Intestinal Permeability Biomarkers for Predicting Cardiometabolic Risk in Type 2 Diabetes Mellitus
Abstract
1. Introduction
- Serum TMAO, zonulin, and I-FABP levels in patients with T2DM are associated with the FRS.
- Serum TMAO, zonulin, and I-FABP levels are associated with PAI in patients with T2DM.
- Serum TMAO levels, a metabolite of gut microorganisms, are associated with blood lipids and inflammatory biomarkers in patients with T2DM.
- Serum zonulin and I-FABP levels, markers of intestinal permeability, are associated with blood lipids and inflammatory biomarkers in patients with T2DM.
2. Materials and Methods
2.1. Participants and Study Design
- Receiving insulin treatment,
- Having any CVDs other than hypertension, undergone cardiac surgery, or a history of cerebrovascular disease,
- Using antilipidemic drugs,
- Having any autoimmune disease, or a psychiatric diagnosis,
- Having liver or kidney failure, or diabetic nephropathy,
- Pregnant or breastfeeding,
- Body mass index (BMI) < 18.5 kg/m2 and >40 kg/m2.
2.2. Data Collection
2.3. Statistical Analysis
3. Results and Discussion
3.1. Socio-Demographic Profile and Health Status
3.2. The Relationship Between Obesity, Visceral Adiposity, and CVR
3.3. Assessment of CVR with FRS and Its Relationship with Anthropometric Measurements
3.4. The Relationship Between Lipid Profile, PAI, and CVR
3.5. The Relationship Between Intestinal Permeability, Inflammatory Parameters Biomarkers, and CVR
3.6. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CVR | Cardiovascular risk |
| CVD | Cardiovascular disease |
| T2DM | Type 2 diabetes mellitus |
| FRS | Framingham Risk Score |
| TMAO | Trimetilamine-N-oxide |
| I-FABP | Intestinal fatty acid binding protein |
| VAI | Visceral adiposity index |
| PAI | Plasma atherogenic index |
| BMI | Body Mass Index |
| HbA1c | Hemoglobin A1c |
| LDL-C | Low-density lipoprotein-cholesterol |
| HDL-C | High-density lipoprotein-cholesterol |
| CRP | C-reactive protein |
| TNF-α | Tumor necrosis alpha |
| IL-6 | Interleukin 6 |
References
- Jyotsna, F.; Ahmed, A.; Kumar, K.; Kaur, P.; Chaudhary, M.H.; Kumar, S.; Khan, E.; Khanam, B.; Shah, S.U.; Varrassi, G.; et al. Exploring the complex connection between diabetes and cardiovascular disease: Analyzing approaches to mitigate cardiovascular risk in patients with diabetes. Cureus 2023, 15, e43882. [Google Scholar] [CrossRef]
- Suh, D.-C.; Choi, I.-S.; Plauschinat, C.; Kwon, J.; Baron, M. Impact of comorbid conditions and race/ethnicity on glycemic control among the US population with type 2 diabetes, 1988–1994 to 1999–2004. J. Diabetes Complicat. 2010, 24, 382–391. [Google Scholar] [CrossRef]
