Potato Protein-Based Vegan Burgers: Discovering the Health-Promoting Benefits and Impact on the Intestinal Microbiome
Abstract
1. Introduction
2. Materials and Methods
2.1. PBBs Manufacturing
2.2. Cytotoxic Activity
2.3. Determination of β-Glucuronidase (EC 3.2.1.31) and β-Glucosidase (EC 3.2.1.21) Activities
2.4. Impact of PBBs on Gut Microbiota
2.5. Analysis of Microbiological Quality During Storage
2.6. Statistical Analyses
3. Results
3.1. Basic Nutritional Composition
3.2. Cytotoxicity of PBBs
3.3. Modulation of Intestinal Microflora and Microbial Enzyme Activities
3.4. Microbiological Safety
4. Discussion
5. Limitations and Future Perspectives
6. Conclusions
7. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, N.; Yeasmen, N.; Dube, L.; Orsat, V. Rise of Plant-Based Beverages: A Consumer-Driven Perspective. Food Rev. Int. 2024, 40, 3315–3341. [Google Scholar] [CrossRef]
- Safdar, B.; Zhou, H.; Li, H.; Cao, J.; Zhang, T.; Ying, Z.; Liu, X. Prospects for Plant-Based Meat: Current Standing, Consumer Perceptions, and Shifting Trends. Foods 2022, 11, 3770. [Google Scholar] [CrossRef]
- Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A.; et al. Plant-Based Dairy Alternatives—A Future Direction to the Milky Way. Foods 2023, 12, 1883. [Google Scholar] [CrossRef]
- Samad, A.; Kumari, S.; Hussain, M.J.; Alam, A.M.M.N.; Kim, S.-H.; Kim, C.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. RECENT Market Analysis of Plant Protein-Based Meat Alternatives and Future Prospect. J. Anim. Plant Sci. 2024, 34, 977–987. [Google Scholar] [CrossRef]
- Tachie, C.; Nwachukwu, I.D.; Aryee, A.N.A. Trends and Innovations in the Formulation of Plant-Based Foods. Food Prod. Process. Nutr. 2023, 5, 16. [Google Scholar] [CrossRef]
- Mengistu, B.A. Development of Plant-Based Milk Alternatives and Its Future Trends in the Middle East. J. Food Process. Preserv. 2025, 2025, 2743414. [Google Scholar] [CrossRef]
- Massaki, S.; Tozatto, A.M.; Ramos, S.C.; Reis, G.G. Como Os Consumidores Brasileiros Tomam a Decisão de Compra de Um Produto Plant-Based Meat? Periódico Eletrônico Fórum Ambiental da Alta Paulista 2024, 20, 80221170. [Google Scholar] [CrossRef]
- Medeiros, F.; Aleman, R.S.; Gabríny, L.; You, S.W.; Hoskin, R.T.; Moncada, M. Current Status and Economic Prospects of Alternative Protein Sources for the Food Industry. Appl. Sci. 2024, 14, 3733. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, E.; Yadav, S.; Babulal, K.S.; Mishra, S. Plant-Based Food Industry: Overview and Trends. In The Future of Plant Protein; Springer Nature Singapore: Singapore, 2025; pp. 73–97. [Google Scholar]
- Kim, E.; Coelho, D.; Blachier, F. Review of the Association between Meat Consumption and Risk of Colorectal Cancer. Nutr. Res. 2013, 33, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Gilsing, A.M.J. Meat Consumption and Cancer Risk: An Epidemiological Analysis from Multiple Perspectives. Ph.D. Thesis, Maastricht University, Maastricht, The Netherlands, 2014. [Google Scholar]
- Demeyer, D.; Mertens, B.; De Smet, S.; Ulens, M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2747–2766. [Google Scholar] [CrossRef]
