Polyphenol Consumption and Its Association with Physical and Mental Health in Adults with Major Depressive Disorder
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- (1)
- Provision of written informed consent to participate in the study;
- (2)
- Outpatients aged 18–60 years;
- (3)
- Body mass index (BMI) between 18.5 and 35.0 kg/m2.
- (1)
- Diagnosis of autoimmune, neurological, or immunodeficiency diseases; inflammatory bowel disease, irritable bowel syndrome, type 2 diabetes, cancer, and/or IgE-dependent allergies;
- (2)
- Presence of co-occurring mental disorders (excluding personality disorders), including intellectual disability, organic brain injury, or addiction (excluding nicotine and caffeine);
- (3)
- High suicide risk as assessed by the investigator;
- (4)
- Infection within one month prior to the initial study visit;
- (5)
- Adherence to a specific diet (e.g., elimination, plant-based, or weight-reducing diet);
- (6)
- In the subgroup of women: pregnancy or lactation.
2.2. Data Sources and Outcome Measures
- (1)
- Socio-demographic and clinical data;
- (2)
- Eating habits: Food Frequency Questionnaire (FFQ-6) and a three-day dietary record [15];
- (3)
- Physical activity: International Physical Activity Questionnaire (IPAQ) [16];
- (4)
- Anthropometric measurements: body weight, height, body mass index (BMI), and bioelectrical impedance analysis (BIA);
- (5)
- (6)
- Quality of life: Short Form Health Survey (SF-36) [19];
- (7)
- Perceived stress: Perceived Stress Scale (PSS-10) [20].
- (1)
- Stress marker: cortisol;
- (2)
- Metabolic parameters: total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glucose, insulin, and glycated hemoglobin (HbA1c);
- (3)
- Liver function indicators: alanine aminotransferase (ALT) and aspartate aminotransferase (AST).
Polyphenol Intake Assessment
2.3. Statistical Analysis
3. Results
3.1. Polyphenol Intake
3.2. Polyphenol Intake and Health-Related Outcomes
3.3. Polyphenol Intake and the Quality of Life
3.4. Predictive Models of Health Parameters Based on Polyphenol Intake
4. Discussion
5. Conclusions
- (1)
- A positive association was observed between dietary polyphenols and HbA1c in men. This result may potentially reflect gender differences in the metabolism of polyphenolic compounds or their influence on carbohydrate metabolism. The effect could also be modulated by other dietary or metabolic factors not considered in this study.
- (2)
- A positive association was found between the number of polyphenols consumed and LDL cholesterol concentration. This may suggest a complex and context-dependent effect of polyphenols on lipid profiles, potentially influenced by the type and source of phenolic compounds, their bioavailability, and concomitant dietary and environmental factors.
- (3)
- Polyphenols may play a modulating role in certain aspects of health. Higher polyphenol consumption appeared to strengthen the relationship between selected factors and TG concentrations, while potentially weakening relationships between specific variables and cortisol levels. These findings could indicate a modulatory effect of polyphenols on mechanisms regulating lipid metabolism and the body’s stress response, but they should be interpreted with caution.
- (4)
- No significant relationship was observed between polyphenol consumption and clinical outcomes in the study population. This may indicate that their impact on disease progression is limited or dependent on other biological and environmental factors.
- (5)
- In the group of women, a significant association was demonstrated between the amount of polyphenol consumption and subjectively assessed quality of life. Lower polyphenol consumption was associated with poorer physical health and lower overall quality of life.