- Otto, T.; Diesing, J.; Borchert, J.; Heitmann, E.C.; Schloot, N.; Lebrec, J.; Müller-Wieland, D.; Haeckl, D. Age-dependent prevalence of type 2 diabetes, cardiovascular risk profiles and use of diabetes drugs in Germany using health claims data. Diabetes Obes. Metab. 2023, 25, 767–775. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Leustean, A.M.; Ciocoiu, M.; Sava, A.; Costea, C.F.; Floria, M.; Tarniceriu, C.C.; Tanase, D.M. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J. Diabetes Res. 2018, 2018, 5205126. [Google Scholar] [CrossRef]
- Kasselman, L.J.; Vernice, N.A.; DeLeon, J.; Reiss, A.B. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018, 271, 203–213. [Google Scholar] [CrossRef]
- Chen, K.; Zheng, X.; Feng, M.; Li, D.; Zhang, H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front. Physiol. 2017, 8, 139. [Google Scholar] [CrossRef]
- Thomas, M.S.; Fernandez, M.L. Trimethylamine N-oxide (TMAO), diet and cardiovascular disease. Curr. Atheroscler. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Jayashree, B.; Bibin, Y.; Prabhu, D.; Shanthirani, C.S.; Gokulakrishnan, K.; Lakshmi, B.S.; Mohan, V.; Balasubramanyam, M. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol. Cell. Biochem. 2014, 388, 203–210. [Google Scholar] [CrossRef]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Dobiašova, M. Atherogenic index of plasma (log (triglycerides/HDL-cholesterol)): Theoretical and practical implications. Clin. Chem. 2004, 50, 1113–1115. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef]
- Carrillo-Larco, R.M.; Guzman-Vilca, W.C.; Xu, X.; Bernabe-Ortiz, A. Mean age and body mass index at type 2 diabetes diagnosis: Pooled analysis of 56 health surveys across income groups and world regions. Diabet. Med. 2024, 41, e15174. [Google Scholar] [CrossRef]
- Namazi, N.; Moghaddam, S.S.; Esmaeili, S.; Peimani, M.; Tehrani, Y.S.; Bandarian, F.; Shobeiri, P.; Nasli-Esfahani, E.; Malekpour, M.-R.; Rezaei, N.; et al. Burden of type 2 diabetes mellitus and its risk factors in North Africa and the Middle East, 1990–2019: Findings from the Global Burden of Disease study 2019. BMC Public Health 2024, 24, 98. [Google Scholar] [CrossRef]
- An, J.; Nichols, G.A.; Qian, L.; Munis, M.A.; Harrison, T.N.; Li, Z.; Wei, R.; Weiss, T.; Rajpathak, S.; Reynolds, K. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Res. Care 2021, 9, e001847. [Google Scholar] [CrossRef]
- Mosenzon, O.; Alguwaihes, A.; Leon, J.L.A.; Bayram, F.; Darmon, P.; Davis, T.M.; Dieuzeide, G.; Eriksen, K.T.; Hong, T.; Kaltoft, M.S.; et al. CAPTURE: A multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc. Diabetol. 2021, 20, 154. [Google Scholar] [CrossRef]