- Sødring, M.; Oostindjer, M.; Dragsted, L.O.; Haug, A.; Paulsen, J.E.; Egelandsdal, B. Meat and Cancer Evidence for and Against. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 479–499. [Google Scholar]
- Abu-Ghazaleh, N.; Chua, W.J.; Gopalan, V. Intestinal Microbiota and Its Association with Colon Cancer and Red/Processed Meat Consumption. J. Gastroenterol. Hepatol. 2021, 36, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Hammerling, U.; Bergman Laurila, J.; Grafström, R.; Ilbäck, N.-G. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit. Rev. Food Sci. Nutr. 2016, 56, 614–634. [Google Scholar] [CrossRef]
- Diakité, M.T.; Diakité, B.; Koné, A.; Balam, S.; Fofana, D.; Diallo, D.; Kassogué, Y.; Traoré, C.B.; Kamaté, B.; Ba, D.; et al. Relationships between Gut Microbiota, Red Meat Consumption and Colorectal Cancer. J. Carcinog. Mutagen. 2022, 13, 1000385. [Google Scholar]
- Jeyakumar, A.; Dissabandara, L.; Gopalan, V. A Critical Overview on the Biological and Molecular Features of Red and Processed Meat in Colorectal Carcinogenesis. J. Gastroenterol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Turner, N.D.; Lloyd, S.K. Association between Red Meat Consumption and Colon Cancer: A Systematic Review of Experimental Results. Exp. Biol. Med. 2017, 242, 813–839. [Google Scholar] [CrossRef]
- Alting, A.C.; Pouvreau, L.; Giuseppin, M.L.F.; van Nieuwenhuijzen, N.H. Potato Proteins. In Handbook of Food Proteins; Elsevier: Amsterdam, The Netherlands, 2011; pp. 316–334. [Google Scholar]
- Waglay, A.; Karboune, S. Potato Proteins. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 75–104. [Google Scholar]
- Galves, C.; Galli, G.; Kurozawa, L. Potato Protein: Current Review of Structure, Technological Properties, and Potential Application on Spray Drying Microencapsulation. Crit. Rev. Food Sci. Nutr. 2023, 63, 6564–6579. [Google Scholar] [CrossRef]
- Løkra, S.; Strætkvern, K. Industrial Proteins from Potato Juice. A Review. Food 2009, 3, 88–95. [Google Scholar]
- Herreman, L.C.M.; de Vos, A.M.; Cosijn, M.M.; Tjalma, L.F.; Spelbrink, R.E.J.; van der Voort Maarschalk, K.; Laus, M.C. Potato: A Sustainable Source of Functional and Nutritional Proteins. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 471–491. [Google Scholar]
- Ralet, M.-C.; Guéguen, J. Fractionation of Potato Proteins: Solubility, Thermal Coagulation and Emulsifying Properties. LWT-Food Sci. Technol. 2000, 33, 380–387. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, K.; Luo, H.; Zhao, X.; Yu, P.; Gan, Y. Replacing Animal Proteins with Plant Proteins: Is This a Way to Improve Quality and Functional Properties of Hybrid Cheeses and Cheese Analogs? Compr. Rev. Food Sci. Food Saf. 2024, 23, e13262. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; He, Y.; Zhang, W.; He, J. Potato Proteins for Technical Applications: Nutrition, Isolation, Modification and Functional Properties—A Review. Innov. Food Sci. Emerg. Technol. 2024, 91, 103533. [Google Scholar] [CrossRef]
- Bártová, V.; Bárta, J. Chemical Composition and Nutritional Value of Protein Concentrates Isolated from Potato (Solanum tuberosum L.) Fruit Juice by Precipitation with Ethanol or Ferric Chloride. J. Agric. Food Chem. 2009, 57, 9028–9034. [Google Scholar] [CrossRef] [PubMed]
