Biofortification of Vegetables with Iodine and Molybdenum for Healthy Nutrition: A Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| T3 | Triiodothyronine |
| T4 | Thyroxine |
| RDA | Recommended Dietary Allowance |
| BMR | Basal Metabolic Rate |
| mARC | Mitochondrial Amidoxime Reducing Component |
| BEs | Biomonitoring Equivalents |
| NAFLD | Non-Alcoholic Fatty Liver Disease |
| HCC | Hepatocellular Carcinoma |
| TNF-α | Tumor Necrosis Factor-alpha |
| IL-6 | Interleukin-6 |
| IL-1β | Interleukin-1 beta |
| CVD | Cardiovascular Disease |
| NABbio | Nutrition, Age, and Bone (laboratory) |
| STEBICEF | Department of Biological, Chemical and Pharmaceutical Sciences and Technologies |
| BMI | Body Mass Index |
| T0 | Before the intervention |
| T1 | After the intervention |
| K | Potassium |
| ALB | Albumin |
| ALP | Alkaline Phosphatase |
| ALT | Alanine Transaminase |
| Ca | Calcium |
| HDL | High-Density Lipoprotein |
| CHO | Cholesterol |
| MG | Magnesium |
| FT3 | Free Triiodothyronine |
| FT4 | Free Thyroxine |
| TSH | Thyroid-Stimulating Hormone |
| TRIGL | Triglycerides |
| CTX | C-telopeptide of type I collagen |
| PTH | Parathyroid Hormone |
| ECLIA | Electro-chemiluminescence Immunoassay |
| P | Phosphorus |
| SD | Standard Deviation |
| PYY | Peptide YY |
| GIP | Gastric Inhibitory Polypeptide |
| GLP-1 | Glucagon-like Peptide-1 |
| GLP-2 | Glucagon-like Peptide-2 |
| LDL | Low-Density Lipoprotein |
References
- Hernández-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 2018, 28, 436–453. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018, 5, 61. [Google Scholar] [CrossRef] [PubMed]
- Prasad, H.; Ryan, D.A.; Celzo, M.F.; Stapleton, D. Metabolic syndrome: Definition and therapeutic implications. Postgrad. Med. 2012, 124, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.P.; Feng, L.; Nyun, M.S.Z.; Feng, L.; Gao, Q.; Lim, M.L.; Collinson, S.L.; Chong, M.S.; Lim, W.S.; Lee, T.S.; et al. Metabolic Syndrome and the Risk of Mild Cognitive Impairment and Progression to Dementia: Follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol. 2016, 734, 456–463. [Google Scholar]
- Batsis, J.A.; Mackenzie, T.A.; Barre, L.K.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. Eur. J. Clin. Nutr. 2014, 68, 1001–1007. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Guasch-Ferré, M.; Lee, C.H.; Estruch, R.; Clish, C.B.; Ros, E. Protective Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. J. Nutr. 2016, 146, 920S–927S. [Google Scholar] [CrossRef]
- Mittal, P.; Dhankhar, S.; Chauhan, S.; Garg, N.; Bhattacharya, T.; Ali, M.; Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, W.; et al. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease. Pharmaceuticals 2023, 16, 908. [Google Scholar] [CrossRef]
- Lee, V. Introduction to the dietary management of obesity in adults. Clin. Med. 2023, 23, 304–310. [Google Scholar] [CrossRef]
- Thomas, M.S.; Calle, M.; Fernandez, M.L. Healthy plant-based diets improve dyslipidemias, insulin resistance, and inflammation in metabolic syndrome. A narrative review. Adv. Nutr. 2023, 14, 44–54. [Google Scholar]
- Sandberg, J.C.; Björck, I.M.E.; Nilsson, A.C. Impact of rye-based evening meals on cognitive functions, mood and cardiometabolic risk factors: A randomized controlled study in healthy middle-aged subjects. Nutr. J. 2018, 17, 102. [Google Scholar] [CrossRef]
