Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definition of Clinical Outcomes and Risk Factors
2.3. PRS Development
2.4. Ancestry Specific Clinical Distributions and Ancestry Adjustment of PRSs
2.5. Data Analysis
3. Results
3.1. Association of PRSs with High Lipid States
3.2. Association of PRSs with AF, T2DM and HT
3.3. Association of Two metaPRS with CAD
3.4. Impact of Ancestry on PRS Models
3.5. Model Calibration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahjehan, R.D.; Sharma, S.; Bhutta, B.S. Coronary Artery Disease; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK564304/ (accessed on 12 January 2024).
- Stark, B.; Johnson, C.; Roth, G.A. Global prevalence of coronary artery disease: An update from the Global Burden of Disease Study. J. Am. Coll. Cardiol. 2024, 83, 2320. [Google Scholar] [CrossRef]
- O’Sullivan, J.W.; Raghavan, S.; Marquez-Luna, C.; Luzum, J.A.; Damrauer, S.M.; Ashley, E.A.; O’Donnell, C.J.; Willer, C.J.; Natarajan, P.; American Heart Association Council on Genomic and Precision Medicine; et al. Polygenic Risk Scores for Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e93–e118. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Hu, D.; Chen, J.; Li, Y.; Huang, J.; Liu, X.; Liu, F.; Cao, J.; Shen, C.; et al. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China). Circulation 2016, 134, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.P.; Wang, M.; Kartoun, U.; Ng, K.; Khera, A.V. Quantifying and Understanding the Higher Risk of Atherosclerotic Cardiovascular Disease Among South Asian Individuals: Results From the UK Biobank Prospective Cohort Study. Circulation 2021, 144, 410–422. [Google Scholar] [CrossRef]
- Pencina, M.J.; Navar, A.M.; Wojdyla, D.; Sanchez, R.J.; Khan, I.; Elassal, J.; D’Agostino, R.B., Sr.; Peterson, E.D.; Sniderman, A.D. Quantifying Importance of Major Risk Factors for Coronary Heart Disease. Circulation 2019, 139, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease; StatPearls Publishing: Treasure Island, FL, USA, 2023; pp. 1–219. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK554410/ (accessed on 1 December 2024).
- Webb, T.R.; Erdmann, J.; Stirrups, K.E.; Stitziel, N.O.; Masca, N.G.; Jansen, H.; Kanoni, S.; Nelson, C.P.; Ferrario, P.G.; König, I.R.; et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated with Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 823–836. [Google Scholar] [CrossRef]
- De Luca, L.; Arca, M.; Temporelli, P.L.; Colivicchi, F.; Gonzini, L.; Lucci, D.; Bosco, B.; Callerame, M.; Lettica, G.V.; Di Lenarda, A.; et al. Prevalence and pharmacologic management of familial hypercholesterolemia in an unselected contemporary cohort of patients with stable coronary artery disease. Clin. Cardiol. 2018, 41, 1075–1083. [Google Scholar] [CrossRef]
- Cupido, A.J.; Tromp, T.R.; Hovingh, G.K. The clinical applicability of polygenic risk scores for LDL-cholesterol: Considerations, current evidence and future perspectives. Curr. Opin. Lipidol. 2021, 32, 112. [Google Scholar] [CrossRef]
- Drobni, Z.D.; Kolossvary, M.; Karady, J.; Jermendy, A.L.; Tarnoki, A.D.; Tarnoki, D.L.; Simon, J.; Szilveszter, B.; Littvay, L.; Voros, S.; et al. Heritability of Coronary Artery Disease: Insights From a Classical Twin Study. Circ. Cardiovasc. Imaging 2022, 15, e013348. [Google Scholar] [CrossRef]