- Smarzyński, K.; Kowalczewski, P.Ł.; Tomczak, A.; Zembrzuska, J.; Ślachciński, M.; Neunert, G.; Ruszkowska, M.; Świątek, M.; Nowicki, M.; Baranowska, H.M. Upcycling Potato Juice Protein for Sustainable Plant-Based Gyros: A Multidimensional Quality Assessment. Sustainability 2025, 17, 7626. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Olejnik, A.; Świtek, S.; Bzducha-Wróbel, A.; Kubiak, P.; Kujawska, M.; Lewandowicz, G. Bioactive Compounds of Potato (Solanum tuberosum L.) Juice: From Industry Waste to Food and Medical Applications. CRC Crit. Rev. Plant Sci. 2022, 41, 52–89. [Google Scholar] [CrossRef]
- KNORR, D. Protein Recovery from Waste Effluents of Potato Processing Plants. Int. J. Food Sci. Technol. 1977, 12, 563–580. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Wróbel, M.M.; Smarzyński, K.; Zembrzuska, J.; Ślachciński, M.; Jeżowski, P.; Tomczak, A.; Kulczyński, B.; Zielińska-Dawidziak, M.; Sałek, K.; et al. Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion. Foods 2024, 13, 3060. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Olejnik, A.; Wieczorek, M.N.; Zembrzuska, J.; Kowalska, K.; Lewandowicz, J.; Lewandowicz, G. Bioactive Substances of Potato Juice Reveal Synergy in Cytotoxic Activity against Cancer Cells of Digestive System Studied In Vitro. Nutrients 2023, 15, 114. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Djouzi, Z.; Andlueux, C. Compared Effects of Three Oligosaccharides on Metabolism of Intestinal Microflora in Rats Inoculated with a Human Faecal Flora. Br. J. Nutr. 1997, 78, 313–324. [Google Scholar] [CrossRef]
- Kapnoor, S.; Mulimani, V.H. Production of α-Galactosidase by Aspergillus Oryzae through Solid-State Fermentation and Its Application in Soymilk Galactooligosaccharide Hydrolysis. Braz. Arch. Biol. Technol. 2010, 53, 211–218. [Google Scholar] [CrossRef]
- PN-EN ISO 6579-1:2017; Microbiology of the FOOD Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- PN-EN ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection method. ISO: Geneva, Switzerland, 2017.
- PN-EN ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- PN-EN ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO: Geneva, Switzerland, 2017.
- PN-EN ISO 15213-2:2024; Microbiology of the Food Chain—Horizontal Method for Detecting and Determining the Number of Clostridium spp.—Part 2: Determination of the number of Clostridium perfringens by colony counting. ISO: Geneva, Switzerland, 2014.
- PN-EN ISO 6888-1:2022; Food Chain Microbiology—Horizontal Method for the Enumeration of Coagulase Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. ISO: Geneva, Switzerland, 2022.
- PN-EN ISO 21527-1:2009; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—PART 1: Colony Count Technique in Products with Water Activity Greater Than 0.95. ISO: Geneva, Switzerland, 2009.