- Chareonrungrueangchai, K.; Wongkawinwoot, K.; Anothaisintawee, T.; Reutrakul, S. Dietary Factors and Risks of Cardiovascular Diseases: An Umbrella Review. Nutrients 2020, 12, 1088. [Google Scholar] [CrossRef]
- Makarem, N.; Bandera, E.V.; Lin, Y.; McKeown, N.M.; Hayes, R.B.; Parekh, N. Associations of Whole and Refined Grain Intakes with Adiposity-Related Cancer Risk in the Framingham Offspring Cohort (1991–2013). Nutr. Cancer 2018, 70, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.C.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar]
- Mossavar-Rahmani, Y.; Hyun, N.; Hakun, J.G.; Katz, M.J.; Pavlovic, J.M.; Zetterberg, H.; Wang, Z.; Yang, J.B.; Wylie-Rosett, J.; Hebert, J.R.; et al. The effects of the Multicultural Healthy Diet on cognitive decline and Alzheimer’s disease risk: A phase II randomized controlled trial in middle-aged adults. Am. J. Clin. Nutr. 2025, 122, 48–59. [Google Scholar] [PubMed]
- Redman, K.; Ruffman, T.; Fitzgerald, P.; Skeaff, S. Iodine deficiency and the brain: Effects and mechanisms. Crit. Rev. Food Sci. Nutr. 2016, 56, 2695–2713. [Google Scholar] [PubMed]
- Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. [Google Scholar] [CrossRef]
- Nouri, M.; Chalian, H.; Bahman, A.; Mollahajian, H.; Ahmadi-Faghih, M.; Fakheri, H.; Soroush, A. Nail molybdenum and zinc contents in populations with low and moderate incidence of esophageal cancer. Arch. Iran Med. 2008, 11, 392–396. [Google Scholar]
- Vasto, S.; Baldassano, D.; Sabatino, L.; Caldarella, R.; Di Rosa, L.; Baldassano, S. The Role of Consumption of Molybdenum Biofortified Crops in Bone Homeostasis and Healthy Aging. Nutrients 2023, 15, 1022. [Google Scholar] [CrossRef]
- Chaker, L.; Razvi, S.; Bensenor, I.M.; Azizi, F.; Pearce, E.N.; Peeters, R.P. Hypothyroidism. Nat. Rev. Dis. Primers 2022, 8, 30. [Google Scholar]
- Ahad, F.; Ganie, S.A. Iodine, Iodine Metabolism and Iodine Deficiency Disorders Revisited. Indian J. Endocrinol. Metab. 2010, 14, 13–17. [Google Scholar]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; Volume 8. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222323/ (accessed on 2 September 2025).
- Wu, Y.X.; Li, L.J.; Chen, G.Y.; Zhao, W.D.; Qiu, M.C. Effects of Supplementation of Different Kinds of Iodine on the Antioxidative Ability of Retina in Iodine Deficient Rats. Chin. J. Ophthalmol. 2003, 39, 495–498. [Google Scholar]
- Aceves, C.; Anguiano, B.; Delgado, G. The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid 2013, 8, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Venturi, S. Is There a Role for Iodine in Breast Diseases? Breast 2001, 10, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Rufino, S.; Navarro-Meza, M.; García-Solís, P.; Xochihua-Rosas, I.; Arroyo-Helguera, O. Iodine Levels Are Associated with Oxidative Stress and Antioxidant Status in Pregnant Women with Hypertensive Disease. Nutr. Hosp. 2017, 34, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Kurku, H.; Gencer, A.; Pirgon, O.; Buyukinan, M.; Aslan, N. Increased Oxidative Stress Parameters in Children with Moderate Iodine Deficiency. J. Pediatr. Endocrinol. Metab. 2016, 29, 1159–1164. [Google Scholar] [CrossRef]