- (6)
- Further research is needed to clarify which types of polyphenols may exert the most beneficial effects on specific health parameters and how these compounds interact with other modifiable lifestyle and environmental factors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDD | Major Depressive Disorder |
| WHO | World Health Organization |
| DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
| BMI | Body Mass Index |
| IgE | Immunoglobulin E |
| HPA | Hypothalamic–Pituitary–Adrenal axis |
| FFQ-6 | Food Frequency Questionnaire (version 6) |
| IPAQ | International Physical Activity Questionnaire |
| BIA | Bioelectrical Impedance Analysis |
| MADRS | Montgomery–Åsberg Depression Rating Scale |
| BDI | Beck Depression Inventory |
| SF-36 | 36-Item Short Form Health Survey |
| PSS-10 | Perceived Stress Scale (10-item version) |
| SANGUT | Study evaluating the effect of probiotic supplementation on mental status, inflammation, and intestinal barrier in MDD patients using a gluten-free or gluten-containing diet |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| LDL-C | Low-Density Lipoprotein Cholesterol |
| HDL-C | High-Density Lipoprotein Cholesterol |
| TG | Triglycerides |
| HbA1c | Hemoglobin A1c (Glycated Hemoglobin) |
| HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
| SSRIs | Selective Serotonin Reuptake Inhibitors |
| SNRIs | Serotonin–Norepinephrine Reuptake Inhibitors |
| TCAs | Tricyclic Antidepressants |
| Mean | |
| Me | Median |
| SD | Standard Deviation |
| Min | Minimum |
| Max | Maximum |
References
- Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 6 November 2025).
- Al-Harbi, K.S. Treatment-Resistant Depression: Therapeutic Trends, Challenges, and Future Directions. Patient Prefer. Adherence 2012, 6, 369–388. [Google Scholar] [CrossRef]
- Dakanalis, A.; Giaginis, C. Nutritional and Lifestyle Psychiatry: The Role of Nutrition and Lifestyle in the Onset, Prevention and Management of Mental Disorders. Nutrients 2025, 17, 2575. [Google Scholar] [CrossRef] [PubMed]
- Wingralek, Z.J.; Miś, P.; Wróblewski, H.; Zimna, A.; Rog, J. The Importance of Anti-Inflammatory Diet in Depression: A Literature Review and Recommendations. Curr. Probl. Psychiatry 2023, 24, 134–150. [Google Scholar] [CrossRef]
- Hao, W.; Gan, H.; Wang, L.; Huang, J.; Chen, J. Polyphenols in Edible Herbal Medicine: Targeting Gut-Brain Interactions in Depression-Associated Neuroinflammation. Crit. Rev. Food Sci. Nutr. 2023, 63, 12207–12223. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C.; et al. Dietary Polyphenol Intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef]
- Martin, K.R.; Appel, C.L. Polyphenols as Dietary Supplements: A Double-Edged Sword. Nutr. Diet. Suppl. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of Polyphenol Supplementations on Improving Depression, Anxiety, and Quality of Life in Patients with Depression. Front. Psychiatry 2021, 12, 765485. [Google Scholar] [CrossRef]
- Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules 2018, 23, 999. [Google Scholar] [CrossRef]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013; pp. xliv, 947; ISBN 978-0-89042-554-1.
- Karakula-Juchnowicz, H.; Rog, J.; Juchnowicz, D.; Łoniewski, I.; Skonieczna-Żydecka, K.; Krukow, P.; Futyma-Jedrzejewska, M.; Kaczmarczyk, M. The Study Evaluating the Effect of Probiotic Supplementation on the Mental Status, Inflammation, and Intestinal Barrier in Major Depressive Disorder Patients Using Gluten-Free or Gluten-Containing Diet (SANGUT Study): A 12-Week, Randomized, Double-Blind, and Placebo-Controlled Clinical Study Protocol. Nutr. J. 2019, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- WMA. The World Medical Association WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Participants. JAMA 2024, 333, 71–74. [Google Scholar]