- Islam, S.M.S.; Ahmed, S.; Uddin, R.; Siddiqui, M.U.; Malekahmadi, M.; Al Mamun, A.; Alizadehsani, R.; Khosravi, A.; Nahavandi, S. Cardiovascular diseases risk prediction in patients with diabetes: Posthoc analysis from a matched case-control study in Bangladesh. J. Diabetes Metab. Disord. 2021, 20, 417–425. [Google Scholar] [CrossRef]
- Bozdemir Özel, C.; Arıkan, H.; Dağdelen, S.; Çalik Kütükcü, E.; Karadüz, B.; Kabakci, M.; İnce, D. Investigation of cardiovascular disease risk factors knowledge and physical activity levels in patients with type 2 diabetes. J. Exerc. Ther. Rehabil. 2021, 8, 99–105. [Google Scholar]
- Qiao, T.; Luo, T.; Pei, H.; Yimingniyazi, B.; Aili, D.; Aimudula, A.; Zhao, H.; Zhang, H.; Dai, J.; Wang, D. Association between abdominal obesity indices and risk of cardiovascular events in Chinese populations with type 2 diabetes: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 225. [Google Scholar] [CrossRef]
- Hameed, E.K.; AbdulQahar, Z.H. Visceral adiposity index in female with type 2 diabetic mellitus and its association with the glycemic control. Diabetes Metab. Syndr. 2019, 13, 1241–1244. [Google Scholar] [CrossRef]
- Küçükerdönmez, Ö.; Karaçil Ermumcu, M.Ş.; Seçkiner, S.; Köksal, E. Tip 2 Diyabetli Bireylerde Abdominal Obezite/Adipozite ve Aterojenik Belirteçlerin Değerlendirilmesi. Beslenme Diyet Derg. 2018, 46, 7–15. [Google Scholar] [CrossRef]
- Khil, J.; Kim, S.M.; Chang, J.; Choi, S.; Lee, G.; Son, J.S.; Park, S.M.; Keum, N. Changes in total cholesterol level and cardiovascular disease risk among type 2 diabetes patients. Sci. Rep. 2023, 13, 8342. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17, 37. [Google Scholar] [CrossRef]
- Niroumand, S.; Khajedaluee, M.; Khadem-Rezaiyan, M.; Abrishami, M.; Juya, M.; Khodaee, G.; Dadgarmoghaddam, M. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med. J. Islam. Repub. Iran. 2015, 29, 240. [Google Scholar]
- Zhou, K.; Qin, Z.; Tian, J.; Cui, K.; Yan, Y.; Lyu, S. The Atherogenic Index of Plasma: A Powerful and Reliable Predictor for Coronary Artery Disease in Patients with Type 2 Diabetes. Angiology 2021, 72, 934–941. [Google Scholar] [CrossRef]
- Hamzeh, B.; Pasdar, Y.; Mirzaei, N.; Faramani, R.S.; Najafi, F.; Shakiba, E.; Darbandi, M. Visceral adiposity index and atherogenic index of plasma as useful predictors of risk of cardiovascular diseases: Evidence from a cohort study in Iran. Lipids Health Dis. 2021, 20, 82. [Google Scholar] [CrossRef]
- Lumu, W.; Bahendeka, S.; Wesonga, R.; Kibirige, D.; Kasoma, R.M.; Ssendikwanawa, E. Atherogenic index of plasma and its cardiovascular risk factor correlates among patients with type 2 diabetes in Uganda. Afr. Health Sci. 2023, 23, 515–527. [Google Scholar] [CrossRef]