- Gutiérrez-Repiso, C.; Velasco, I.; Garcia-Escobar, E.; Garcia-Serrano, S.; Rodríguez-Pacheco, F.; Linares, F.; Ruiz de Adana, M.S.; Rubio-Martin, E.; Garrido-Sanchez, L.; Cobos-Bravo, J.F.; et al. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk? Antioxid. Redox Signal. 2014, 20, 847–853. [Google Scholar]
- Qin, F.; Pan, X.; Yang, J.; Li, S.; Shao, L.; Zhang, X.; Liu, B.; Li, J. Dietary Iodine Affected the GSH-PX to Regulate the Thyroid Hormones in Thyroid Gland of Rex Rabbits. Biol. Trace Elem. Res. 2018, 181, 251–257. [Google Scholar]
- Reiss, J.; Hahnewald, R. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum. Mutat. 2011, 32, 10–18. [Google Scholar]
- Novotny, J.A. Molybdenum Nutriture in Humans. J. Evid.-Based Complement. Altern. Med. 2011, 16, 164–168. [Google Scholar]
- Otten, J.; Hellwig, J.; Meyers, L. (Eds.) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2007; Volume 85, p. 924. [Google Scholar]
- Hays, S.M.; Macey, K.; Poddalgoda, D.; Lu, M.; Nong, A.; Aylward, L.L. Biomonitoring Equivalents for Molybdenum. Regul. Toxicol. Pharmacol. 2016, 77, 223–229. [Google Scholar] [CrossRef]
- Botchway, B.O.A.; Liu, X.; Zhou, Y.; Fang, M. Biometals in Alzheimer Disease: Emerging Therapeutic and Diagnostic Potential of Molybdenum and Iodine. J. Transl. Med. 2023, 21, 351. [Google Scholar] [CrossRef]
- Adamus, J.P.; Ruszczyńska, A.; Wyczałkowska-Tomasik, A. Molybdenum’s Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review. Biomolecules 2024, 14, 869. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Anorexia of Ageing: A Key Component in the Pathogenesis of Both Sarcopenia and Cachexia. J. Cachexia Sarcopenia Muscle 2017, 8, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.H.; Wang, T.Y.; Yao, S.F.; Lin, P.Y.; Chang, J.C.Y.; Peng, L.N.; Chen, L.K.; Yen, D.H.T. Gastric Mobility and Gastrointestinal Hormones in Older Patients with Sarcopenia. Nutrients 2022, 14, 1897. [Google Scholar] [CrossRef] [PubMed]
- Baldassano, S.; Di Gaudio, F.; Sabatino, L.; Caldarella, R.; De Pasquale, C.; Di Rosa, L.; Nuzzo, D.; Picone, P.; Vasto, S. Biofortification: Effect of Iodine Fortified Food in the Healthy Population, Double-Arm Nutritional Study. Front. Nutr. 2022, 9, 871638. [Google Scholar] [CrossRef]
- Vasto, S.; Di Gaudio, F.; Raso, M.; Sabatino, L.; Caldarella, R.; De Pasquale, C.; Di Rosa, L.; Baldassano, S. Impact on Glucose Homeostasis: Is Food Biofortified with Molybdenum a Workable Solution? A Two-Arm Study. Nutrients 2022, 14, 1351. [Google Scholar] [CrossRef]
- Sabatino, L.; Consentino, B.; Rouphael, Y.; Pasquale, D.; Iapichino, G.; D’Anna, F.; La Bella, S. Protein Hydrolysates and Mo-Biofortification Interactively Modulate Plant Performance and Quality of ‘Canasta’ Lettuce Grown in a Protected Environment. Agronomy 2021, 11, 1023. [Google Scholar] [CrossRef]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Härtling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 23, 450. [Google Scholar] [CrossRef]
- Skov-Jeppesen, K.; Christiansen, C.B.; Hansen, L.S.; Windeløv, J.A.; Hedbäck, N.; Gasbjerg, L.S.; Hindsø, M.; Svane, M.S.; Madsbad, S.; Holst, J.J.; et al. Effects of Exogenous GIP and GLP-2 on Bone Turnover in Individuals with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, 109, 1773–1780. [Google Scholar] [CrossRef]