- Niedzwiedzka, E.; Wadolowska, L.; Kowalkowska, J. Reproducibility of A Non-Quantitative Food Frequency Questionnaire (62-Item FFQ-6) and PCA-Driven Dietary Pattern Identification in 13–21-Year-Old Females. Nutrients 2019, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T. Depression: Clinical, Experimental, and Theoretical Aspects; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Montgomery, S.A.; Asberg, M. A New Depression Scale Designed to Be Sensitive to Change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36). I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A Major Update of the Phenol-Explorer Database Integrating Data on Polyphenol Metabolism and Pharmacokinetics in Humans and Experimental Animals. Database 2012, 2012, bas031. [Google Scholar] [CrossRef]
- Knaze, V.; Rothwell, J.A.; Zamora-Ros, R.; Moskal, A.; Kyrø, C.; Jakszyn, P.; Skeie, G.; Weiderpass, E.; Santucci de Magistris, M.; Agnoli, C.; et al. A New Food-Composition Database for 437 Polyphenols in 19,899 Raw and Prepared Foods Used to Estimate Polyphenol Intakes in Adults from 10 European Countries. Am. J. Clin. Nutr. 2018, 108, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Suneson, K.; Lindahl, J.; Chamli Hårsmar, S.; Söderberg, G.; Lindqvist, D. Inflammatory Depression-Mechanisms and Non-Pharmacological Interventions. Int. J. Mol. Sci. 2021, 22, 1640. [Google Scholar] [CrossRef] [PubMed]
- Mechlińska, A.; Włodarczyk, A.; Gruchała-Niedoszytko, M.; Małgorzewicz, S.; Cubała, W.J. Dietary Patterns of Treatment-Resistant Depression Patients. Nutrients 2022, 14, 3766. [Google Scholar] [CrossRef] [PubMed]
- Słupski, J.; Mechlińska, A.; Włodarczyk, A.; Kwaśny, A.; Szarmach, J.; Słupska, A.; Cubała, W.J. Appetite Measures as Correlates of Clinical Response in Mood Disorders Treated with Ketamine: Systematic Review. Front. Nutr. 2025, 12, 1616859. [Google Scholar] [CrossRef]
- Campisi, S.C.; Cost, K.T.; Korczak, D.J. Food Intake Reporting Bias among Adolescents with Depression. Eur. J. Clin. Nutr. 2022, 76, 904–906. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Zhang, X. Dietary Polyphenols as Prospective Natural-Compound Depression Treatment from the Perspective of Intestinal Microbiota Regulation. Molecules 2022, 27, 7637. [Google Scholar] [CrossRef]
- de Farias, L.M.; Lopes Rodrigues, L.A.R.; de Carvalho Lavôr, L.C.; de Lima, A.; Sampaio da Paz, S.M.R.; Pereira da Silva, J.D.; de Macêdo Gonçalves Frota, K.; Lucarini, M.; Durazzo, A.; Arcanjo, D.D.R.; et al. Association between Polyphenol Intake and Lipid Profile of Adults and Elders in a Northeastern Brazilian Capital. Nutrients 2023, 15, 2174. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Zujko, M.E.; Waśkiewicz, A.; Terlikowska, K.M.; Piotrowski, W. Comparison of Various Databases for Estimation of Dietary Polyphenol Intake in the Population of Polish Adults. Nutrients 2015, 7, 9299–9308. [Google Scholar] [CrossRef]
- Zujko, M.; Witkowska, A.; Waśkiewicz, A.; Sygnowska, E. Estimation of Dietary Intake and Patterns of Polyphenol Consumption in Polish Adult Population. Adv. Med. Sci. 2012, 57, 375–384. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Chen, G.; Chen, H.; Zhu, Y. Lack of Efficacy of Pomegranate Supplementation for Glucose Management, Insulin Levels and Sensitivity: Evidence from a Systematic Review and Meta-Analysis. Nutr. J. 2017, 16, 67. [Google Scholar] [CrossRef]