- Olamoyegun, M.A.; Ala, O.A.; Iwuala, S.O.; Fawale, B.M. Comparison of plasma lipid profiles and atherogenic indices among hypertensives with or without type 2 diabetes. Sahel Med. J. 2022, 25, 21–27. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol. 2020, 13, 637–656. [Google Scholar] [CrossRef]
- Nie, J.; Xie, L.; Zhao, B.X.; Li, Y.; Qiu, B.; Zhu, F.; Li, G.-F.; He, M.; Wang, Y.; Wang, B.; et al. Serum trimethylamine N-oxide concentration is positively associated with first stroke in hypertensive patients. Stroke 2018, 49, 2021–2028. [Google Scholar] [CrossRef]
- Xiao, J.H.; Wang, Y.; Zhang, X.M.; Wang, W.X.; Zhang, Q.; Tang, Y.P.; Yue, S.-J. Intestinal permeability in human cardiovascular diseases: A systematic review and meta-analysis. Front. Nutr. 2024, 11, 1361126. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xie, Q.S.; Chen, G.C.; Huang, C.L.; Yu, T.; Chen, Q.K.; Li, J.-Y. Impaired intestinal barrier function in type 2 diabetic patients measured by serum LPS, Zonulin, and IFABP. J. Diabetes Complicat. 2021, 35, 107766. [Google Scholar] [CrossRef]
- Rohrmann, S.; Linseisen, J.; Allenspach, M.; von Eckardstein, A.; Müller, D. Plasma concentrations of trimethylamine-n-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Vajdi, M. Novel findings of the association between gut microbiota-derived metabolite trimethylamine N-oxide and inflammation: Results from a systematic review and dose-response meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 2801–2823. [Google Scholar] [CrossRef]
- Al-Obaide, M.A.I.; Singh, R.; Datta, P.; Rewers-Felkins, K.A.; Salguero, M.V.; Al-Obaidi, I.; Kottapalli, K.R.; Vasylyeva, T.L. Gut microbiota-dependent trimethylamine-n-oxide and serum biomarkers in patients with T2DM and advanced CKD. J. Clin. Med. 2017, 6, 86. [Google Scholar] [CrossRef]
- Yang, J.J.; Shu, X.O.; Herrington, D.M.; Moore, S.C.; Meyer, K.A.; Ose, J.; Menni, C.; Palmer, N.D.; Eliassen, H.; Harada, S.; et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: An international pooled analysis. Am. J. Clin. Nutr. 2021, 113, 1145–1156. [Google Scholar] [CrossRef]
- Randrianarisoa, E.; Lehn-Stefan, A.; Wang, X.; Hoene, M.; Peter, A.; Heinzmann, S.S.; Zhao, X.; Königsrainer, I.; Königsrainer, A.; Balletshofer, B.; et al. Relationship of serum trimethylamine n-oxide (TMAO) levels with early atherosclerosis in humans. Sci. Rep. 2016, 6, 26745. [Google Scholar] [CrossRef]