- Kowalczewski, P.Ł.; Olejnik, A.; Białas, W.; Kubiak, P.; Siger, A.; Nowicki, M.; Lewandowicz, G. Effect of Thermal Processing on Antioxidant Activity and Cytotoxicity of Waste Potato Juice. Open Life Sci. 2019, 14, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.Ł.; Olejnik, A.; Rybicka, I.; Zielińska-Dawidziak, M.; Białas, W.; Lewandowicz, G. Membrane Filtration-Assisted Enzymatic Hydrolysis Affects the Biological Activity of Potato Juice. Molecules 2021, 26, 852. [Google Scholar] [CrossRef]
- Nowak, A.; Śliżewska, K. β-Glucuronidase and β-Glucosidase Activity and Human Fecal Water Genotoxicity in the Presence of Probiotic Lactobacilli and the Heterocyclic Aromatic Amine IQ in Vitro. Environ. Toxicol. Pharmacol. 2014, 37, 66–73. [Google Scholar] [CrossRef]
- Ruiz-Saavedra, S.; Salazar, N.; Suárez, A.; Diaz, Y.; González del Rey, C.; González, S.; de los Reyes-Gavilán, C.G. Human Fecal Alpha-Glucosidase Activity and Its Relationship with Gut Microbiota Profiles and Early Stages of Intestinal Mucosa Damage. Anaerobe 2024, 87, 102853. [Google Scholar] [CrossRef]
- Ma, Z.; Zuo, T.; Frey, N.; Rangrez, A.Y. A Systematic Framework for Understanding the Microbiome in Human Health and Disease: From Basic Principles to Clinical Translation. Signal Transduct. Target. Ther. 2024, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.A.; Achenbach, L.A.; Coates, J.D. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nat. Rev. Microbiol. 2006, 4, 752–764. [Google Scholar] [CrossRef]
- Straub, K.L.; Benz, M.; Schink, B. Iron Metabolism in Anoxic Environments at near Neutral PH. FEMS Microbiol. Ecol. 2001, 34, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kotik, M.; Kulik, N.; Valentová, K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. J. Agric. Food Chem. 2023, 71, 14890–14910. [Google Scholar] [CrossRef]
- Du, S.; Chen, J.; Kim, H.; Lichtenstein, A.H.; Yu, B.; Appel, L.J.; Coresh, J.; Rebholz, C.M. Protein Biomarkers of Ultra-Processed Food Consumption and Risk of Coronary Heart Disease, Chronic Kidney Disease, and All-Cause Mortality. J. Nutr. 2024, 154, 3235–3245. [Google Scholar] [CrossRef]
- Salgado, J.C.S.; Meleiro, L.P.; Carli, S.; Ward, R.J. Glucose Tolerant and Glucose Stimulated β-Glucosidases—A Review. Bioresour. Technol. 2018, 267, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Kaçıran, A.; Şahinkaya, M.; Çolak, D.N.; Zada, N.S.; Kaçağan, M.; Güler, H.İ.; Saygın, H.; Beldüz, A.O. Biochemical Characterization of a Novel, Glucose-Tolerant β-Glucosidase from Jiangella Ureilytica KC603, and Determination of Resveratrol Production Capacity from Polydatin. Appl. Biochem. Biotechnol. 2025, 197, 5104–5130. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Pan, M.; Yang, F.; Yu, Y.; Qian, Z. Role of the Gut Microbiota in Tumorigenesis and Treatment. Theranostics 2024, 14, 2304–2328. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M. Plant Ferritin—A Source of Iron to Prevent Its Deficiency. Nutrients 2015, 7, 1184–1201. [Google Scholar] [CrossRef] [PubMed]
- Covián, D.R. Interactions between Bifidobacteria and Other Human Intestinal Microbial Populations. Ph.D. Thesis, University of Oviedo, Oviedo, Spain, 2016. [Google Scholar]
- Abass, A.; Adzitey, F.; Huda, N. Escherichia Coli of Ready-to-Eat (RTE) Meats Origin Showed Resistance to Antibiotics Used by Farmers. Antibiotics 2020, 9, 869. [Google Scholar] [CrossRef] [PubMed]