- Wang, D.; Chen, C.; Wang, Y.; Liu, J.; Lin, R. Effect of Black Tea Consumption on Blood Cholesterol: A Meta-Analysis of 15 Randomized Controlled Trials. PLoS ONE 2014, 9, e107711. [Google Scholar] [CrossRef]
- Vitale, M.; Vaccaro, O.; Masulli, M.; Bonora, E.; Del Prato, S.; Giorda, C.B.; Nicolucci, A.; Squatrito, S.; Auciello, S.; Babini, A.C.; et al. Polyphenol Intake and Cardiovascular Risk Factors in a Population with Type 2 Diabetes: The TOSCA.IT Study. Clin. Nutr. 2017, 36, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, G.; Giacco, A.; Scopigno, N.; Vigliotti, M.; Goglia, F.; Cioffi, F.; Silvestri, E. Mitochondria at the Crossroads: Linking the Mediterranean Diet to Metabolic Health and Non-Pharmacological Approaches to NAFLD. Nutrients 2025, 17, 1214. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients 2018, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Barfoot, K.L.; Forster, R.; Lamport, D.J. Mental Health in New Mothers: A Randomised Controlled Study into the Effects of Dietary Flavonoids on Mood and Perceived Quality of Life. Nutrients 2021, 13, 2383. [Google Scholar] [CrossRef]
- Palma-Duran, S.A.; Vlassopoulos, A.; Lean, M.; Govan, L.; Combet, E. Nutritional Intervention and Impact of Polyphenol on Glycohemoglobin (HbA1c) in Non-Diabetic and Type 2 Diabetic Subjects: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2017, 57, 975–986. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Sattar, N.; Preiss, D. Reverse Causality in Cardiovascular Epidemiological Research: More Common Than Imagined? Circulation 2017, 135, 2369–2372. [Google Scholar] [CrossRef]
- Silva, D.M.C.E.; Santos, T.S.S.; Conde, W.L.; Slater, B. Nutritional status and metabolic risk in adults: Association with diet quality as assessed with ESQUADA. Rev. Bras. Epidemiol. 2021, 24, e210019. [Google Scholar] [CrossRef]
- Kosmalski, M.; Pękala-Wojciechowska, A.; Sut, A.; Pietras, T.; Luzak, B. Dietary Intake of Polyphenols or Polyunsaturated Fatty Acids and Its Relationship with Metabolic and Inflammatory State in Patients with Type 2 Diabetes Mellitus. Nutrients 2022, 14, 1083. [Google Scholar] [CrossRef]
- Kontogianni, M.D.; Vijayakumar, A.; Rooney, C.; Noad, R.L.; Appleton, K.M.; McCarthy, D.; Donnelly, M.; Young, I.S.; McKinley, M.C.; McKeown, P.P.; et al. A High Polyphenol Diet Improves Psychological Well-Being: The Polyphenol Intervention Trial (PPhIT). Nutrients 2020, 12, 2445. [Google Scholar] [CrossRef] [PubMed]
- Mijailović, N.R.; Milojević-Rakić, M.; Mihajlović, K. Polyphenols: A Top-down Approach to Nutrition and Depression. World J. Psychiatry 2025, 15, 107828. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary Patterns and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review of Observational and Intervention Studies. Redox Biol. 2021, 42, 101869. [Google Scholar] [CrossRef] [PubMed]
- Spalding, K.L.; Bernard, S.; Näslund, E.; Salehpour, M.; Possnert, G.; Appelsved, L.; Fu, K.-Y.; Alkass, K.; Druid, H.; Thorell, A.; et al. Impact of Fat Mass and Distribution on Lipid Turnover in Human Adipose Tissue. Nat. Commun. 2017, 8, 15253. [Google Scholar] [CrossRef]
- Boccellino, M.; D’Angelo, S. Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef]
- Legeza, B.; Marcolongo, P.; Gamberucci, A.; Varga, V.; Bánhegyi, G.; Benedetti, A.; Odermatt, A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients 2017, 9, 426. [Google Scholar] [CrossRef]