- Mueller, D.M.; Allenspach, M.; Othman, A.; Saely, C.H.; Muendlein, A.; Vonbank, A.; Drexel, H.; von Eckardstein, A. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 2015, 243, 638–644. [Google Scholar] [CrossRef]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020, 9, F1000. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.M.; Ali, H.A.; Al-Hilo, M.A.H. Role of Zonulin Level as New Metabolic Biomarker in Diabetes Mellitus Patients and Associated Complications; AIP Publishing: Melville, NY, USA, 2022; Volume 2386, p. 030013. [Google Scholar] [CrossRef]
- Besnard, P.; Niot, I.; Poirier, H.; Clément, L.; Bernard, A. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol. Cell. Biochem. 2002, 239, 139–147. [Google Scholar] [CrossRef]
- Lalande, C.; Drouin-Chartier, J.P.; Tremblay, A.J.; Couture, P.; Veilleux, A. Plasma biomarkers of small intestine adaptations in obesity-related metabolic alterations. Diabetol. Metab. Syndr. 2020, 12, 31. [Google Scholar] [CrossRef]
- Tahapary, D.L.; Fatya, A.I.; Kurniawan, F.; Marcella, C.; Rinaldi, I.; Tarigan, T.J.; Harbuwono, D.S.; Yunir, E.; Soewondo, P.; Purnamasari, D. Increased intestinal-fatty acid binding protein in obesity-associated type 2 diabetes mellitus. PLoS ONE 2023, 18, e0279915. [Google Scholar] [CrossRef] [PubMed]
| Male (n = 23) | Female (n = 47) | Total (n = 70) | p Value | ||||
|---|---|---|---|---|---|---|---|
| Age (year) (X̄ ± SD) | 53.3 ± 9.23 | 55.9 ± 6.52 | 55.0 ± 7.55 | 0.229 a | |||
| N | % | N | % | N | % | ||
| Age (year) | |||||||
| 35–44 | 5 | 21.7 | 2 | 4.3 | 7 | 10.0 | 0.062 χ2 = 5.569 |
| 45–54 | 5 | 21.7 | 16 | 34.0 | 21 | 30.0 | |
| 55–64 | 13 | 56.6 | 29 | 51.7 | 42 | 60.0 | |
| Marital status | |||||||
| Single | 3 | 13.0 | 6 | 12.8 | 9 | 12.9 | 0.974 χ2 = 0.001 |
| Married | 20 | 87.0 | 41 | 87.2 | 61 | 87.1 | |
| Education level | |||||||
| Not literate | - | - | 2 | 4.3 | 2 | 2.9 | <0.001 * χ2 = 20.530 |
| Primary school | 4 | 17.4 | 34 | 72.3 | 38 | 54.3 | |
| Secondary school | 5 | 21.8 | 3 | 6.3 | 8 | 11.4 | |
| High school | 11 | 47.8 | 6 | 12.8 | 17 | 24.3 | |
| University | 3 | 13.0 | 2 | 4.3 | 5 | 7.1 | |
| Duration of diabetes | |||||||
| 0–5 years | 13 | 56.5 | 26 | 55.3 | 39 | 55.7 | 0.956 χ2 = 0.672 |
| 5–10 years | 4 | 17.4 | 11 | 23.4 | 15 | 21.4 | |
| 10–15 years | 4 | 17.4 | 7 | 14.9 | 11 | 15.7 | |
| >15 years | 2 | 8.7 | 3 | 6.4 | 5 | 7.2 | |
| Use of oral antidiabetic drugs | |||||||
| Using | 20 | 87.0 | 43 | 91.5 | 63 | 90.0 | 0.553 χ2 = 0.353 |
| Not using | 3 | 13.0 | 4 | 8.5 | 7 | 10.0 | |
| Diabetes education | |||||||
| Yes | 6 | 26.1 | 9 | 19.1 | 15 | 21.4 | 0.506 χ2 = 0.442 |
| No | 17 | 73.9 | 38 | 80.9 | 55 | 78.6 | |
| Chronic disease other than T2DM | |||||||
| No disease | 11 | 47.8 | 15 | 31.9 | 26 | 37.1 | 0.011 * χ2 = 12.446 |
| Hypertension | 7 | 30.4 | 31 | 66.0 | 38 | 54.2 | |
| Thyroid disease | 1 | 4.4 | 1 | 2.1 | 2 | 2.9 | |
| Neurological disease | 2 | 8.7 | - | - | 2 | 2.9 | |