- Baldassano, S.; Gasbjerg, L.S.; Kizilkaya, H.S.; Rosenkilde, M.M.; Holst, J.J.; Hartmann, B. Increased Body Weight and Fat Mass After Subchronic GIP Receptor Antagonist, but Not GLP-2 Receptor Antagonist, Administration in Rats. Front. Endocrinol. 2019, 10, 492. [Google Scholar] [CrossRef]
- Vasto, S.; Amato, A.; Proia, P.; Baldassano, S. Is the Secret in the Gut? SuperJump Activity Improves Bone Remodeling and Glucose Homeostasis by GLP-1 and GIP Peptides in Eumenorrheic Women. Biology 2022, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Di Gaudio, F.; Consentino, B.B.; Rouphael, Y.; El-Nakhel, C.; La Bella, S.; Vasto, S.; Mauro, R.P.; D’Anna, F.; Iapichino, G.; et al. Iodine Biofortification Counters Micronutrient Deficiency and Improves Functional Quality of Open Field Grown Curly Endive. Horticulturae 2021, 7, 58. [Google Scholar] [CrossRef]
- Hu, S.; Hu, P. Research Progress and Prospect of Functional Rice. Chin. J. Rice Sci. 2021, 35, 311. [Google Scholar]
- Manzoor, S.; Altemimi, A.B.; Rakha, A.; Rasheed, H.; Ali Khan, M.S.; Munir, S.; Bhat, Z.F.; Aadil, R.M. Modulation of Snack Foods: An Approach to Overcome Hidden Hunger in Children. Nutrients 2025, 135, 112777. [Google Scholar]
- Frumuzachi, O.; Flanagan, A.; Rohn, S.; Mocan, A. The Dichotomy Between Functional and Functionalized Foods—A Critical Characterization of Concepts. Food Res. Int. 2025, 208, 116173. [Google Scholar]
- Browning, J.D.; Baker, J.A.; Rogers, T.; Davis, J.; Satapati, S.; Burgess, S.C. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 2011, 93, 1048–1052. [Google Scholar] [CrossRef]
- Purkins, L.; Love, E.R.; Eve, M.D.; Wooldridge, C.L.; Cowan, C.; Smart, T.S.; Johnson, P.J.; Rapeport, W.G. The influence of diet upon liver function tests and serum lipids in healthy male volunteers resident in a Phase I unit. Br. J. Clin. Pharmacol. 2004, 57, 199–208. [Google Scholar]


| Inclusion Criteria | Exclusion Criteria |
|---|---|
| Age between 50 and 79 years | Presence of inflammatory chronic disease |
| Italian nationality | Use of medication, dietary supplements, and topical products |
| BMI between 18.5 and 28 kg/m2 | Presence of viral infection |
| Absence of chronic age-related disease | Presence of blood-related dysfunction |
| Parameter | T0 All n = 36 | T1 Control Group n = 18 | T1 Biofortification Group n = 18 |
|---|---|---|---|
| Weight (kg) | 71.65 ± 13.55 | 70.24 ± 8.01 | 73.12 ± 21.92 |
| Height (cm) | 167.96 ± 5.03 | 169.29 ± 9.59 | 164.75 ± 12.90 |
| Body Mass Index (BMI) (kg/m2) | 25.15 ± 2.36 | 24.74 ± 1.87 | 25.66 ± 4.88 |
| Fat mass (%) | 27.68 ± 7.35 | 27.84 ± 7.73 | 27.55 ± 9.72 |
| Muscular mass (%) | 32.50 ± 5.50 | 33.21 ± 5.56 | 32.88 ± 7.02 |
| Visceral fat (%) | 7.83 ± 3.47 | 7.00 ± 3.00 | 7.91 ± 4.76 |
| Basal metabolic rate (kcal) | 1519 ± 242 | 1543 ± 177 | 1595± 359 |
| Chest circumference (cm) | 92.14 ± 9.00 | 91.75 ± 6.79 | 93.71 ± 13.21 |
| Waist circumference (cm) | 82.40 ± 11.21 | 79.69 ± 8.91 | 81.08 ± 12.37 |
| Abdomen circumference (cm) | 86.47 ± 9.05 | 87.07 ± 8.11 | 86.91 ± 10.71 |
| Hip circumference (cm) | 99.09 ± 6.96 | 99.88 ± 7.40 | 97.91 ± 7.06 |
| Parameter | T0 All | T1 Control | T1 Biofortification | p Value # | p Value + | p Value § | Physiological Range |
|---|---|---|---|---|---|---|---|
| LDL (mg/dL) | 100.31 ± 19.05 | 98.99 ± 25.10 | 96.15 ± 23.78 | 0.5104 | 0.8161 | 0.9088 | 100–129 |