- Manikpurage, H.D.; Paulin, A.; Girard, A.; Eslami, A.; Mathieu, P.; Thériault, S.; Arsenault, B.J. Contribution of Lipoprotein(a) to Polygenic Risk Prediction of Coronary Artery Disease: A Prospective UK Biobank Analysis. Circ. Genom. Precis. Med. 2023, 16, 470–477. [Google Scholar] [CrossRef]
- Trinh, M.N.; Pournamdari, A.; Small, A.M.; Peloso, G.M.; Patel, A.P.; Natarajan, P. Lipoprotein(a) Concentrations Are Independent of Polygenic Score for Coronary Artery Disease. JACC Adv. 2024, 3, 100800. [Google Scholar] [CrossRef]
- Lønnebakken, M.T. The risk of no risk in STEMI. Lancet 2021, 397, 1039–1040. [Google Scholar] [CrossRef] [PubMed]
- Figtree, G.A.; Vernon, S.T.; Hadziosmanovic, N.; Sundström, J.; Alfredsson, J.; Arnott, C.; Delatour, V.; Leósdóttir, M.; Hagström, E. Mortality in STEMI patients without standard modifiable risk factors: A sex-disaggregated analysis of SWEDEHEART registry data. Lancet 2021, 397, 1085–1094. [Google Scholar] [CrossRef]
- Vernon, S.T.; Coffey, S.; D’Souza, M.; Chow, C.K.; Kilian, J.; Hyun, K.; Shaw, J.A.; Adams, M.; Roberts-Thomson, P.; Brieger, D.; et al. ST-Segment-Elevation Myocardial Infarction (STEMI) Patients Without Standard Modifiable Cardiovascular Risk Factors-How Common Are They, and What Are Their Outcomes? J. Am. Heart Assoc. 2019, 8, e013296. [Google Scholar] [CrossRef]
- Tamlander, M.; Mars, N.; Pirinen, M.; Widén, E.; Ripatti, S. Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes. Commun. Biol. 2022, 5, 158. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Polygenic Score Catalog. Coronary Artery Disease (EFO_0001645). Available online: https://pgscatalog.org/trait/EFO_0001645/ (accessed on 19 November 2024).
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.J.; Devlin, J.J.; Nordio, F.; Hyde, C.L.; Cannon, C.P.; Sacks, F.M.; et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef]
- Truong, B.; Hull, L.E.; Ruan, Y.; Huang, Q.Q.; Hornsby, W.; Martin, H.; van Heel, D.A.; Wang, Y.; Martin, A.R.; Lee, S.H.; et al. Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases. Cell Genom. 2024, 4, 100523. [Google Scholar] [CrossRef]
- Fahed, A.C.; Natarajan, P. Clinical applications of polygenic risk score for coronary artery disease through the life course. Atherosclerosis 2023, 386, 117356. [Google Scholar] [CrossRef]
- Lennon, N.J.; Kottyan, L.C.; Kachulis, C.; Abul-Husn, N.S.; Arias, J.; Belbin, G.; Below, J.E.; Berndt, S.I.; Chung, W.K.; Cimino, J.J.; et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 2024, 30, 480–487. [Google Scholar] [CrossRef]
- Busby, G.B.; Kulm, S.; Bolli, A.; Kintzle, J.; Domenico, P.D.; Bottà, G. Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments. Nat. Commun. 2023, 14, 7105. [Google Scholar] [CrossRef] [PubMed]
- Mujwara, D.; Henno, G.; Vernon, S.T.; Peng, S.; Di Domenico, P.; Schroeder, B.; Busby, G.B.; Figtree, G.A.; Bottà, G. Integrating a Polygenic Risk Score for Coronary Artery Disease as a Risk-Enhancing Factor in the Pooled Cohort Equation: A Cost-Effectiveness Analysis Study. J. Am. Heart Assoc. 2022, 11, e025236. [Google Scholar] [CrossRef]