- Surma, S.; Romańczyk, M.; Zembala, M.O.; Filipiak, K.J. Coffee and lipid profile: From theory to everyday practice. Folia Cardiol. 2023, 18, 24. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The Effects of Foods on LDL Cholesterol Levels: A Systematic Review of the Accumulated Evidence from Systematic Reviews and Meta-Analyses of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee Consumption and Health: Umbrella Review of Meta-Analyses of Multiple Health Outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef]
- Mattioli, A.V. Sex-Specific Impacts of Caffeine on Body Composition: Commentary on a Retrospective Cohort Study. J. Int. Soc. Sports Nutr. 2025, 22, 2454633. [Google Scholar] [CrossRef]
- Schorr, M.; Lawson, E.A.; Dichtel, L.E.; Klibanski, A.; Miller, K.K. Cortisol Measures Across the Weight Spectrum. J. Clin. Endocrinol. Metab. 2015, 100, 3313–3321. [Google Scholar] [CrossRef]
| Factor | Sex | /Me | SD/Min.–Max. | p-Value |
|---|---|---|---|---|
| Age [years] | K | 43.9 | 9.2 | <0.010 *a |
| M | 30.8 | 10.3 | ||
| Total sample | 39.2 | 11.7 | ||
| BMI [kg/m2] | K | 25.8 | 3.9 | 0.793 a |
| M | 25.5 | 3.3 | ||
| Total sample | 25.7 | 3.7 | ||
| Duration of illness [months] | F | 120.0 | 2.0–492.0 | <0.010 *b |
| M | 24.0 | 3.0–216.0 | ||
| Total sample | 60 | 2.0–492.0 | ||
| Number of psychiatric hospitalizations | F | 0 | 0–6.0 | 0.440 b |
| M | 0 | 0–2.0 | ||
| Total sample | 0 | 0–6.0 | ||
| Polyphenol intake [short-term, mg/day] | F | 1884.4 | 690.9 | 0.632 a |
| M | 1966.9 | 803.3 | ||
| Total sample | 1910.2 | 715.7 | ||
| Polyphenol intake [long-term, mg/day] | F | 2406.7 | 1131.2 | 0.767 a |
| M | 2214.4 | 1412.8 | ||
| Total sample | 2331.7 | 1235.0 |
| Independent Variables | β | p-Value |
|---|---|---|
| Visceral fat tissue [%] | 0.546 | <0.001 * |
| Muscle mass [%] | 0.420 | 0.004 * |
| Physical activity [IPAQ] | −0.181 | 0.196 |
| Depressive symptoms [BDI] | 0.715 | 0.006 * |
| Stress severity [PSS-10] | −0.635 | 0.013 * |
| Polyphenol intake [short-term, mg/day] | 0.191 | 0.188 |
| Independent Variables | β | p-Value |
|---|---|---|
| Total body water [%] | −1.668 | 0.145 |
| Polyphenol intake [short-term, mg/day] | 0.414 | 0.015 * |
| Fat tissue [%] | −1.216 | 0.283 |
| Independent Variables | β | p-Value |
|---|---|---|
| Fat tissue [%] | −0.693 | <0.001 * |
| Stress severity [PSS-10] | −0.352 | 0.193 |
| Quality of life [SF-36] | 0.458 | 0.040 * |
| Polyphenol intake [short-term, mg/day] | −0.231 | 0.089 |
| Depressive symptoms [BDI] | −0.411 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rog, J.; Pawlikowska, P.; Futyma-Jędrzejewska, M.; Wróbel-Knybel, P.; Maciejewski, R.; Kulczycka, K.; Karakula-Juchnowicz, H. Polyphenol Consumption and Its Association with Physical and Mental Health in Adults with Major Depressive Disorder. Nutrients 2026, 18, 47. https://doi.org/10.3390/nu18010047
Rog J, Pawlikowska P, Futyma-Jędrzejewska M, Wróbel-Knybel P, Maciejewski R, Kulczycka K, Karakula-Juchnowicz H. Polyphenol Consumption and Its Association with Physical and Mental Health in Adults with Major Depressive Disorder. Nutrients. 2026; 18(1):47. https://doi.org/10.3390/nu18010047
Chicago/Turabian StyleRog, Joanna, Paulina Pawlikowska, Małgorzata Futyma-Jędrzejewska, Paulina Wróbel-Knybel, Ryszard Maciejewski, Kinga Kulczycka, and Hanna Karakula-Juchnowicz. 2026. "Polyphenol Consumption and Its Association with Physical and Mental Health in Adults with Major Depressive Disorder" Nutrients 18, no. 1: 47. https://doi.org/10.3390/nu18010047
APA StyleRog, J., Pawlikowska, P., Futyma-Jędrzejewska, M., Wróbel-Knybel, P., Maciejewski, R., Kulczycka, K., & Karakula-Juchnowicz, H. (2026). Polyphenol Consumption and Its Association with Physical and Mental Health in Adults with Major Depressive Disorder. Nutrients, 18(1), 47. https://doi.org/10.3390/nu18010047