| Other (Asthma, Hepatitis B) | 2 | 8.7 | - | - | 2 | 2.9 | |
| Dietary therapy | |||||||
| Applying | 5 | 21.7 | 6 | 12.8 | 11 | 15.7 | 0.485 χ2 = 0.939 |
| Not applying | 18 | 78.3 | 41 | 87.2 | 59 | 84.3 | |
| BMI classification | |||||||
| Normal | 3 | 13.0 | 2 | 4.3 | 5 | 7.1 | <0.001 * χ2 = 18.082 |
| Overweight | 15 | 65.2 | 10 | 21.3 | 25 | 35.7 | |
| Obese class I | 1 | 4.4 | 16 | 34.0 | 17 | 24.3 | |
| Obese class II | 4 | 17.4 | 19 | 40.4 | 23 | 32.9 | |
| Male (n = 23) | Female (n = 47) | |||
|---|---|---|---|---|
| X̄ ± SD | Median (Min–Max) | X̄ ± SD | Median (Min–Max) | |
| Body weight (kg) | 87.9 ± 15.97 | 84.2 (69.50–128.50) | 81.9 ± 13.18 | 82.5 (54.70–107.70) |
| Height (cm) | 174.7 ± 7.41 | 175.0 (161.00–186.00) | 157.1 ± 5.64 | 156.0 (146.00–168.00) |
| BMI (kg/m2) | 28.7 ± 4.18 | 27.8 (24.13–37.55) | 33.1 ± 4.39 | 33.0 (22.47–39.38) |
| Waist circumference (cm) | 103.8 ± 10.17 | 102.0 (90.00–125.00) | 104.7 ± 11.72 | 107.0 (67.00–133.00) |
| Waist–height ratio | 0.6 ± 0.05 | 0.6 (0.49–0.69) | 0.7 ± 0.07 | 0.7 (0.45–0.82) |
| Neck circumference (cm) | 40.9 ± 3.86 | 41.0 (30.00–47.00) | 37.6 ± 3.17 | 37.5 (32.00–46.00) |
| Body fat percentage (%) | 24.4 ± 5.24 | 24.9 (15.90–34.20) | 40.5 ± 5.71 | 40.3 (23.30–51.30) |
| Body muscle mass (kg) | 62.5 ± 8.17 | 60.3 (50.40–86.70) | 45.6 ± 5.26 | 44.4 (33.50–60.60) |
| Body water percentage (%) | 54.4 ± 3.80 | 53.8 (47.30–59.90) | 43.6 ± 3.72 | 43.9 (36.30–55.90) |
| VAI | 5.2 ± 3.50 | 4.6 (1.57–18.27) | 7.0 ± 4.22 | 6.0 (1.49–23.62) |
| FRS Classification | p Value | ||||
|---|---|---|---|---|---|
| Low Risk (n = 57) | Moderate and High Risk (n = 13) | ||||
| X̄ ± SD | Median (Min–Max) | X̄ ± SD | Median (Min–Max) | ||
| Anthropometric measurements and body composition | |||||
| Body weight (kg) | 82.5 ± 13.81 | 82.1 (54.70–128.50) | 89.9 ± 15.55 | 87.1 (69.50–122.70) | 0.131 a |
| BMI (kg/m2) | 31.8 ± 4.68 | 31.4 (22.47–39.38) | 31.1 ± 5.25 | 29.1 (24.95–39.20) | 0.659 a |
| Waist circumference (cm) | 103.9 ± 11.41 | 104.0 (67.00–133.00) | 106.3 ± 10.22 | 106.0 (91.00–124.00) | 0.470 a |
| Waist–height ratio | 0.6 ± 0.08 | 0.7 (0.45–0.82) | 0.6 ± 0.05 | 0.6 (0.52–0.69) | 0.222 a |
| Neck circumference (cm) | 38.3 ± 3.70 | 38.0 (30.00–47.00) | 40.2 ± 3.57 | 40.0 (36.00–47.00) | 0.101 a |
| Body fat percentage (%) | 36.4 ± 8.90 | 38.6 (15.90–51.30) | 30.1 ± 10.22 | 27.9 (17.80–48.30) | 0.059 a |
| Body muscle mass (kg) | 49.4 ± 9.59 | 47.9 (33.50–86.70) | 59.0 ± 9.13 | 57.7 (46.60–76.80) | 0.003 *a |
| Body water percentage (%) | 46.4 ± 5.96 | 44.8 (36.30–59.90) | 50.5 ± 6.90 | 51.8 (38.60–59.60) | 0.061 a |
| VAI | 6.0 ± 3.40 | 4.9 (1.49–14.78) | 7.9 ± 6.14 | 5.7 (2.13–23.62) | 0.385 b |
| Biochemical parameters | |||||