- All of Us Research Program Genomics Investigators Genomic data in the All of Us Research Program. Nature 2024, 627, 340–346. [CrossRef] [PubMed]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef]
- Christophersen, I.E.; Rienstra, M.; Roselli, C.; Yin, X.; Geelhoed, B.; Barnard, J.; Lin, H.; Arking, D.E.; Smith, A.V.; Albert, C.M.; et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 2017, 49, 946–952. [Google Scholar] [CrossRef]
- Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N.; et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 2018, 50, 1505–1513. [Google Scholar] [CrossRef]
- Liu, C.; Kraja, A.T.; Smith, J.A.; Brody, J.A.; Franceschini, N.; Bis, J.C.; Rice, K.; Morrison, A.C.; Lu, Y.; Weiss, S.; et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 2016, 48, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.P.; Wang, M.; Ruan, Y.; Koyama, S.; Clarke, S.L.; Yang, X.; Tcheandjieu, C.; Agrawal, S.; Fahed, A.C.; Ellinor, P.T.; et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease. Nat. Med. 2023, 29, 1793–1803. [Google Scholar] [CrossRef]
- Hao, L.; Kraft, P.; Berriz, G.F.; Hynes, E.D.; Koch, C.; Korategere, V.; Kumar, P.; Parpattedar, S.S.; Steeves, M.; Yu, W.; et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. Med. 2022, 28, 1006–1013. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Fatumo, S.; Chikowore, T.; Choudhury, A.; Ayub, M.; Martin, A.R.; Kuchenbaecker, K. A roadmap to increase diversity in genomic studies. Nat. Med. 2022, 28, 243–250. [Google Scholar] [CrossRef]
- Aragam, K.G.; Dobbyn, A.; Judy, R.; Chaffin, M.; Chaudhary, K.; Hindy, G.; Cagan, A.; Finneran, P.; Weng, L.C.; Loos, R.J.F.; et al. Limitations of Contemporary Guidelines for Managing Patients at High Genetic Risk of Coronary Artery Disease. J. Am. Coll. Cardiol. 2020, 75, 2769–2780. [Google Scholar] [CrossRef] [PubMed]
- Bolli, A.; Di Domenico, P.; Pastorino, R.; Busby, G.B.; Bottà, G. Circulation Risk of Coronary Artery Disease Conferred by Low-Density Lipoprotein Cholesterol Depends on Polygenic Background. Circulation 2021, 143, 1452–1454. [Google Scholar] [CrossRef] [PubMed]
- Marston, N.A.; Pirruccello, J.P.; Melloni, G.E.M.; Koyama, S.; Kamanu, F.K.; Weng, L.C.; Roselli, C.; Kamatani, Y.; Komuro, I.; Aragam, K.G.; et al. Predictive Utility of a Coronary Artery Disease Polygenic Risk Score in Primary Prevention. JAMA Cardiol. 2023, 8, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Naderian, M.; Hamed, M.E.; Vaseem, A.A.; Norland, K.; Dikilitas, O.; Teymourzadeh, A.; Bailey, K.R.; Kullo, I.J. Effect of disclosing a polygenic risk score for coronary heart disease on adverse cardiovascular events: 10-year follow-up of the MI-GENES randomized clinical trial. medRxiv 2024. [Google Scholar] [CrossRef]
- Natarajan, P.; Young, R.; Stitziel, N.O.; Padmanabhan, S.; Baber, U.; Mehran, R.; Sartori, S.; Fuster, V.; Reilly, D.F.; Butterworth, A.; et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 2017, 135, 2091–2101. [Google Scholar] [CrossRef]