| HDL (mg/dL) | 49.86 ± 9.67 | 49.89 ± 6.39 | 62.06 ± 14.81 * | 0.9999 | 0.0025 | 0.0048 | 40–65 |
| Total Chol (mg/dL) | 182.46 ± 38.88 | 178.33 ± 26.01 | 170.50 ± 22.91 | 0.0653 | 0.9154 | 0.5580 | 120–200 |
| Triglycerides (mg/dL) | 88.11 ± 18.58 | 88.88 ± 21.10 | 63.38 ± 16.69 * | 0.9921 | 0.0010 | 0.0029 | 50–150 |
| Vitamin D (µg/L) | 27.17 ± 10.41 | 28.69 ± 7.76 | 32.13 ± 9.17 | 0.9914 | 0.6232 | 0.9150 | 30–100 |
| CTX (µg/L) | 0.42 ± 0.15 | 0.42 ± 0.14 | 0.51 ± 0.17 | 0.9999 | 0.4400 | 0.5170 | M 0.2–0.7 F 0.14–0.58 |
| PTH (ng/L) | 35.15 ± 11.44 | 32.60 ± 13.86 | 31.14 ± 7.28 | 0.9551 | 0.8241 | 0.9971 | 15–65 |
| Osteocalcin (µg/L) | 21.52 ± 7.78 | 20.29 ± 6.06 | 21.91 ± 5.47 | 0.9649 | 0.9996 | 0.9503 | M 24–70 F 14–42 |
| TSH (mlU/L) | 2.07 ± 0.94 | 2.18 ± 0.71 | 2.44 ± 0.90 | 0.9946 | 0.6865 | 0.9290 | 0.27–4.2 |
| AST (U/L) | 21.53 ± 9.07 | 19.78 ± 8.06 | 13.40 ± 3.84 * | 0.7135 | 0.0009 | 0.044 | 0–50 |
| ALT (U/L) | 23.50 ± 11.74 | 24.78 ± 12.48 | 13.06 ± 4.48 * | 0.9931 | 0.0024 | 0.0041 | 0–50 |
| Calcium (mg/dL) | 9.40 ± 0.32 | 9.33 ± 0.25 | 9.57 ± 0.21 | 0.9450 | 0.3300 | 0.1739 | 8.6–10.2 |
| Calcitonin (ng/L) | 3.49 ± 3.17 | 4.07 ± 8.67 | 2.33 ± 1.53 | 0.9217 | 0.9426 | 0.6483 | 0–9.82 |
| P (mg/dL) | 3.44 ± 0.48 | 3.30 ± 0.38 | 3.26 ± 0.36 | 0.8052 | 0.7442 | 0.9994 | 2.5–4.5 |
| Mg (mg/dL) | 2.12 ± 0.14 | 2.09 ± 0.10 | 2.08 ± 0.11 | 0.8769 | 0.7884 | 0.7884 | 1.6–2.5 |
| K (mmol/L) | 4.31 ± 0.38 | 4.05 ± 0.33 | 4.32 ± 0.54 | 0.1316 | >0.9999 | 0.2500 | 3.3–5.1 |
| Parameter | T0 All | T1 Control | T1 Biofortification | p Value T0 All vs. T1 Control | p Value T0 All vs. T1 Biofortification | p Value T1 Control vs. T1 Biofortification |
|---|---|---|---|---|---|---|
| PYY (pg/mL) | 170.57 ± 55.30 | 147.07 ± 47.76 * | 266.48 ± 39.23 * | 0.6589 | 0.0007 | 0.0001 |
| GIP (pmol/L) | 79.34 ± 49.05 | 71.31 ± 37.25 | 78.88 ± 29.91 | 0.9457 | 0.9999 | 0.9932 |
| GLP-1 (pg/L) | 6.23 ± 1.16 | 6.25 ± 0.90 | 5.14 ± 0.93 | 0.9999 | 0.1481 | 0.1690 |
| GLP-2 (ng/L) | 2.59 ± 0.80 | 2.63 ± 0.60 | 2.86 ± 0.98 | 0.9996 | 0.9252 | 0.9652 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Baldassano, S.; Di Rosa, L.; Cortis, C.; Cannizzaro, A.; Fiore, A.S.; Sabatino, L.; Vasto, S.; Proia, P. Biofortification of Vegetables with Iodine and Molybdenum for Healthy Nutrition: A Controlled Trial. Nutrients 2026, 18, 2. https://doi.org/10.3390/nu18010002
Baldassano S, Di Rosa L, Cortis C, Cannizzaro A, Fiore AS, Sabatino L, Vasto S, Proia P. Biofortification of Vegetables with Iodine and Molybdenum for Healthy Nutrition: A Controlled Trial. Nutrients. 2026; 18(1):2. https://doi.org/10.3390/nu18010002
Chicago/Turabian StyleBaldassano, Sara, Luigi Di Rosa, Cristina Cortis, Alessia Cannizzaro, Antonino Salvatore Fiore, Leo Sabatino, Sonya Vasto, and Patrizia Proia. 2026. "Biofortification of Vegetables with Iodine and Molybdenum for Healthy Nutrition: A Controlled Trial" Nutrients 18, no. 1: 2. https://doi.org/10.3390/nu18010002
APA StyleBaldassano, S., Di Rosa, L., Cortis, C., Cannizzaro, A., Fiore, A. S., Sabatino, L., Vasto, S., & Proia, P. (2026). Biofortification of Vegetables with Iodine and Molybdenum for Healthy Nutrition: A Controlled Trial. Nutrients, 18(1), 2. https://doi.org/10.3390/nu18010002