| Parameters | Sample | |||
|---|---|---|---|---|
| PBB1 | PBB2 | PBB3 | PBB4 | |
| Protein content (g/100 g) | 21.59 ± 0.35 a | 21.66 ± 0.86 a | 22.16 ± 0.95 a | 20.80 ± 1.06 a |
| Fat content (g/100 g) | 9.63 ± 0.77 a | 9.65 ± 0.60 a | 9.62 ± 0.63 a | 10.03 ± 0.92 a |
| Fiber content (g/100 g) | 8.35 ± 0.18 b | 9.20 ± 0.03 a | 8.42 ± 0.37 b | 9.08 ± 0.11 ab |
| IDF (g/100 g) | 7.45 ± 0.20 b | 8.08 ± 0.03 a | 7.54 ± 0.39 b | 8.05 ± 0.13 a |
| SDF (g/100 g) | 0.90 ± 0.03 b | 1.12 ± 0.02 a | 0.88 ± 0.03 b | 1.03 ± 0.05 ab |
| Carbohydrate content (g/100 g) | 10.13 ± 0.09 b | 7.65 ± 1.52 c | 12.34 ± 0.37 a | 11.22 ± 1.31 ab |
| Mineral content (g/100 g) | 7.10 ± 0.08 b | 6.96 ± 0.10 b | 7.56 ± 0.07 a | 6.50 ± 0.06 c |
| Energy value (kcal/100 g) | 248.0 ± 7.5 | 237.9 ± 2.9 | 248.9 ± 4.4 | 245.0 ± 7.2 |
| Cell Lines | Samples | IC10 | IC50 | IC90 |
|---|---|---|---|---|
| HT-29 | PBB1 | 1.801 ± 0.144 ab | 3.892 ± 0.211 a | 9.381 ± 0.240 a |
| PBB2 | 2.004 ± 0.174 a | 4.170 ± 0.204 a | 9.804 ± 0.695 a | |
| PBB3 | 1.911 ± 0.175 a | 3.992 ± 0.274 a | 9.692 ± 1.030 a | |
| PBB4 | 1.624 ± 0.105 b | 3.112 ± 0.142 b | 8.211 ± 0.552 b | |
| Caco-2 | PBB1 | 1.642 ± 0.175 b | 3.076 ± 0.164 b | 7.192 ± 0.209 b |
| PBB2 | 1.913 ± 0.221 a | 3.901 ± 0.203 a | 7.906 ± 0.374 a | |
| PBB3 | 1.739 ± 0.213 b | 3.556 ± 0.192 ab | 7.894 ± 0.255 a | |
| PBB4 | 1.444 ± 0.126 c | 2.983 ± 0.191 b | 6.984 ± 0.299 b | |
| CCD 841 CoN | PBB1 | 4.708 ± 0.573 ab | 6.499 ± 0.198 b | 9.062 ± 1.195 a |
| PBB2 | 3.978 ± 0.406 b | 5.109 ± 0.477 c | 6.716 ± 0.814 b | |
| PBB3 | 4.611 ± 0.452 ab | 6.212 ± 0.205 b | 9.001 ± 1.009 a | |
| PBB4 | 4.989 ± 0.218 a | 6.921 ± 0.302 a | 9.594 ± 1.221 a |
| Microorganisms | PBB1 | PBB2 | ||||
| pH 7.4 1 | 2 h pH 7.4 2 | 18 h pH 8.0 3 | pH 7.4 1 | 2 h pH 7.4 2 | 18 h pH 8.0 3 | |
| Lactobacillus | 6.461 ± 0.042 | 7.732 ± 0.011 | 9.806 ± 0.010 | 7.633 ± 0.014 | 8.756 ± 0.011 | 11.396 ± 0.022 |
| E. coli | 6.421 ± 0.058 | 8.234 ± 0.125 | 6.385 ± 0.150 | 7.636 ± 0.064 | 7.190 ± 0.020 | 10.046 ± 0.077 |
| Enterococcus | 6.622 ± 0.044 | 7.702 ± 0.043 | 6.203 ± 0.038 | 7.707 ± 0.090 | 8.611 ± 0.112 | 6.216 ± 0.056 |
| Bifidobacterium | 7.468 ± 0.125 | 8.369 ± 0.066 | 9.912 ± 0.053 | 7.906 ± 0.019 | 8.585 ± 0.024 | 11.257 ± 0.037 |
| Microorganisms | PBB3 | PBB4 | ||||
| pH 7.4 1 | 2 h pH 7.4 2 | 18 h pH 8.0 3 | pH 7.4 1 | 2 h pH 7.4 2 | 18 h pH 8.0 3 | |
| Lactobacillus | 7.382 ± 0.114 | 9.100 ± 0.056 | 8.686 ± 0.019 | 7.748 ± 0.022 | 8.185 ± 0.100 | 10.888 ± 0.044 |
| E. coli | 7.227 ± 0.073 | 6.319 ± 0.202 | 6.299 ± 0.062 | 7.736 ± 0.028 | 6.496 ± 0.069 | 9.848 ± 0.022 |
| Enterococcus | 7.374 ± 0.103 | 9.015 ± 0.065 | 8.677 ± 0.090 | 7.841 ± 0.049 | 7.991 ± 0.125 | 10.938 ± 0.042 |
| Bifidobacterium | 7.496 ± 0.069 | 8.506 ± 0.686 | 8.612 ± 0.030 | 8.011 ± 0.081 | 8.021 ± 0.029 | 10.884 ± 0.012 |
| Samples | Stage | β-Glucuronidase Activity | β-Glucosidase Activity |
|---|---|---|---|
| PBB1 | Post-inoculation pH 7.4 | 23.96 ± 0.13 cb | 18.96 ± 0.33 b |
| 2 h small intestine | 20.49 ± 0.64 c | 19.32 ± 0.32 c | |
| Colon onset pH 8.0 | 13.39 ± 0.42 c | 13.39 ± 0.42 c | |
| 18 h colon | 18.23 ± 0.43 c | 18.23 ± 0.43 b | |