- Marston, N.A.; Kamanu, F.K.; Nordio, F.; Gurmu, Y.; Roselli, C.; Sever, P.S.; Pedersen, T.R.; Keech, A.C.; Wang, H.; Pineda, A.L.; et al. Predicting Benefit From Evolocumab Therapy in Patients with Atherosclerotic Disease Using a Genetic Risk Score: Results from the FOURIER Trial. Circulation 2020, 141, 616. [Google Scholar] [CrossRef]
- Ruiz-Iruela, C.; Padró-Miquel, A.; Pintó-Sala, X.; Baena-Díez, N.; Caixàs-Pedragós, A.; Güell-Miró, R.; Navarro-Badal, R.; Jusmet-Miguel, X.; Calmarza, P.; Puzo-Foncilla, J.L.; et al. KIF6 gene as a pharmacogenetic marker for lipid-lowering effect in statin treatment. PLoS ONE 2018, 13, e0205430. [Google Scholar] [CrossRef]
- Wang, Y.; Du, X.; Zhao, R.; Niu, J.; Wang, H.; Li, J. Association of APOE polymorphisms with lipid-lowering efficacy of statins in atherosclerotic cardiovascular diseases. Ann. Acad. Med. Singap. 2021, 50, 474–480. [Google Scholar] [CrossRef]
- Srisawasdi, P.; Rodcharoen, P.; Vanavanan, S.; Chittamma, A.; Sukasem, C.; Na Nakorn, C.; Dejthevaporn, C.; Kroll, M.H. Association of CETP Gene Variants with Atherogenic Dyslipidemia Among Thai Patients Treated with Statin. Pharmacogenom. Pers. Med. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Kitzmiller, J.P.; Mikulik, E.B.; Dauki, A.M.; Murkherjee, C.; Luzum, J.A. Pharmacogenomics of statins: Understanding susceptibility to adverse effects. Pharmacogenom. Pers. Med. 2016, 9, 97–106. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Ordovas, J.M.; Li, N.; Straka, R.J.; Hanson, N.Q.; Arends, V.L.; Arnett, D. Effect of fenofibrate therapy and ABCA1 polymorphisms on high-density lipoprotein subclasses in the Genetics of Lipid Lowering Drugs and Diet Network. Mol. Genet. Metab. 2010, 100, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Frazier-Wood, A.C.; Ordovas, J.M.; Straka, R.J.; Hixson, J.E.; Borecki, I.B.; Tiwari, H.K.; Arnett, D.K. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: The GOLDN study. Pharmacogenom. J. 2013, 13, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.C.; Morgan, A.C.; Jannes, C.E.; Krieger, J.E.; Santos, R.D.; Pereira, A.C. The MYLIP p.N342S polymorphism is associated with response to lipid-lowering therapy in Brazilian patients with familial hypercholesterolemia. Pharmacogenet. Genom. 2014, 24, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.J.; Mangravite, L.M.; Hyde, C.L.; Chasman, D.I.; Smith, J.D.; McCarty, C.A.; Li, X.; Wilke, R.A.; Rieder, M.J.; Williams, P.T.; et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE 2010, 5, e9763. [Google Scholar] [CrossRef]
- Kiflen, M.; Le, A.; Mao, S.; Lali, R.; Narula, S.; Xie, F.; Paré, G. Cost-Effectiveness of Polygenic Risk Scores to Guide Statin Therapy for Cardiovascular Disease Prevention. Circ. Genom. Precis. Med. 2022, 15, e003423. [Google Scholar] [CrossRef]
- Mujwara, D.; Kintzle, J.; Di Domenico, P.; Busby, G.B.; Bottà, G. Cost-effectiveness analysis of implementing polygenic risk score in a workplace cardiovascular disease prevention program. Front. Public Health 2023, 11, 1139496. [Google Scholar] [CrossRef]
- Martin, A.R.; Daly, M.J.; Robinson, E.B.; Hyman, S.E.; Neale, B.M. Predicting Polygenic Risk of Psychiatric Disorders. Biol. Psychiatry 2019, 86, 97–109. [Google Scholar] [CrossRef]