| Fasting glucose (mg/dL) | 147.5 ± 49.62 | 136.3 (91.80–354.00) | 151.0 ± 42.05 | 135.0 (113.20–269.30) | 0.602 b |
| HbA1c (%) | 7.4 ± 1.43 | 7.0 (5.74–12.06) | 7.1 ± 1.04 | 7.1 (5.86–9.77) | 0.661 b |
| Triglyceride (mg/dL) | 152.2 ± 58.25 | 147.0 (52.80–294.90) | 220.3 ± 147.07 | 161.9 (90.80–546.50) | 0.122 b |
| Total cholesterol (mg/dL) | 205.3 ± 34.85 | 200.0 (80.50–293.10) | 238.4 ± 45.07 | 222.90 (170.40–308.90) | 0.025 *a |
| LDL-C (mg/dL) | 125.2 ± 29.13 | 124.4 (59.22–200.12) | 148.4 ± 35.33 | 141.0 (102.94–216.46) | 0.051 a |
| HDL-C (mg/dL) | 51.4 ± 11.37 | 49.0 (29.30–76.00) | 45.6 ± 9.32 | 42.2 (35.70–63.10) | 0.067 a |
| CRP (mg/dL) | 0.7 ± 1.18 | 0.3 (0.05–8.00) | 0.6 ± 0.85 | 0.3 (0.07–3.32) | 0.762 b |
| TNF-α (ng/L) | 153.2 ± 102.04 | 112.3 (78.28–480.00) | 105.7 ± 20.73 | 104.1 (67.49–151.80) | 0.062 b |
| IL-6 (ng/L) | 88.7 ± 60.47 | 66.6 (43.82–314.70) | 64.2 ± 13.03 | 69.1 (35.71–79.71) | 0.506 b |
| TMAO (ng/mL) | 9.5 ± 6.28 | 7.6 (2.00–32.00) | 7.0 ± 1.48 | 7.4 (3.30–8.72) | 0.410 b |
| Zonulin (ng/mL) | 16.2 ± 7.78 | 13.4 (8.21–48.00) | 13.3 ± 2.23 | 13.7 (9.17–15.87) | 0.587 b |
| I-FABP (ng/L) | 576.0 ± 292.55 | 517.2 (102.30–1542.00) | 523.6 ± 77.45 | 535.7 (396.80–643.20) | 0.723 b |
| PAI | 0.6 ± 0.11 | 0.6 (0.26–0.83) | 0.7 ± 0.15 | 0.8 (0.47–1.09) | <0.001 *b |
| FRS Total Score | ||||||
|---|---|---|---|---|---|---|
| Male (n = 23) | Female (n = 47) | Total (n = 70) | ||||
| r | p | r | p | r | p | |
| Age | 0.742 * | <0.001 | 0.184 | 0.216 | 0.468 * | <0.001 |
| Anthropometric measurements and body composition | ||||||
| Body weight (kg) | 0.042 | 0.849 | −0.046 | 0.759 | −0.096 | 0.431 |
| BMI (kg/m2) | 0.160 | 0.467 | 0.057 | 0.704 | 0.268 * | 0.025 |
| Waist circumference (cm) | 0.209 | 0.338 | −0.045 | 0.765 | 0.057 | 0.642 |
| Waist–height ratio | 0.319 | 0.137 | 0.020 | 0.894 | 0.292 * | 0.014 |
| Neck circumference (cm) | −0.132 | 0.549 | 0.018 | 0.905 | −0.224 | 0.062 |
| Body fat percentage (%) | 0.336 | 0.117 | 0.027 | 0.857 | 0.431 * | <0.001 |
| Body muscle mass (kg) | −0.128 | 0.559 | −0.097 | 0.516 | −0.410 * | <0.001 |
| Body water percentage (%) | −0.296 | 0.171 | −0.005 | 0.973 | −0.420 * | <0.001 |
| VAI | 0.451 * | 0.031 | 0.150 | 0.316 | 0.314 * | 0.008 |
| Biochemical parameters | ||||||
| Fasting glucose (mg/dL) | −0.239 | 0.272 | 0.253 | 0.086 | 0.051 | 0.677 |
| HbA1c (%) | −0.336 | 0.117 | 0.145 | 0.330 | 0.012 | 0.924 |
| Triglyceride (mg/dL) | 0.380 | 0.074 | 0.216 | 0.144 | 0.265 * | 0.027 |
| Total cholesterol (mg/dL) | 0.409 | 0.053 | 0.531 * | <0.001 | 0.441 * | <0.001 |
| LDL-C (mg/dL) | 0.449 * | 0.036 | 0.477 * | <0.001 | 0.367 * | 0.002 |
