sanchez et al., 2023 [62] | RCT | <35 | 19 vs. 23 | Serum | 5 | Less weight loss | None |
| Petersen et al., 2024 [64] | Observational | 22–32 | 821 | Serum, urine | Variable | Increased weight and head circumference growth | None |
| Amiti et al., 2025 [63] | Double-blind RCT | 25–30 | 52 vs. 52 | Serum | 4 | Increased weight gain velocity | None |
| Stalter et al., 2025 [13] | Retrospective cohort | 26–33 | 26–29 wks: 225 vs. 157 30–33 wks: 157 vs. 153 | Urine | 4; Additionally 2 if low | Increased weight Z-score (26–29 wks) No impact on growth (30–33 wks) | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kosmeri, C.; Baltogianni, M.; Dermitzaki, N.; Tsiogka, C.M.; Giapros, V. The Changing Landscape of Sodium Needs in the Preterm Neonate for Optimizing Growth and Development. Nutrients 2026, 18, 186. https://doi.org/10.3390/nu18020186
Kosmeri C, Baltogianni M, Dermitzaki N, Tsiogka CM, Giapros V. The Changing Landscape of Sodium Needs in the Preterm Neonate for Optimizing Growth and Development. Nutrients. 2026; 18(2):186. https://doi.org/10.3390/nu18020186
Chicago/Turabian StyleKosmeri, Chrysoula, Maria Baltogianni, Niki Dermitzaki, Chrysanthi Maria Tsiogka, and Vasileios Giapros. 2026. "The Changing Landscape of Sodium Needs in the Preterm Neonate for Optimizing Growth and Development" Nutrients 18, no. 2: 186. https://doi.org/10.3390/nu18020186
APA StyleKosmeri, C., Baltogianni, M., Dermitzaki, N., Tsiogka, C. M., & Giapros, V. (2026). The Changing Landscape of Sodium Needs in the Preterm Neonate for Optimizing Growth and Development. Nutrients, 18(2), 186. https://doi.org/10.3390/nu18020186