- Vasan, R.S.; van den Heuvel, E. Differences in estimates for 10-year risk of cardiovascular disease in Black versus White individuals with identical risk factor profiles using pooled cohort equations: An in silico cohort study. Lancet Digit Health 2022, 4, e55–e63. [Google Scholar] [CrossRef]
- Tsuo, K.; Shi, Z.; Ge, T.; Mandla, R.; Hou, K.; Ding, Y.; Pasaniuc, B.; Wang, Y.; Martin, A.R. All of Us diversity and scale improve polygenic prediction contextually with greatest improvements for under-represented populations. bioRxiv 2024. [Google Scholar] [CrossRef]
- Misra, A.; Truong, B.; Urbut, S.M.; Sui, Y.; Fahed, A.C.; Smoller, J.W.; Patel, A.P.; Natarajan, P. Instability of high polygenic risk classification and mitigation by integrative scoring. Nat. Commun. 2025, 16, 1584. [Google Scholar] [CrossRef] [PubMed]
PRS | Outcome | Ancestry | Cases | Controls | AUC (95% CI) | OR per SD (95% CI) |
---|---|---|---|---|---|---|
Allelica_LDL_vI | LDL-C ≥ 160 | AFR | 642 | 10,476 | 0.68 (0.66–0.7) | 1.6 (1.5–1.7) |
Allelica_LDL_vI | LDL-C ≥ 160 | AMR | 331 | 7218 | 0.73 (0.7–0.75) | 1.8 (1.6–2.1) |
Allelica_LDL_vI | LDL-C ≥ 160 | EAS | 80 | 1093 | 0.72 (0.67–0.77) | 1.9 (1.5–2.5) |
Allelica_LDL_vI | LDL-C ≥ 160 | EUR | 2587 | 32,716 | 0.71 (0.7–0.72) | 2.0 (1.9–2.1) |
Allelica_LDL_vI | LDL-C ≥ 160 | ADM | 382 | 4825 | 0.69 (0.66–0.71) | 1.6 (1.5–1.8) |
Allelica_LDL_vI | LDL-C ≥ 160 | SAS | 37 | 551 | 0.73 (0.64–0.81) | 1.9 (1.3–2.8) |
Allelica_LDL_vI | LDL-C ≥ 190 | AFR | 145 | 10,973 | 0.74 (0.7–0.77) | 1.9 (1.6–2.3) |
Allelica_LDL_vI | LDL-C ≥ 190 | AMR | 53 | 7496 | 0.72 (0.64–0.8) | 1.9 (1.4–2.6) |
Allelica_LDL_vI | LDL-C ≥ 190 | EAS | 13 | 1160 | 0.85 (0.74–0.93) | 2.7 (1.4–5.3) |
Allelica_LDL_vI | LDL-C ≥ 190 | EUR | 394 | 34,909 | 0.75 (0.73–0.77) | 2.4 (2.1–2.7) |
Allelica_LDL_vI | LDL-C ≥ 190 | ADM | 69 | 5138 | 0.73 (0.67–0.78) | 2.0 (1.6–2.6) |
Allelica_LDL_vI | LDL-C ≥ 190 | SAS | 7 | 581 | 0.87 (0.79–0.95) | 4.5 (1.6–12.8) |
Allelica_HDL_vI | HDL-C < 40 | AFR | 1371 | 9531 | 0.62 (0.61–0.64) | 1.2 (1.2–1.3) |
Allelica_HDL_vI | HDL-C < 40 | AMR | 1287 | 6553 | 0.65 (0.63–0.67) | 1.4 (1.3–1.5) |
Allelica_HDL_vI | HDL-C < 40 | EAS | 101 | 1083 | 0.76 (0.70–0.8) | 1.7 (1.3–2.1) |
Allelica_HDL_vI | HDL-C < 40 | EUR | 4650 | 31,303 | 0.72 (0.71–0.73) | 1.6 (1.5–1.6) |
Allelica_HDL_vI | HDL-C < 40 | ADM | 680 | 4518 | 0.72 (0.70–0.74) | 1.4 (1.3–1.6) |
Allelica_HDL_vI | HDL-C < 40 | SAS | 98 | 497 | 0.75 (0.70–0.8) | 1.3 (1.0–1.7) |
Allelica_TG_vI | Trigs-C ≥ 175 | AFR | 910 | 9980 | 0.62 (0.60–0.64) | 1.2 (1.1–1.2) |
Allelica_TG_vI | Trigs-C ≥ 175 | AMR | 1230 | 6638 | 0.63 (0.61–0.65) | 1.4 (1.3–1.5) |
Allelica_TG_vI | Trigs-C ≥ 175 | EAS | 163 | 1014 | 0.71 (0.67–0.75) | 1.4 (1.1–1.6) |
Allelica_TG_vI | Trigs-C ≥ 175 | EUR | 5186 | 31,873 | 0.65 (0.64–0.66) | 1.5 (1.5–1.6) |
Allelica_TG_vI | Trigs-C ≥ 175 | ADM | 672 | 4598 | 0.67 (0.65–0.69) | 1.5 (1.4–1.6) |
Allelica_TG_vI | Trigs-C ≥ 175 | SAS | 91 | 502 | 0.73 (0.68–0.78) | 1.6 (1.2–2.0) |
PRS | Outcome | Ancestry | Cases | Controls | AUC (95% CI) | OR per SD (95% CI) |
---|---|---|---|---|---|---|
Allelica_AF_vI | AF | AFR | 701 | 46,070 | 0.75 (0.73–0.77) | 1.2 (1.1–1.3) |
Allelica_AF_vI | AF | AMR | 462 | 35,755 | 0.81 (0.79–0.83) | 1.3 (1.2–1.4) |
Allelica_AF_vI | AF | EAS | 53 | 5051 | 0.88 (0.85–0.91) | 1.8 (1.3–2.4) |