| HDL-C (mg/dL) | −0.159 | 0.470 | −0.064 | 0.671 | 0.014 | 0.905 |
| CRP (mg/dL) | −0.010 | 0.962 | 0.059 | 0.691 | 0.115 | 0.342 |
| TNF-α (ng/L) | −0.109 | 0.621 | 0.019 | 0.899 | 0.070 | 0.566 |
| IL-6 (ng/L) | 0.067 | 0.762 | −0.018 | 0.905 | 0.055 | 0.653 |
| TMAO (ng/mL) | −0.105 | 0.635 | −0.004 | 0.978 | 0.017 | 0.890 |
| Zonulin (ng/mL) | −0.074 | 0.738 | −0.022 | 0.885 | −0.040 | 0.741 |
| I-FABP (ng/L) | −0.013 | 0.951 | 0.038 | 0.801 | 0.013 | 0.917 |
| PAI | 0.650 * | <0.001 | 0.400 * | 0.005 | 0.385 * | <0.001 |
| Blood pressure | ||||||
| Systolic blood pressure (mmHg) | 0.191 | 0.384 | 0.308 * | 0.035 | 0.399 * | <0.001 |
| Diastolic blood pressure (mmHg) | 0.076 | 0.731 | 0.066 | 0.659 | 0.109 | 0.368 |
| TMAO (ng/mL) | Zonulin (ng/mL) | I-FABP (ng/L) | ||||
|---|---|---|---|---|---|---|
| r | p | r | p | r | p | |
| Fasting glucose (mg/dL) | −0.204 | 0.091 | −0.106 | 0.384 | −0.099 | 0.414 |
| HbA1c (%) | −0.073 | 0.549 | −0.056 | 0.644 | −0.065 | 0.592 |
| Triglyceride (mg/dL) | 0.277 * | 0.020 | 0.150 | 0.216 | 0.333 * | 0.005 |
| Total cholesterol (mg/dL) | 0.084 | 0.491 | 0.136 | 0.261 | 0.326 * | 0.006 |
| LDL-C (mg/dL) | −0.042 | 0.730 | 0.102 | 0.403 | 0.213 | 0.079 |
| HDL-C (mg/dL) | 0.014 | 0.908 | −0.174 | 0.150 | −0.051 | 0.673 |
| CRP (mg/dL) | 0.100 | 0.410 | 0.163 | 0.176 | 0.020 | 0.869 |
| TNF-α (ng/L) | 0.727 * | <0.001 | 0.633 * | <0.001 | 0.608 * | <0.001 |
| IL-6 (ng/L) | 0.638 * | <0.001 | 0.643 * | <0.001 | 0.516 * | <0.001 |
| TMAO (ng/mL) | 1.0 | - | 0.544 * | <0.001 | 0.679 * | <0.001 |
| Zonulin (ng/mL) | 0.544 * | <0.001 | 1.0 | - | 0.655 * | <0.001 |
| I-FABP (ng/L) | 0.679 * | <0.001 | 0.655 * | <0.001 | 1.0 | - |
| PAI | 0.029 | 0.812 | 0.241 * | 0.045 | 0.237 * | 0.048 |
| VAI | 0.209 | 0.083 | 0.155 | 0.199 | 0.228 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dal, N.; Bilici, S.; Akin, S.; Turker, P.F. Intestinal Permeability Biomarkers for Predicting Cardiometabolic Risk in Type 2 Diabetes Mellitus. Nutrients 2026, 18, 167. https://doi.org/10.3390/nu18010167
Dal N, Bilici S, Akin S, Turker PF. Intestinal Permeability Biomarkers for Predicting Cardiometabolic Risk in Type 2 Diabetes Mellitus. Nutrients. 2026; 18(1):167. https://doi.org/10.3390/nu18010167
Chicago/Turabian StyleDal, Nursel, Saniye Bilici, Sirin Akin, and Perim Fatma Turker. 2026. "Intestinal Permeability Biomarkers for Predicting Cardiometabolic Risk in Type 2 Diabetes Mellitus" Nutrients 18, no. 1: 167. https://doi.org/10.3390/nu18010167
APA StyleDal, N., Bilici, S., Akin, S., & Turker, P. F. (2026). Intestinal Permeability Biomarkers for Predicting Cardiometabolic Risk in Type 2 Diabetes Mellitus. Nutrients, 18(1), 167. https://doi.org/10.3390/nu18010167