| PBB2 | Post-inoculation pH 7.4 | 31.09 ± 0.36 b | 19.78 ± 0.19 b |
| 2 h small intestine | 25.75 ± 1.46 b | 25.63 ± 0.51 b | |
| Colon onset pH 8.0 | 22.54 ± 0.15 b | 19.52 ± 0.93 b | |
| 18 h colon | 11.88 ± 0.38 d | 15.45 ± 0.27 c | |
| PBB3 | Post-inoculation pH 7.4 | 33.05 ± 1.59 a | 13.54 ± 0.17 c |
| 2 h small intestine | 21.30 ± 0.91 c | 17.07 ± 0.17 d | |
| Colon onset pH 8.0 | 10.95 ± 0.22 d | 12.78 ± 0.09 c | |
| 18 h colon | 28.67 ± 0.88 b | 31.11 ± 0.23 a | |
| PBB4 | Post-inoculation pH 7.4 | 30.57 ± 0.92 b | 31.55 ± 0.64 a |
| 2 h small intestine | 46.32 ± 0.74 a | 42.22 ± 1.88 a | |
| Colon onset pH 8.0 | 40.39 ± 0.21 a | 44.98 ± 1.08 a | |
| 18 h colon | 33.40 ± 1.71 a | 31.20 ± 0.68 a |
| Samples | Days | Total Aerobic Mesophilic Count | Yeasts & Molds | Enterobacteriaceae | Coagulase-Positive Staphylococcus | C. perfringens | L. monocytogenes | L. monocytogenes Presence | Salmonella Presence |
|---|---|---|---|---|---|---|---|---|---|
| PBB1 | 1 | 2.37 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND |
| 15 | 2.66 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| 22 | 2.66 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| PBB2 | 1 | 2.24 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND |
| 15 | 2.85 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| 22 | 2.78 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| PBB3 | 1 | 2.52 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND |
| 15 | 2.88 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| 22 | 2.92 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| PBB4 | 1 | 2.75 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND |
| 15 | 2.94 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND | |
| 22 | 2.86 | 0.00 | <0.100 | <0.100 | <0.100 | <0.100 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kowalczewski, P.Ł.; Gumienna, M.; Jeżowski, P.; Świątek, M.; Górna-Szweda, B.; Rybicka, I.; Ruszkowska, M.; Kluz, M.I.; Bordiga, M. Potato Protein-Based Vegan Burgers: Discovering the Health-Promoting Benefits and Impact on the Intestinal Microbiome. Nutrients 2026, 18, 160. https://doi.org/10.3390/nu18010160
Kowalczewski PŁ, Gumienna M, Jeżowski P, Świątek M, Górna-Szweda B, Rybicka I, Ruszkowska M, Kluz MI, Bordiga M. Potato Protein-Based Vegan Burgers: Discovering the Health-Promoting Benefits and Impact on the Intestinal Microbiome. Nutrients. 2026; 18(1):160. https://doi.org/10.3390/nu18010160
Chicago/Turabian StyleKowalczewski, Przemysław Łukasz, Małgorzata Gumienna, Paweł Jeżowski, Michał Świątek, Barbara Górna-Szweda, Iga Rybicka, Millena Ruszkowska, Maciej Ireneusz Kluz, and Matteo Bordiga. 2026. "Potato Protein-Based Vegan Burgers: Discovering the Health-Promoting Benefits and Impact on the Intestinal Microbiome" Nutrients 18, no. 1: 160. https://doi.org/10.3390/nu18010160
APA StyleKowalczewski, P. Ł., Gumienna, M., Jeżowski, P., Świątek, M., Górna-Szweda, B., Rybicka, I., Ruszkowska, M., Kluz, M. I., & Bordiga, M. (2026). Potato Protein-Based Vegan Burgers: Discovering the Health-Promoting Benefits and Impact on the Intestinal Microbiome. Nutrients, 18(1), 160. https://doi.org/10.3390/nu18010160