Allelica_AF_vI | AF | EUR | 5451 | 107,002 | 0.82 (0.82–0.83) | 1.6 (1.5–1.6) |
Allelica_AF_vI | AF | ADM | 603 | 17,549 | 0.84 (0.83–0.85) | 1.5 (1.4–1.6) |
Allelica_AF_vI | AF | SAS | 19 | 2218 | 0.86 (0.76–0.93) | 1.6 (1.0–2.5) |
Allelica_T2D_vI | T2DM | AFR | 6221 | 40,138 | 0.7 (0.69–0.7) | 1.2 (1.2–1.2) |
Allelica_T2D_vI | T2DM | AMR | 4621 | 31,190 | 0.75 (0.75–0.76) | 1.4 (1.4–1.45) |
Allelica_T2D_vI | T2DM | EAS | 278 | 4802 | 0.78 (0.76–0.8) | 1.4 (1.2–1.6) |
Allelica_T2D_vI | T2DM | EUR | 11,137 | 102,965 | 0.69 (0.69–0.7) | 1.5 (1.5–1.6) |
Allelica_T2D_vI | T2DM | ADM | 1788 | 16,453 | 0.74 (0.73–0.75) | 1.4 (1.4–1.5) |
Allelica_T2D_vI | T2DM | SAS | 192 | 2023 | 0.83 (0.81–0.86) | 1.6 (1.4–1.9) |
Allelica_BP_vI | HT | AFR | 12,664 | 33,173 | 0.73 (0.72–0.73) | 1.1 (1.1–1.2) |
Allelica_BP_vI | HT | AMR | 6883 | 28,653 | 0.8 (0.79–0.8) | 1.4 (1.4–1.4) |
Allelica_BP_vI | HT | EAS | 581 | 4462 | 0.81 (0.8–0.83) | 1.4 (1.2–1.5) |
Allelica_BP_vI | HT | EUR | 32,263 | 79,952 | 0.76 (0.75–0.76) | 1.5 (1.5–1.5) |
Allelica_BP_vI | HT | ADM | 4480 | 13,509 | 0.8 (0.79–0.81) | 1.4 (1.4–1.5) |
Allelica_BP_vI | HT | SAS | 291 | 1914 | 0.88 (0.86–0.89) | 1.5 (1.3–1.8) |
PRS | Ancestry | Cases | Controls | AUC (95% CI) | OR per SD (95% CI) |
---|---|---|---|---|---|
risk factors metaPRS | AFR | 2609 | 44,027 | 0.74 (0.73–0.75) | 1.2 (1.1–1.2) |
risk factors metaPRS | AMR | 1501 | 34,567 | 0.82 (0.81–0.83) | 1.4 (1.3–1.4) |
risk factors metaPRS | EAS | 128 | 4976 | 0.87 (0.84–0.89) | 1.5 (1.2–1.8) |
risk factors metaPRS | EUR | 9824 | 103,627 | 0.79 (0.79–0.79) | 1.3 (1.3–1.4) |
risk factors metaPRS | ADM | 1447 | 16,706 | 0.83 (0.82–0.84) | 1.3 (1.2–1.4) |
risk factors metaPRS | SAS | 104 | 2121 | 0.92 (0.91–0.94) | 2.0 (1.6–2.5) |
risk factors + CAD metaPRS | AFR | 2609 | 44,027 | 0.75 (0.74–0.75) | 1.3 (1.2–1.3) |
risk factors + CAD metaPRS | AMR | 1501 | 34,567 | 0.82 (0.81–0.83) | 1.5 (1.5–1.6) |
risk factors + CAD metaPRS | EAS | 128 | 4976 | 0.87 (0.84–0.89) | 1.6 (1.3–1.9) |
risk factors + CAD metaPRS | EUR | 9824 | 103,627 | 0.81 (0.8–0.81) | 1.7 (1.7–1.8) |
risk factors + CAD metaPRS | ADM | 1447 | 16,706 | 0.83 (0.82–0.84) | 1.5 (1.4–1.6) |
risk factors + CAD metaPRS | SAS | 104 | 2121 | 0.94 (0.92–0.95) | 2.9 (2.2–3.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponikowska, M.; Di Domenico, P.; Bolli, A.; Busby, G.B.; Perez, E.; Bottà, G. Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort. Nutrients 2025, 17, 926. https://doi.org/10.3390/nu17050926
Ponikowska M, Di Domenico P, Bolli A, Busby GB, Perez E, Bottà G. Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort. Nutrients. 2025; 17(5):926. https://doi.org/10.3390/nu17050926
Chicago/Turabian StylePonikowska, Małgorzata, Paolo Di Domenico, Alessandro Bolli, George Bartholomew Busby, Emma Perez, and Giordano Bottà. 2025. "Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort" Nutrients 17, no. 5: 926. https://doi.org/10.3390/nu17050926
APA StylePonikowska, M., Di Domenico, P., Bolli, A., Busby, G. B., Perez, E., & Bottà, G. (2025). Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a U.S. Cohort. Nutrients, 17(5), 926. https://doi.org/10.3390/nu17050926